SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. The expression distribution of each of the 13 immune metagenes is shown for the (A) ER positive, (B) TNBC and (C) HER2 positive cancers.

Supplementary Figure S2. Correlation between the LCK metagene expression and infiltrating lymphocyte (TIL) count.

Supplementary Figure S3. The distribution of genomic features and LCK metagene expression within breast cancer subtypes in the TCGA.

Supplementary Figure S4. Correlations between 13 immune metagene expressions and 5 exome-wide genomic features including all breast cancers combined in TCGA.

Supplementary Figure S5. Correlations between the LCK immune metagene expression and five different genomic features within each breast cancer subtype in the TCGA.

Supplementary Figure S6. Distribution of genomic features and their correlation with an immune metagene in the breast cancer subtypes from TCGA data.

B. ER-/HER2- Metagene Distributions

C. HER2+ Metagene Distributions

Supplementary Figure 1. The expression distribution of each of the 13 immune metagenes is shown for the (A) ER positive, (B) TNBC and (C) HER2 positive cancers. Metagenes describing IF1, macrophage, MHC1, MHC2, STAT1, T follicular cells, T cell inhibitory and stimulatory activity, as well as lymphocyte-specific kinase (LCK), cytolytic activity (CTL), and consensus T-cell metagene (CTM) show unimodal normal distributions. Metagenes describing natural killer (NK) cells, and regulatory T-cells (T-regs) show bimodal distributions.

Percent of mononuclear cells within section

Supplementary Figure S2. Correlation between the LCK metagene expression and infiltrating lymphocyte (TIL) count. TILs were quantified histologically, and the data were obtained from Lehman BD et al (*PLoS One* 11.6 (2016): e0157368). The percent mononuclear cells are plotted on a log scale (n=171 triple negative breast cancers), Spearman rho=0.64 (P<0.001).

Suppl. Fig S3

Supplementary Figure S3. The distribution of genomic features and LCK metagene expression within breast cancer subtypes in the TCGA. The medians of the distribution of each molecular feature were compared using the Wilcoxon test. P-values < 0.05 are shown on the plot.

Suppl. Fig S4

Supplementary Figure S4. Correlations between 13 immune metagene expressions and 5 exome-wide genomic features including all breast cancers combined in TCGA. Linear regression lines are shown in the scatterplots (left lower half) along with the Spearman rank correlation coefficients (right upper half) and the kernel density estimates of each feature (distribution curves in the diagonal).

MATH	Neoantigens	Mut.Count	nplifications	Deletions	CTL	Giam	LCK	NK	Mphages	Tinh	Tfh	IF1	STAT1	MHC1	MHC2	Tregs	Tstim
	Corr: 0.0531	Corr: 0.0548	Corr: 0.284	Corr: 0.0975	Corr: -0.287	Corr: 0.3	Corr: -0.376	Corr: -0.331	Corr: -0.242	Corr: -0.303	Corr: -0.31	Corr: -0.172	Corr: -0.156	Corr: -0.193	Corr: -0.23	Corr: -0.153	Corr: MA -0.352 H
30 - 20 - 10 - 0 -	\bigwedge	Corr: 0.845	Corr: 0.355	Corr: 0.211	Corr: -0.13	Corr: -0.124	Corr: -0.192	Corr: -0.151	Corr: -0.047	Corr: -0.146	Corr. -0.152	Corr: -0.0898	Corr: 0.00286	Corr:).00067	Corr: -0.092	Corr: -0.102	Corr: Re -0.175 g
1000 -• 750 - • 500 - 250 -		\ 	Corr: 0.285	Corr: 0.242	Corr: -0.0909	Corr: -0.0768	Corr: -0.156	Corr: -0.0938	Corr: 0.0949	Corr: -0.0881	Corr: -0.12	Corr: -0.0325	Corr: 0.027	Corr: 0.0601	Corr: -0.067	Corr: -0.0832	Corr: Aut.Count
4000 - 2000 -	بسبيعي	<u> </u>	\bigwedge	Corr: 0.142	Corr: -0.143	Corr: -0.103	Corr: -0.184	Corr: -0.241	Corr: -0.0694	Corr: -0.094	Corr: -0.124	Corr: 0.0139	Corr: 0.0141	Corr: -0.0147	Corr: -0.106	Corr: -0.149	Corr: plifications
1500 - 1000 - 500 -					Corr: -0.0324	Corr: 0.0726	Corr: -0.0849	Corr: -0.075	Corr: 0.109	Corr:).00082 [·]	Corr: 0.00768	Corr: 0.0146	Corr: 0.145	Corr: 0.13	Corr: -0.0231	Corr: 0.0725	Corr: Deletions
5 - 5 -		*	.	 	\square	Corr: 0.912	Corr: 0.887	Corr: 0.824	Corr: 0.453	Corr: 0.886	Corr: 0.874	Corr: 0.498	Corr: 0.749	Corr: 0.613	Corr: 0.823	Corr: 0.467	Corr: C
8 6 4 2		}				\bigwedge	Corr: 0.916	Corr: 0.831	Corr: 0.511	Corr: 0.924	Corr: 0.943	Corr: 0.579	Corr: 0.84	Corr: 0.752	Corr: 0.848	Corr: 0.493	Corr: <u>G</u> am
5.0 - 2.5 - 0.0 - -2.5 -								Corr: 0.839	Corr: 0.589	Corr: 0.957	Corr: 0.944	Corr: 0.554	Corr: 0.758	Corr: 0.659	Corr: 0.857	Corr: 0.529	Corr: 5
0		*		.	· /	·····		$ \land $	Corr: 0.447	Corr: 0.819	Corr: 0.813	Corr: 0.455	Corr: 0.685	Corr: 0.575	Corr: 0.728	Corr: 0.451	Corr: _₹
6 4 - 2 -					1	A CAR			\square	Corr: 0.646	Corr: 0.503	Corr: 0.439	Corr: 0.543	Corr: 0.475	Corr: 0.558	Corr: 0.384	Corr: Mphage
4 2 0 -		.	.			-		1	,	\bigwedge	Corr: 0.933	Corr: 0.641	Corr: 0.84	Corr: 0.692	Corr: 0.85	Corr: 0.526	Corr: <u>1</u> 0.953
5.0 2.5 0.0 -2.5 -5.0		.						j.	ببيجير		\square	Corr: 0.572	Corr: 0.78	Corr: 0.651	Corr: 0.79	Corr: 0.514	Corr: 0.926
7.5 - 5.0 - 2.5 -		<u>.</u>			<u></u>							\bigwedge	Corr: 0.765	Corr: 0.596	Corr: 0.462	Corr: 0.325	Corr: <u>-</u>
10.0 - 7.5 - 5.0 -			9 c		· _ **			×		, A.	:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A STATE	\bigwedge	Corr: 0.725	Corr: 0.739	Corr: 0.411	Corr: STAT1
7.5 - 5.0 - 2.5 -	300	.		finite .	/			1		· · · · · · · · · · · · · · · · · · ·			<u>Jin a</u>	\square	Corr: 0.734	Corr: 0.406	Corr: ≝ 0.667
10 - 45 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		 				A REAL PROPERTY.	معجر	1		· · · · · · · · · · · · · · · · · · ·					\bigwedge	Corr: 0.456	Corr:
0.0 - -2.5 - -5.0 -	/ <u> </u>			С												M	Corr: Tregs
2.5 0.0 -2.5 -5.0 20304050	0 102030		02000000	0 5000005	• • • • • • • • • • • • • • • • • • •	02468	-2.6.2.5.0 -	20151050	2 4 6	-2 0 2 4	-5-0.0.0.5.0	2.55.07.5	0.2.5.7.50	.02.55.07.5	6 8 10	-7: 5 : 0 .6.0	5.02.0.02.5

Supplementary Figure S5. Correlations between the LCK immune metagene expression and five different genomic features within each breast cancer subtype in the TCGA. The linear regression line is shown (red) along with the corresponding R² values for each subtype.

Davoli_ArmSCNALevel

Suppl Fig S6

Supplementary Figure S6. Distribution of genomic features and their correlation with an immune metagene in the breast cancer subtypes from TCGA data. Plots were generated by using published data from Davoli et al (ref 34). Somatic copy number alteration (SCNA) levels were calculated with adjustment for estimated tumor cellularity as described in the manuscript.