Formelsammlung und Wertetabellen
Hinweise
- Die hier dargestellten Informationen werden Ihnen so oder ähnlich auch in der Klausur zur Verfügung stehen.
- Ich empfehle deshalb, das Dokument als PDF herunterzuladen und auszudrucken – so gewöhnen Sie sich gleich an das Format.
- Bezeichnungen und Konventionen orientieren sich an Bortz und Schuster (2010), sind aber teilweise abweichend vereinfacht.
- Die Wertetabellen wurden mit den entsprechenden Funktionen in R (R Core Team 2018) automatisch generiert.
Formelsammlung
\[ \bar{x}=\frac{\sum\limits _{i=1}^{n}x_{i}}{n} \]
\[ R=x_{(n)}-x_{(1)} \]
\[ \mathit{IQR}=Q_3-Q_1 \]
\[ s^2=\dfrac{\displaystyle\sum_{i=1}^{n}(x_{i}-\bar{x})^2}{n-1} \]
\[ s=\sqrt{s^{2}} \]
\[ \def\arraystretch{1.2} \textit{Md} = \Bigg\{\begin{array}{@{}c@{}}\frac{x_{(\frac{n}{2})}+x_{(\frac{n}{2}+1)}}{2} \quad \textrm{falls }n \textrm{ gerade}\\[6pt] x_{(\frac{n+1}{2})}\quad \textrm{falls }n \textrm{ ungerade}\end{array}\]
\[ v=\frac{s}{|\bar{x}|} \cdot 100\%\]
\[ z_i=\frac{x_i-\bar{x}}{s} \]
\[ x_i=z_i\cdot s+\bar{x} \]
\[ P(x>x_p)=1-P(x\leq x_p)\]
\[ 1-\alpha=P(z_{\alpha/2} < z_{\mu} < z_{(1-\alpha/2)}) \]
\[ \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}\]
\[ \frac{\mathit{KIB}}{2} = z_{(1-\alpha/2)} \cdot \sigma_{\bar{x}} \]
\[ z=\sqrt{n}\cdot\frac{\bar{x}-\mu_0}{\sigma}\]
\[ t=\sqrt{n}\cdot\frac{\bar{x}-\mu_0}{s}\]
\[ t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_1^2+s^2_2}{n}}} \]
\[ F={\frac{s_{1}^{2}}{s_{2}^{2}}} \]
\[ s_{xy}=\frac{\displaystyle \sum_{i=1}^{n}(x_{i}-\bar{x})\cdot(y_{i}-\bar{y})}{n-1} \]
\[ r=\frac{s_{xy}}{s_x\cdot s_y} \]
\[ y=a + b\cdot x\]
\[ b=\frac{s_{xy}}{s^2_x}\]
\[ a = \bar{y} - b \cdot \bar{x}\]
\[ e_i=y_i-\hat{y}_i \]
\[ m_{ij}=\frac{n_{i\cdot}\cdot n_{\cdot j}}{n} \]
\[ \chi^2= \sum_{i=1}^{k}\sum_{j=1}^{\ell}\frac{(n_{ij}-m_{ij})^{2}}{m_{ij}} \]
\[ \phi=\sqrt{\frac{\chi^2}{n}} \]
\[ \mathit{CI}=\sqrt{\frac{\chi^2}{n \cdot (\mathrm{min}(k, \ell)-1)}}\]
Bestimmung der Freiheitsgrade für… | Formel |
---|---|
1-Stichproben-\(t\)-Test | \[ \mathit{df} = n -1 \] |
2-Stichproben-\(t\)-Test | \[ \mathit{df} = 2\cdot n - 2 \] |
F-Test | \[ \mathit{df}_1 = n_1 -1; \quad \mathit{df}_2=n_2-1 \] |
\(\chi^2\)-Unabhängigkeitstest | \[ \mathit{df} = (k - 1) \cdot (\ell - 1) \] |
Eindimensionaler \(\chi^2\)-Test | \[ \mathit{df} = k-1 \] |
Standardnormalverteilung
\[ P(z\leq -z_p) = 1-P(z \leq z_p) \]
\(z\) | 0,00 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 |
---|---|---|---|---|---|---|---|---|---|---|
0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5753 |
0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
0,6 | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,7454 | 0,7486 | 0,7517 | 0,7549 |
0,7 | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7703 | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995 | 0,8023 | 0,8051 | 0,8078 | 0,8106 | 0,8133 |
0,9 | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264 | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
1,0 | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508 | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
1,1 | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729 | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
1,2 | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925 | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
1,3 | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099 | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |
1,4 | 0,9192 | 0,9207 | 0,9222 | 0,9236 | 0,9251 | 0,9265 | 0,9279 | 0,9292 | 0,9306 | 0,9319 |
1,5 | 0,9332 | 0,9345 | 0,9357 | 0,9370 | 0,9382 | 0,9394 | 0,9406 | 0,9418 | 0,9429 | 0,9441 |
1,6 | 0,9452 | 0,9463 | 0,9474 | 0,9484 | 0,9495 | 0,9505 | 0,9515 | 0,9525 | 0,9535 | 0,9545 |
1,7 | 0,9554 | 0,9564 | 0,9573 | 0,9582 | 0,9591 | 0,9599 | 0,9608 | 0,9616 | 0,9625 | 0,9633 |
1,8 | 0,9641 | 0,9649 | 0,9656 | 0,9664 | 0,9671 | 0,9678 | 0,9686 | 0,9693 | 0,9699 | 0,9706 |
1,9 | 0,9713 | 0,9719 | 0,9726 | 0,9732 | 0,9738 | 0,9744 | 0,9750 | 0,9756 | 0,9761 | 0,9767 |
2,0 | 0,9772 | 0,9778 | 0,9783 | 0,9788 | 0,9793 | 0,9798 | 0,9803 | 0,9808 | 0,9812 | 0,9817 |
2,1 | 0,9821 | 0,9826 | 0,9830 | 0,9834 | 0,9838 | 0,9842 | 0,9846 | 0,9850 | 0,9854 | 0,9857 |
2,2 | 0,9861 | 0,9864 | 0,9868 | 0,9871 | 0,9875 | 0,9878 | 0,9881 | 0,9884 | 0,9887 | 0,9890 |
2,3 | 0,9893 | 0,9896 | 0,9898 | 0,9901 | 0,9904 | 0,9906 | 0,9909 | 0,9911 | 0,9913 | 0,9916 |
2,4 | 0,9918 | 0,9920 | 0,9922 | 0,9925 | 0,9927 | 0,9929 | 0,9931 | 0,9932 | 0,9934 | 0,9936 |
2,5 | 0,9938 | 0,9940 | 0,9941 | 0,9943 | 0,9945 | 0,9946 | 0,9948 | 0,9949 | 0,9951 | 0,9952 |
2,6 | 0,9953 | 0,9955 | 0,9956 | 0,9957 | 0,9959 | 0,9960 | 0,9961 | 0,9962 | 0,9963 | 0,9964 |
2,7 | 0,9965 | 0,9966 | 0,9967 | 0,9968 | 0,9969 | 0,9970 | 0,9971 | 0,9972 | 0,9973 | 0,9974 |
2,8 | 0,9974 | 0,9975 | 0,9976 | 0,9977 | 0,9977 | 0,9978 | 0,9979 | 0,9979 | 0,9980 | 0,9981 |
2,9 | 0,9981 | 0,9982 | 0,9982 | 0,9983 | 0,9984 | 0,9984 | 0,9985 | 0,9985 | 0,9986 | 0,9986 |
3,0 | 0,9987 | 0,9987 | 0,9987 | 0,9988 | 0,9988 | 0,9989 | 0,9989 | 0,9989 | 0,9990 | 0,9990 |
𝑡-Verteilungen
\[ P(t \leq - t_p) = 1 - P(t \leq t_p) \]
\(df\) | 0,55 | 0,6 | 0,65 | 0,7 | 0,75 | 0,8 | 0,85 | 0,9 | 0,95 | 0,975 | 0,99 | 0,995 | 0,999 | 0,9995 | 0,9999 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0,158 | 0,325 | 0,510 | 0,727 | 1,000 | 1,376 | 1,963 | 3,078 | 6,314 | 12,706 | 31,821 | 63,657 | 318,309 | 636,619 | 3183,099 |
2 | 0,142 | 0,289 | 0,445 | 0,617 | 0,816 | 1,061 | 1,386 | 1,886 | 2,920 | 4,303 | 6,965 | 9,925 | 22,327 | 31,599 | 70,700 |
3 | 0,137 | 0,277 | 0,424 | 0,584 | 0,765 | 0,978 | 1,250 | 1,638 | 2,353 | 3,182 | 4,541 | 5,841 | 10,215 | 12,924 | 22,204 |
4 | 0,134 | 0,271 | 0,414 | 0,569 | 0,741 | 0,941 | 1,190 | 1,533 | 2,132 | 2,776 | 3,747 | 4,604 | 7,173 | 8,610 | 13,034 |
5 | 0,132 | 0,267 | 0,408 | 0,559 | 0,727 | 0,920 | 1,156 | 1,476 | 2,015 | 2,571 | 3,365 | 4,032 | 5,893 | 6,869 | 9,678 |
6 | 0,131 | 0,265 | 0,404 | 0,553 | 0,718 | 0,906 | 1,134 | 1,440 | 1,943 | 2,447 | 3,143 | 3,707 | 5,208 | 5,959 | 8,025 |
7 | 0,130 | 0,263 | 0,402 | 0,549 | 0,711 | 0,896 | 1,119 | 1,415 | 1,895 | 2,365 | 2,998 | 3,499 | 4,785 | 5,408 | 7,063 |
8 | 0,130 | 0,262 | 0,399 | 0,546 | 0,706 | 0,889 | 1,108 | 1,397 | 1,860 | 2,306 | 2,896 | 3,355 | 4,501 | 5,041 | 6,442 |
9 | 0,129 | 0,261 | 0,398 | 0,543 | 0,703 | 0,883 | 1,100 | 1,383 | 1,833 | 2,262 | 2,821 | 3,250 | 4,297 | 4,781 | 6,010 |
10 | 0,129 | 0,260 | 0,397 | 0,542 | 0,700 | 0,879 | 1,093 | 1,372 | 1,812 | 2,228 | 2,764 | 3,169 | 4,144 | 4,587 | 5,694 |
11 | 0,129 | 0,260 | 0,396 | 0,540 | 0,697 | 0,876 | 1,088 | 1,363 | 1,796 | 2,201 | 2,718 | 3,106 | 4,025 | 4,437 | 5,453 |
12 | 0,128 | 0,259 | 0,395 | 0,539 | 0,695 | 0,873 | 1,083 | 1,356 | 1,782 | 2,179 | 2,681 | 3,055 | 3,930 | 4,318 | 5,263 |
13 | 0,128 | 0,259 | 0,394 | 0,538 | 0,694 | 0,870 | 1,079 | 1,350 | 1,771 | 2,160 | 2,650 | 3,012 | 3,852 | 4,221 | 5,111 |
14 | 0,128 | 0,258 | 0,393 | 0,537 | 0,692 | 0,868 | 1,076 | 1,345 | 1,761 | 2,145 | 2,624 | 2,977 | 3,787 | 4,140 | 4,985 |
15 | 0,128 | 0,258 | 0,393 | 0,536 | 0,691 | 0,866 | 1,074 | 1,341 | 1,753 | 2,131 | 2,602 | 2,947 | 3,733 | 4,073 | 4,880 |
16 | 0,128 | 0,258 | 0,392 | 0,535 | 0,690 | 0,865 | 1,071 | 1,337 | 1,746 | 2,120 | 2,583 | 2,921 | 3,686 | 4,015 | 4,791 |
17 | 0,128 | 0,257 | 0,392 | 0,534 | 0,689 | 0,863 | 1,069 | 1,333 | 1,740 | 2,110 | 2,567 | 2,898 | 3,646 | 3,965 | 4,714 |
18 | 0,127 | 0,257 | 0,392 | 0,534 | 0,688 | 0,862 | 1,067 | 1,330 | 1,734 | 2,101 | 2,552 | 2,878 | 3,610 | 3,922 | 4,648 |
19 | 0,127 | 0,257 | 0,391 | 0,533 | 0,688 | 0,861 | 1,066 | 1,328 | 1,729 | 2,093 | 2,539 | 2,861 | 3,579 | 3,883 | 4,590 |
20 | 0,127 | 0,257 | 0,391 | 0,533 | 0,687 | 0,860 | 1,064 | 1,325 | 1,725 | 2,086 | 2,528 | 2,845 | 3,552 | 3,850 | 4,539 |
25 | 0,127 | 0,256 | 0,390 | 0,531 | 0,684 | 0,856 | 1,058 | 1,316 | 1,708 | 2,060 | 2,485 | 2,787 | 3,450 | 3,725 | 4,352 |
30 | 0,127 | 0,256 | 0,389 | 0,530 | 0,683 | 0,854 | 1,055 | 1,310 | 1,697 | 2,042 | 2,457 | 2,750 | 3,385 | 3,646 | 4,234 |
35 | 0,127 | 0,255 | 0,388 | 0,529 | 0,682 | 0,852 | 1,052 | 1,306 | 1,690 | 2,030 | 2,438 | 2,724 | 3,340 | 3,591 | 4,153 |
40 | 0,126 | 0,255 | 0,388 | 0,529 | 0,681 | 0,851 | 1,050 | 1,303 | 1,684 | 2,021 | 2,423 | 2,704 | 3,307 | 3,551 | 4,094 |
45 | 0,126 | 0,255 | 0,388 | 0,528 | 0,680 | 0,850 | 1,049 | 1,301 | 1,679 | 2,014 | 2,412 | 2,690 | 3,281 | 3,520 | 4,049 |
50 | 0,126 | 0,255 | 0,388 | 0,528 | 0,679 | 0,849 | 1,047 | 1,299 | 1,676 | 2,009 | 2,403 | 2,678 | 3,261 | 3,496 | 4,014 |
55 | 0,126 | 0,255 | 0,387 | 0,527 | 0,679 | 0,848 | 1,046 | 1,297 | 1,673 | 2,004 | 2,396 | 2,668 | 3,245 | 3,476 | 3,986 |
60 | 0,126 | 0,254 | 0,387 | 0,527 | 0,679 | 0,848 | 1,045 | 1,296 | 1,671 | 2,000 | 2,390 | 2,660 | 3,232 | 3,460 | 3,962 |
65 | 0,126 | 0,254 | 0,387 | 0,527 | 0,678 | 0,847 | 1,045 | 1,295 | 1,669 | 1,997 | 2,385 | 2,654 | 3,220 | 3,447 | 3,942 |
70 | 0,126 | 0,254 | 0,387 | 0,527 | 0,678 | 0,847 | 1,044 | 1,294 | 1,667 | 1,994 | 2,381 | 2,648 | 3,211 | 3,435 | 3,926 |
75 | 0,126 | 0,254 | 0,387 | 0,527 | 0,678 | 0,846 | 1,044 | 1,293 | 1,665 | 1,992 | 2,377 | 2,643 | 3,202 | 3,425 | 3,911 |
80 | 0,126 | 0,254 | 0,387 | 0,526 | 0,678 | 0,846 | 1,043 | 1,292 | 1,664 | 1,990 | 2,374 | 2,639 | 3,195 | 3,416 | 3,899 |
90 | 0,126 | 0,254 | 0,387 | 0,526 | 0,677 | 0,846 | 1,042 | 1,291 | 1,662 | 1,987 | 2,368 | 2,632 | 3,183 | 3,402 | 3,878 |
100 | 0,126 | 0,254 | 0,386 | 0,526 | 0,677 | 0,845 | 1,042 | 1,290 | 1,660 | 1,984 | 2,364 | 2,626 | 3,174 | 3,390 | 3,862 |
110 | 0,126 | 0,254 | 0,386 | 0,526 | 0,677 | 0,845 | 1,041 | 1,289 | 1,659 | 1,982 | 2,361 | 2,621 | 3,166 | 3,381 | 3,848 |
120 | 0,126 | 0,254 | 0,386 | 0,526 | 0,677 | 0,845 | 1,041 | 1,289 | 1,658 | 1,980 | 2,358 | 2,617 | 3,160 | 3,373 | 3,837 |
130 | 0,126 | 0,254 | 0,386 | 0,526 | 0,676 | 0,844 | 1,041 | 1,288 | 1,657 | 1,978 | 2,355 | 2,614 | 3,154 | 3,367 | 3,828 |
140 | 0,126 | 0,254 | 0,386 | 0,526 | 0,676 | 0,844 | 1,040 | 1,288 | 1,656 | 1,977 | 2,353 | 2,611 | 3,149 | 3,361 | 3,820 |
150 | 0,126 | 0,254 | 0,386 | 0,526 | 0,676 | 0,844 | 1,040 | 1,287 | 1,655 | 1,976 | 2,351 | 2,609 | 3,145 | 3,357 | 3,813 |
200 | 0,126 | 0,254 | 0,386 | 0,525 | 0,676 | 0,843 | 1,039 | 1,286 | 1,653 | 1,972 | 2,345 | 2,601 | 3,131 | 3,340 | 3,789 |
300 | 0,126 | 0,254 | 0,386 | 0,525 | 0,675 | 0,843 | 1,038 | 1,284 | 1,650 | 1,968 | 2,339 | 2,592 | 3,118 | 3,323 | 3,765 |
400 | 0,126 | 0,254 | 0,386 | 0,525 | 0,675 | 0,843 | 1,038 | 1,284 | 1,649 | 1,966 | 2,336 | 2,588 | 3,111 | 3,315 | 3,754 |
500 | 0,126 | 0,253 | 0,386 | 0,525 | 0,675 | 0,842 | 1,038 | 1,283 | 1,648 | 1,965 | 2,334 | 2,586 | 3,107 | 3,310 | 3,747 |
\(z\) | 0,126 | 0,253 | 0,385 | 0,524 | 0,674 | 0,842 | 1,036 | 1,282 | 1,645 | 1,960 | 2,326 | 2,576 | 3,090 | 3,291 | 3,719 |
𝐹-Verteilungen
\[ F_{\textit{df}_1;\textit{df}_2;\alpha}=\frac{1}{F_{\textit{df}_2;\textit{df}_1;(1-\alpha)}} \]
Alle Werte für Flächenanteil 0,95
\(df_2\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 50 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161,45 | 199,50 | 215,71 | 224,58 | 230,16 | 233,99 | 236,77 | 238,88 | 240,54 | 241,88 | 245,95 | 248,01 | 251,77 | 253,04 |
2 | 18,51 | 19,00 | 19,16 | 19,25 | 19,30 | 19,33 | 19,35 | 19,37 | 19,38 | 19,40 | 19,43 | 19,45 | 19,48 | 19,49 |
3 | 10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,89 | 8,85 | 8,81 | 8,79 | 8,70 | 8,66 | 8,58 | 8,55 |
4 | 7,71 | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,09 | 6,04 | 6,00 | 5,96 | 5,86 | 5,80 | 5,70 | 5,66 |
5 | 6,61 | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,88 | 4,82 | 4,77 | 4,74 | 4,62 | 4,56 | 4,44 | 4,41 |
6 | 5,99 | 5,14 | 4,76 | 4,53 | 4,39 | 4,28 | 4,21 | 4,15 | 4,10 | 4,06 | 3,94 | 3,87 | 3,75 | 3,71 |
7 | 5,59 | 4,74 | 4,35 | 4,12 | 3,97 | 3,87 | 3,79 | 3,73 | 3,68 | 3,64 | 3,51 | 3,44 | 3,32 | 3,27 |
8 | 5,32 | 4,46 | 4,07 | 3,84 | 3,69 | 3,58 | 3,50 | 3,44 | 3,39 | 3,35 | 3,22 | 3,15 | 3,02 | 2,97 |
9 | 5,12 | 4,26 | 3,86 | 3,63 | 3,48 | 3,37 | 3,29 | 3,23 | 3,18 | 3,14 | 3,01 | 2,94 | 2,80 | 2,76 |
10 | 4,96 | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,14 | 3,07 | 3,02 | 2,98 | 2,85 | 2,77 | 2,64 | 2,59 |
11 | 4,84 | 3,98 | 3,59 | 3,36 | 3,20 | 3,09 | 3,01 | 2,95 | 2,90 | 2,85 | 2,72 | 2,65 | 2,51 | 2,46 |
12 | 4,75 | 3,89 | 3,49 | 3,26 | 3,11 | 3,00 | 2,91 | 2,85 | 2,80 | 2,75 | 2,62 | 2,54 | 2,40 | 2,35 |
13 | 4,67 | 3,81 | 3,41 | 3,18 | 3,03 | 2,92 | 2,83 | 2,77 | 2,71 | 2,67 | 2,53 | 2,46 | 2,31 | 2,26 |
14 | 4,60 | 3,74 | 3,34 | 3,11 | 2,96 | 2,85 | 2,76 | 2,70 | 2,65 | 2,60 | 2,46 | 2,39 | 2,24 | 2,19 |
15 | 4,54 | 3,68 | 3,29 | 3,06 | 2,90 | 2,79 | 2,71 | 2,64 | 2,59 | 2,54 | 2,40 | 2,33 | 2,18 | 2,12 |
16 | 4,49 | 3,63 | 3,24 | 3,01 | 2,85 | 2,74 | 2,66 | 2,59 | 2,54 | 2,49 | 2,35 | 2,28 | 2,12 | 2,07 |
17 | 4,45 | 3,59 | 3,20 | 2,96 | 2,81 | 2,70 | 2,61 | 2,55 | 2,49 | 2,45 | 2,31 | 2,23 | 2,08 | 2,02 |
18 | 4,41 | 3,55 | 3,16 | 2,93 | 2,77 | 2,66 | 2,58 | 2,51 | 2,46 | 2,41 | 2,27 | 2,19 | 2,04 | 1,98 |
19 | 4,38 | 3,52 | 3,13 | 2,90 | 2,74 | 2,63 | 2,54 | 2,48 | 2,42 | 2,38 | 2,23 | 2,16 | 2,00 | 1,94 |
20 | 4,35 | 3,49 | 3,10 | 2,87 | 2,71 | 2,60 | 2,51 | 2,45 | 2,39 | 2,35 | 2,20 | 2,12 | 1,97 | 1,91 |
25 | 4,24 | 3,39 | 2,99 | 2,76 | 2,60 | 2,49 | 2,40 | 2,34 | 2,28 | 2,24 | 2,09 | 2,01 | 1,84 | 1,78 |
30 | 4,17 | 3,32 | 2,92 | 2,69 | 2,53 | 2,42 | 2,33 | 2,27 | 2,21 | 2,16 | 2,01 | 1,93 | 1,76 | 1,70 |
35 | 4,12 | 3,27 | 2,87 | 2,64 | 2,49 | 2,37 | 2,29 | 2,22 | 2,16 | 2,11 | 1,96 | 1,88 | 1,70 | 1,63 |
40 | 4,08 | 3,23 | 2,84 | 2,61 | 2,45 | 2,34 | 2,25 | 2,18 | 2,12 | 2,08 | 1,92 | 1,84 | 1,66 | 1,59 |
45 | 4,06 | 3,20 | 2,81 | 2,58 | 2,42 | 2,31 | 2,22 | 2,15 | 2,10 | 2,05 | 1,89 | 1,81 | 1,63 | 1,55 |
50 | 4,03 | 3,18 | 2,79 | 2,56 | 2,40 | 2,29 | 2,20 | 2,13 | 2,07 | 2,03 | 1,87 | 1,78 | 1,60 | 1,52 |
60 | 4,00 | 3,15 | 2,76 | 2,53 | 2,37 | 2,25 | 2,17 | 2,10 | 2,04 | 1,99 | 1,84 | 1,75 | 1,56 | 1,48 |
70 | 3,98 | 3,13 | 2,74 | 2,50 | 2,35 | 2,23 | 2,14 | 2,07 | 2,02 | 1,97 | 1,81 | 1,72 | 1,53 | 1,45 |
80 | 3,96 | 3,11 | 2,72 | 2,49 | 2,33 | 2,21 | 2,13 | 2,06 | 2,00 | 1,95 | 1,79 | 1,70 | 1,51 | 1,43 |
90 | 3,95 | 3,10 | 2,71 | 2,47 | 2,32 | 2,20 | 2,11 | 2,04 | 1,99 | 1,94 | 1,78 | 1,69 | 1,49 | 1,41 |
100 | 3,94 | 3,09 | 2,70 | 2,46 | 2,31 | 2,19 | 2,10 | 2,03 | 1,97 | 1,93 | 1,77 | 1,68 | 1,48 | 1,39 |
110 | 3,93 | 3,08 | 2,69 | 2,45 | 2,30 | 2,18 | 2,09 | 2,02 | 1,97 | 1,92 | 1,76 | 1,67 | 1,47 | 1,38 |
120 | 3,92 | 3,07 | 2,68 | 2,45 | 2,29 | 2,18 | 2,09 | 2,02 | 1,96 | 1,91 | 1,75 | 1,66 | 1,46 | 1,37 |
130 | 3,91 | 3,07 | 2,67 | 2,44 | 2,28 | 2,17 | 2,08 | 2,01 | 1,95 | 1,90 | 1,74 | 1,65 | 1,45 | 1,36 |
140 | 3,91 | 3,06 | 2,67 | 2,44 | 2,28 | 2,16 | 2,08 | 2,01 | 1,95 | 1,90 | 1,74 | 1,65 | 1,44 | 1,35 |
150 | 3,90 | 3,06 | 2,66 | 2,43 | 2,27 | 2,16 | 2,07 | 2,00 | 1,94 | 1,89 | 1,73 | 1,64 | 1,44 | 1,34 |
200 | 3,89 | 3,04 | 2,65 | 2,42 | 2,26 | 2,14 | 2,06 | 1,98 | 1,93 | 1,88 | 1,72 | 1,62 | 1,41 | 1,32 |
300 | 3,87 | 3,03 | 2,63 | 2,40 | 2,24 | 2,13 | 2,04 | 1,97 | 1,91 | 1,86 | 1,70 | 1,61 | 1,39 | 1,30 |
400 | 3,86 | 3,02 | 2,63 | 2,39 | 2,24 | 2,12 | 2,03 | 1,96 | 1,90 | 1,85 | 1,69 | 1,60 | 1,38 | 1,28 |
500 | 3,86 | 3,01 | 2,62 | 2,39 | 2,23 | 2,12 | 2,03 | 1,96 | 1,90 | 1,85 | 1,69 | 1,59 | 1,38 | 1,28 |
1000 | 3,85 | 3,00 | 2,61 | 2,38 | 2,22 | 2,11 | 2,02 | 1,95 | 1,89 | 1,84 | 1,68 | 1,58 | 1,36 | 1,26 |
𝜒²-Verteilungen
\(df\) | 0,6 | 0,7 | 0,8 | 0,85 | 0,9 | 0,95 | 0,975 | 0,99 | 0,995 | 0,999 | 0,9995 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0,708 | 1,074 | 1,642 | 2,072 | 2,706 | 3,841 | 5,024 | 6,635 | 7,879 | 10,828 | 12,116 |
2 | 1,833 | 2,408 | 3,219 | 3,794 | 4,605 | 5,991 | 7,378 | 9,210 | 10,597 | 13,816 | 15,202 |
3 | 2,946 | 3,665 | 4,642 | 5,317 | 6,251 | 7,815 | 9,348 | 11,345 | 12,838 | 16,266 | 17,730 |
4 | 4,045 | 4,878 | 5,989 | 6,745 | 7,779 | 9,488 | 11,143 | 13,277 | 14,860 | 18,467 | 19,997 |
5 | 5,132 | 6,064 | 7,289 | 8,115 | 9,236 | 11,070 | 12,833 | 15,086 | 16,750 | 20,515 | 22,105 |
6 | 6,211 | 7,231 | 8,558 | 9,446 | 10,645 | 12,592 | 14,449 | 16,812 | 18,548 | 22,458 | 24,103 |
7 | 7,283 | 8,383 | 9,803 | 10,748 | 12,017 | 14,067 | 16,013 | 18,475 | 20,278 | 24,322 | 26,018 |
8 | 8,351 | 9,524 | 11,030 | 12,027 | 13,362 | 15,507 | 17,535 | 20,090 | 21,955 | 26,124 | 27,868 |
9 | 9,414 | 10,656 | 12,242 | 13,288 | 14,684 | 16,919 | 19,023 | 21,666 | 23,589 | 27,877 | 29,666 |
10 | 10,473 | 11,781 | 13,442 | 14,534 | 15,987 | 18,307 | 20,483 | 23,209 | 25,188 | 29,588 | 31,420 |
11 | 11,530 | 12,899 | 14,631 | 15,767 | 17,275 | 19,675 | 21,920 | 24,725 | 26,757 | 31,264 | 33,137 |
12 | 12,584 | 14,011 | 15,812 | 16,989 | 18,549 | 21,026 | 23,337 | 26,217 | 28,300 | 32,909 | 34,821 |
13 | 13,636 | 15,119 | 16,985 | 18,202 | 19,812 | 22,362 | 24,736 | 27,688 | 29,819 | 34,528 | 36,478 |
14 | 14,685 | 16,222 | 18,151 | 19,406 | 21,064 | 23,685 | 26,119 | 29,141 | 31,319 | 36,123 | 38,109 |
15 | 15,733 | 17,322 | 19,311 | 20,603 | 22,307 | 24,996 | 27,488 | 30,578 | 32,801 | 37,697 | 39,719 |
16 | 16,780 | 18,418 | 20,465 | 21,793 | 23,542 | 26,296 | 28,845 | 32,000 | 34,267 | 39,252 | 41,308 |
17 | 17,824 | 19,511 | 21,615 | 22,977 | 24,769 | 27,587 | 30,191 | 33,409 | 35,718 | 40,790 | 42,879 |
18 | 18,868 | 20,601 | 22,760 | 24,155 | 25,989 | 28,869 | 31,526 | 34,805 | 37,156 | 42,312 | 44,434 |
19 | 19,910 | 21,689 | 23,900 | 25,329 | 27,204 | 30,144 | 32,852 | 36,191 | 38,582 | 43,820 | 45,973 |
20 | 20,951 | 22,775 | 25,038 | 26,498 | 28,412 | 31,410 | 34,170 | 37,566 | 39,997 | 45,315 | 47,498 |
25 | 26,143 | 28,172 | 30,675 | 32,282 | 34,382 | 37,652 | 40,646 | 44,314 | 46,928 | 52,620 | 54,947 |
30 | 31,316 | 33,530 | 36,250 | 37,990 | 40,256 | 43,773 | 46,979 | 50,892 | 53,672 | 59,703 | 62,162 |
35 | 36,475 | 38,859 | 41,778 | 43,640 | 46,059 | 49,802 | 53,203 | 57,342 | 60,275 | 66,619 | 69,199 |
40 | 41,622 | 44,165 | 47,269 | 49,244 | 51,805 | 55,758 | 59,342 | 63,691 | 66,766 | 73,402 | 76,095 |
45 | 46,761 | 49,452 | 52,729 | 54,810 | 57,505 | 61,656 | 65,410 | 69,957 | 73,166 | 80,077 | 82,876 |
50 | 51,892 | 54,723 | 58,164 | 60,346 | 63,167 | 67,505 | 71,420 | 76,154 | 79,490 | 86,661 | 89,561 |
60 | 62,135 | 65,227 | 68,972 | 71,341 | 74,397 | 79,082 | 83,298 | 88,379 | 91,952 | 99,607 | 102,695 |
70 | 72,358 | 75,689 | 79,715 | 82,255 | 85,527 | 90,531 | 95,023 | 100,425 | 104,215 | 112,317 | 115,578 |
80 | 82,566 | 86,120 | 90,405 | 93,106 | 96,578 | 101,879 | 106,629 | 112,329 | 116,321 | 124,839 | 128,261 |
90 | 92,761 | 96,524 | 101,054 | 103,904 | 107,565 | 113,145 | 118,136 | 124,116 | 128,299 | 137,208 | 140,782 |
100 | 102,946 | 106,906 | 111,667 | 114,659 | 118,498 | 124,342 | 129,561 | 135,807 | 140,169 | 149,449 | 153,167 |
110 | 113,121 | 117,269 | 122,250 | 125,376 | 129,385 | 135,480 | 140,917 | 147,414 | 151,948 | 161,581 | 165,435 |
120 | 123,289 | 127,616 | 132,806 | 136,062 | 140,233 | 146,567 | 152,211 | 158,950 | 163,648 | 173,617 | 177,603 |
130 | 133,450 | 137,949 | 143,340 | 146,719 | 151,045 | 157,610 | 163,453 | 170,423 | 175,278 | 185,571 | 189,682 |
140 | 143,604 | 148,269 | 153,854 | 157,352 | 161,827 | 168,613 | 174,648 | 181,840 | 186,847 | 197,451 | 201,683 |
150 | 153,753 | 158,577 | 164,349 | 167,962 | 172,581 | 179,581 | 185,800 | 193,208 | 198,360 | 209,265 | 213,613 |
200 | 204,434 | 209,985 | 216,609 | 220,744 | 226,021 | 233,994 | 241,058 | 249,445 | 255,264 | 267,541 | 272,423 |
300 | 305,574 | 312,346 | 320,397 | 325,409 | 331,789 | 341,395 | 349,874 | 359,906 | 366,844 | 381,425 | 387,203 |
400 | 406,535 | 414,335 | 423,590 | 429,340 | 436,649 | 447,632 | 457,305 | 468,724 | 476,606 | 493,132 | 499,666 |
500 | 507,382 | 516,087 | 526,401 | 532,803 | 540,930 | 553,127 | 563,852 | 576,493 | 585,207 | 603,446 | 610,648 |