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Abstract
Purpose Multidrug resistance (MDR) has been linked to
sphingolipid metabolism and preclinical data ascribe gluco-
sylceramide synthase (GCS) a major role for MDR espe-
cially in breast cancer cells but no profound data are
available on the expression of this potential therapeutic tar-
get in clinical breast cancer specimens.
Methods We analyzed microarray data of GCS expres-
sion in a large cohort of 1,681 breast tumors.
Results Expression of GCS was associated with a positive
estrogen receptor (ER) status, lower histological grading,
low Ki67 levels and ErbB2 negativity (P < 0.001 for all). In
univariate analysis there was a beneWt for disease free sur-
vival for patients with tumors displaying low levels of GCS
expression but this signiWcance was lost in multivariate
Cox regression.
Conclusions Our results suggest ER positive tumors may
be the most promising candidates for a potential therapeutic
application of GCS inhibitors.

Keywords Multidrug resistance · Breast cancer · 
Ceramide · Sphingolipids · Microarray

Introduction

Breast cancer is the most frequent cancer entity worldwide.
Beside surgical methods chemotherapy and endocrine ther-
apy are fundamentals of breast cancer treatment. In particu-
lar response to chemotherapy in advanced disease is limited
by the multidrug resistance (MDR) phenomenon. Several
mechanisms have been suggested to be responsible for this
resistance with increased expression of drug resistance
genes like MDR 1 and bcl 2 to be the most important
(Makin and Dive 2001; Shabbits et al. 2001). Knowledge
about chemotherapy induced drug resistance is increasing.
Recent research focused on the role of glucosylceramide in
MDR (Lucci et al. 1998; Gouaze-Andersson and Cabot
2006; Liu et al. 2008). Glucosylceramide belongs to the
sphingolipids, a family of membrane lipids that play key
roles in apoptosis, senescence, proliferation, MDR, and neo
angiogenesis (Ogretmen and Hannun 2004; Hannun and
Obeid 2008, see Fig. 1). Accumulation of glucosylceramide
is a characteristic Wnding in multi drug resistant ovarian,
breast, colon, and epitheloid cells in vitro (Lucci et al.
1998; Kok et al. 2000; Lavie et al. 1996; Nicholson et al.
1999). Glucosylceramide synthase (GCS) transfers a glu-
cose residue from UDP-glucose to ceramide to synthesize
glucosylceramide (Liu et al. 2008; Jeckel et al. 1992). In
several in vitro studies (Liu et al. 2008; Ogretmen and Han-
nun 2004; Reynolds et al. 2004; Gouaze et al. 2004; Liu
et al. 1999a, b) glycosylation of ceramide was combined
with resistance to drugs like adriamycin and paclitaxel.
Transfection with GCS genes conferred resistance to dau-
norubicin, doxorubicin and TNF-� to breast cancer cells
(Liu et al. 1999a, b; Ogretmen et al. 2001). Inhibition of
GCS resensitized tumor cells to chemotherapy (Radin et al.
1993; Norris-Cervetto et al. 2004; Liu et al. 2004). In
addition it has been proposed that drugs that reverse drug
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resistance like verapamil, tamoxifen, and cyclosporin A
might act via inhibition of ceramide glycosylation (Lavie
et al. 1997).

Only very little data is available about the expression of
GCS in clinical breast cancer samples and it is not known,
whether diVerences exist between levels of GCS expression
in clinical subgroups of breast cancer, for example, accord-
ing to the estrogen receptor (ER) or ErbB2 status. Since we
could previously demonstrate a prognostic impact of sphin-
golipid metabolism in breast cancer (Ruckhäberle et al.
2007) we set out to analyze possible prognostic eVects of
GCS. Here we present results of microarray analysis of
1,681 breast cancer samples according to GCS expression.

Materials and methods

A database of 1,681 AVymetrix microarray experiments
from primary breast cancer patients was created. 220 sam-
ples from our own institutions were included (datasets
Frankfurt and Hamburg) which have been described previ-
ously (Rody et al. 2007; Ruckhäberle et al. 2007; Rody
et al. 2006; ASCO, Ahr et al. 2002) as well as 1,461 sam-
ples from nine diVerent publicly available datasets
(Table 1): Uppsala (Miller et al. 2005), Stockholm (Paw-
itan et al. 2005), Rotterdam (Wang et al. 2005; Minn et al.
2007), Oxford-Untreated (Sotiriou et al. 2006), Oxford-
Tamoxifen and London (Loi et al. 2007), NewYork (Minn
et al. 2005), Villejuif (Desmedt et al. 2007), and expO
(http://www.intgen.org). For comparability only data from
AVymetrix HG-U133A microarrays were used. The clini-
cal characteristics of the patients in the diVerent datasets
are given in Table 1. For 1,363 of the 1,681 patients fol-
low up information was available (no follow up data has
been reported for dataset expO). The median follow-up
time was 76 months. 1,200 of the 1,681 samples (71.4%)
were ER positive. Treatment information could be
obtained for 878 ER positive and 262 ER negative
patients. Since methods of AVymetrix microarray normali-

zation can have signiWcant eVects on the levels for individ-
ual probe sets, several uniform normalization methods (Li
and wong 2001; Irizarry et al. 2003) of CEL Wle data has
been developed to allow the analysis of sets of multiple
arrays. However, important discrepancies between diVer-
ent datasets depend on the dynamics of the measurements
originating from diVerent hybridization eYciencies and
even uniform normalization methods are incapable in
compensating those experimental diVerences. In addition,
no CEL Wles are available for some studies (e.g., the Rot-
terdam dataset). Therefore, we used a conservative strat-
egy for dataset stratiWcation which relies on a ranking of
samples in each cohort. Each dataset of microarrays was
normalized separately using the originally proposed
method in the respective study (see Table 1). Log trans-
formed expression values were median centered over each
array. For genes the normalization, ranking of expression
values and median splits were done separately in each
dataset.

Assessment of ER, ErbB2, proliferative status, and GCS 
expression of the samples

Since standard pathology for ER and ErbB2 was not avail-
able for all samples and to allow comparison of diVerent
datasets, receptor status was determined based on AVyme-
trix expression data as previously described (Foekens et al.
2006; Gong et al. 2007; Bonnefoi et al. 2007; Alexe et al.
2007). ER status was based on AVymetrix ProbeSet
205225_at, the ErbB2 status on ProbeSet 216836_s_at. A
speciWcity of 86.1% and a sensitivity of 92.2% was
observed when the chip based ER status was compared to
immunohistochemical obtained ER status (available for
1,333 samples), while the speciWcity and sensitivity of chip
based ErbB2 status was 98.6 and 45.8%, respectively, com-
pared to 3+ staining in immunohistochemistry with HER2
antibody (data available for 206 samples). As a surrogate
marker for cellular proliferation we used the expression of
the proliferation marker Ki67 (ProbeSets 212020-
212023_s_at). Appropriate cut oV values that distinguish
between high and low proliferative activity in a clinically
relevant manner using Ki67 immunohistochemistry in
breast cancer have not been universally established (de
Azambuja et al. 2007). Thus, a conservative median split
according to Ki67 gene expression was applied which cor-
responds to a percentage of MIB-1 positive cells of 16–
17% (Spyratos et al. 2002). To allow comparison of GCS
expression between diVerent datasets we used a median
split of each dataset according to GCS (UGCG) using the
ProbeSet 204881_s_at from the AVymetrix HG-U133A
array. Samples were characterized as high or low express-
ing based on a median split of the cohorts according to this
ProbeSet.

Fig. 1 Glucosylceramide synthase and sphingolipid metabolism
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Statistical analysis

All reported P values are two sided and P values of less
than 0.05 were considered to indicate a signiWcant result.
Subjects with missing values were excluded from the anal-
yses. Chi-square test was used for categorical parameters.
Survival intervals were measured from the time of surgery
to the time of death from disease or of the Wrst clinical or
radiographic evidence of disease recurrence. Data for
women in whom the envisaged end point was not reached
were censored as of the last follow-up date or at
120 months. We constructed Kaplan-Meier curves and used
the log rank test to determine the univariate signiWcance of
the variables. A Cox proportional-hazards regression model
was used to examine simultaneously the eVects of multiple
covariates on survival. The eVect of each variable was
assessed with the use of the Wald test and described by the
hazard ratio, with a 95% conWdence interval. The model
included age, tumor size, lymph node status, ER, ErbB2,
Ki67 as well as GCS expression. All analyses were per-
formed using SPSS 15.0 (SPSS Inc., Chicago, IL).

Results

A database of AVymetrix microarray hybridizations from
1,681 primary breast cancer samples was established which
was derived from eleven microarray datasets as given in
Table 1. All experiments enclosed in this database were
performed using the AVymetrix HG-U133A microarray.
The GCS mRNA is represented by two diVerent ProbeSets
on this array. Consistency of normalized expression values
obtained from these two ProbeSets was veriWed as shown in
Fig. 2. Subsequently, all samples were stratiWed according
to GCS expression based on a median split in each dataset.
The clinical parameters of tumors with high and low
expression of GCS, respectively, are presented in Table 2.
There were no signiWcant diVerences according to age and
lymph node status of the patients when comparing the two
groups with high and low GCS expression. In contrast, the
analysis revealed a higher GCS expression in smaller
tumors (P < 0.001 for tumors smaller than 2 cm vs. larger
tumors). Tumors with lobular histology were preferentially
found in the group with low GCS expression (72%) but the
overall diVerence in histological subtypes between tumors
with low and high GCS expression was not statistically sig-
niWcant. Interestingly, high expression of GCS was associ-
ated with a lower histological grade (P < 0.001) as well as
low Ki67 expression (P < 0.001). On the other hand, low
GCS expression was clearly associated with a negative ER
status with 79.4% of ER the negative tumors stratiWed to
the group with low GCS expression (P < 0.001). Breast
cancer samples with ErbB2 overexpression were associated

with lower GCS levels (66.7 vs. 33.3%, P < 0.001). The
strong correlation of ER status with higher GCS expression
is demonstrated in Fig. 3 (P < 0.001 for the combined data
in Fig. 3a as well as for all individual datasets in Fig. 3b;
Mann Whitney test).

The method of Kaplan-Meier was used to analyze the
prognostic value of high GCS expression. For 1,363 of the
1,681 patients follow up data were available. As shown in
Fig. 4 Kaplan-Meier estimates of disease free survival
(DFS) revealed a signiWcant better prognosis for breast can-
cer patients with high GCS expression (75.4 § 1.7% vs.
70.0 § 1.8%, P = 0.005 for 5 year DFS; and 65.9 § 2.1%
vs. 63.1 § 2.1%, P = 0.047 for 10 year DFS). Next we ana-
lyzed the simultaneous inXuence of GCS expression and
standard parameters on the prognosis of the patients in a
multivariate Cox regression model using n = 699 patients
for which all parameters were available. As presented in
Table 3, however, only tumor size and ErbB2 status
remained signiWcant factors for disease recurrence in this
multivariate analysis but the contribution of GCS expres-
sion was no more signiWcant. Since GCS expression of
breast cancers displayed a strong correlation with the ER
status of the tumor it could be hypothesized that the prog-
nostic value of GCS expression observed in the univariate
analysis above (see Fig. 4) and the loss of this eVect in the
multivariate analysis might result from a confounding eVect
of the ER status between the two groups. Thus we addition-
ally analyzed the univariate prognostic value of GCS by
Kaplan-Meier analysis separately for ER positive and ER

Fig. 2 Validation of consistency of GCS expression data from the
AVymetrix microarray. A scatter plot of the normalized expression val-
ue from two diVerent ProbeSets for glucosylceramide synthase (GCS)
present on the AVymetrix HG U133A microarray (ProbeSet 221765_at
and 204881_s_at) is shown for all n = 1,681 samples
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negative subgroups of cancers. As presented in Fig. 5
tumors with high GCS expression seem to have a better sur-
vival in both subgroups but this beneWt is no more signiW-
cant.

Recent in vitro data suggested a possible co activation of
the genes for GCS and MDR1 in breast cancer cells (Gou-
aze-Andersson et al. 2007). Thus we analyzed if a correla-
tion of these two parameters might also be apparent in our
clinical sample collective. However, as demonstrated in
Fig. 6 there was no clear relationship of MDR1 and GCS
expression, suggesting that in clinical samples such co acti-
vation might only be observable after pretreatment with
chemotherapeutic agents and not in our treatment naïve
cohort.

Discussion

Anticancer chemotherapy is mainly limited by the MDR
phenomenon. Multidrug resistance can be caused by sev-
eral mechanisms like an increase in cellular gluthathione S-
transferase (Morrow and Cowan 1990), a decrease in topoi-
somerase II alpha activity (DeYe et al. 1989), increased
expression of proteins of the bcl 2 family (Reed 1995) as
well as loss of the tumor suppressor protein p53 (Mueller
and Eppenberger 1996). Of particular importance is the

transporter P-glycoprotein (P-gp, the product of the MDR1
gene) which reduces the intracellular concentration of anti-
tumor agents as well as certain glycosylated sphingolipids.

Several recent reports have demonstrated an association
between glycosylated sphingolipids and MDR for various
types of cancer (Liu et al. 1999b; Gouaze-Andersson and
Cabot 2006). Accumulation of glucosylceramide and
increased activity of GCS is a characteristic Wnding in multi
drug resistant ovarian, breast, colon, and epitheloid cells in
vitro (Nicholson et al. 1999; Kok et al. 2000; Lavie et al.
1996; Morjani et al. 2001). An elevated GCS activity might
prevent the accumulation of ceramide, which is thought to
precede, and trigger apoptosis in response to at least some
cytotoxic drugs (Simstein et al. 2003; Gomez-Munoz et al.
2006). Liu and colleagues could demonstrate, that doxoru-
bicin enhances GCS gene expression (Liu et al. 2008) med-
iated by ceramide as second messenger. Furthermore, MDR
reversing drugs like tamoxifen, verapamil, and cyclosporin
A were shown to act by inhibition of ceramide glucosyla-
tion (Lucci et al. 1998; Lavie et al. 1997). Overexpression
of GCS in MCF 7 cells conferred MDR to adriamycin (Liu
et al. 1999b). Several authors have demonstrated that trans-
fection of antisense GCS DNA depresses GCS expression,
reduces drug resistance in breast cancer cells (Liu et al.
2000), inhibits neuroepithelioma cell growth (Di Sano et al.
2002), and inhibits melanoma growth in mice (Deng et al.

Table 2 Clinical characteristics of patient with high and low GCS expression

* information on tumor size was not available for n = 615 patients

** information on lymph node status was not available for n = 285 patients
+ information on tumor grade was not available for n = 631 patients
++ information on age was not available for n = 534

Parameter n = 1,681 Low GCS (n = 840) High GCS (n = 841) P value

Age++ ·50 year 374 179 (47.9%) 195 (52.1%) 0.45

>50 year 773 389 (50.3%) 384 (49.7%)

Lymph node status** LNN 957 469 (49.0%) 488 (51.0%) 0.4

N1 439 219 (49.9%) 220 (50.1%)

Tumor size* ·2 cm 401 180 (44.9%) 221 (55.1%) 0.032

<2 cm 665 344 (51.7%) 321 (48.3%)

Tumor grade+ Low grade (G1 and G2) 663 286 (43.1%) 377 (56.9%) <0.001

High grade (G3) 387 239 (61.8%) 148 (38.2%)

Ki67 expression Below median 839 351 (41.8%) 488 (58.2%) <0.001

¸ median 842 489 (58.1%) 353 (41.9%)

ER status Positive 1,200 458 (38.2%) 742 (61.8%) <0.001

Negative 481 382 (79.4%) 99 (20.6%)

ErbB2 status Negative 1,432 674 (47.1%) 758 (52.9%) <0.001

Positive 249 166 (66.7%) 83 (33.3%)

Histological subtype Ductal 357 185 (51.8%) 172 (48.2%) 0.34

Lobular 25 7 (28.0%) 18 (72.0%)

Mixed 3 0 (0%) 3 (100%)

Others 61 28 (45.9%) 33 (54.1%)
123
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2002; Weiss et al. 2003). In adriamycin resistant MCF 7
cells selective antisense oligodeoxyribonucleotides (ODNs)
to GCS were able to substantially reverse the MDR pheno-
type (Liu et al. 2000). GCS antisense substantially restored
cellular sensitivity to many anticancer drugs, including
anthracyclines, taxanes, vinca alkaloids, and actinomycin
D. All of these agents are substrates for the transporter

protein P-gp, whereas 5-Xurouracil and cisplatin, for which
toxicities were not substantially modiWed by GCS anti-
sense, are not classiWed as pump eZux drugs.

However, all of these data on GCS and chemotherapy
resistance were so far obtained either in vitro using cultured
cells. There are no Wrm data on GCS in clinical specimens
especially for breast cancer. Therefore, we analyzed micro-
array data of a cohort of 1,681 clinical breast cancer sam-
ples and investigated GCS expression in subtypes of breast
cancer and its prognostic relevance for disease recurrence.
To our knowledge, this is the Wrst report of clinical data
from a large cohort on the expression of GCS in breast can-
cer and its impact on the course of disease. Expression of
GCS was higher in the ER positive subgroup while ErbB2
positive tumors displayed lower GCS expression. In addi-
tion signiWcant higher expression was revealed in smaller
tumors (P < 0.001), breast cancers with low grading
(P < 0.001) as well as low Ki67 levels (P < 0.001). The
DFS of patients with tumors displaying low levels of GCS
expression was signiWcantly higher in univariate analysis.
In multivariate Cox regression analysis, however, this ben-
eWt for survival was no more signiWcant. This is in line with
separate analysis of the univariate prognostic values of
GCS in ER positive and ER negative subgroups, which
were also not signiWcant.

There seems to be a link between glycosphingolipids and
multi drug resistance caused by P-gp. It is well known that
doxorubicin, vinblastine, etoposide, cytarabine, methotrex-
ate, and paclitaxel can induce MDR through direct activa-
tion of the MDR1 gene, which codes for the P-gp protein
(Chaudhary and Roninson 1993; Kohno et al. 1989). More
recently Anderson-Gouaze et al. could demonstrate that
elevated levels of ceramide and GCS enhance expression of

Fig. 3 Correlation of normalized GCS expression with the ER status
of the tumor. a Box plots of normalized GCS expression values of
breast cancers stratiWed by their ER status from a combined analysis of
all n = 1,681 samples. b Results from individual datasets (a Frankfurt,
b Uppsala, c Hamburg, d Oxford-Untreated, e Stockholm, f expO, g
New York, h London, i Villejuif, k Oxford-Tam, l Rotterdam)
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Fig. 4 Prognostic value of GCS expression among breast cancer.
Kaplan-Meier analysis of disease free survival of all n = 1,363 samples
with follow up information stratiWed according to GCS expression
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the MDR1 gene (Gouaze-Andersson et al. 2007). On the
other hand P-gp was shown to modulate ceramide mediated
sensitivity to paclitaxel and vincristin (Shabbits and Mayer
2002). Even if those data were obtained in vitro a correla-
tion of GCS and MDR1 expression might also be observ-
able in clinical samples. In our treatment naïve collective
we found no evidence for such correlation, but pretreatment
with chemotherapy might well induce a co activation of
both genes in patients. Thus further analysis of tumors from
neoadjuvant treated patients could give important insights
in this regard.

Inhibition of GCS is possible by speciWc inhibitors like
PDMP and Miglustat or selective antisense oligideoxyribo-
nucleotides (Weiss et al. 2003). Inhibition of GCS activity

Fig. 5 Prognostic value of GCS expression among ER positive and
negative breast cancers. Kaplan-Meier analysis of disease free survival
of breast cancers stratiWed according to GCS expression in the sub-
groups of a ER positive and b ER negative tumors
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Table 3 Multivariate Cox regression analysis of standard parameters and GCS expression in relation to disease free survival among breast cancers
patients

Data were available from n = 699 patients, signiWcant P values are given in bold

Parameter n P value Hazard ratio (95% CI)

GCS expression Low vs. high 354 vs. 345 0. 90 0.98 (0.73–1.32)

Age >50 vs. ·50 456 vs. 243 0. 58 0.92 (0.69–1.23)

Lymph node status LNN vs. N1 447 vs. 252 0.17 0.82 (0.63–1.09)

Tumor size ·2 cm vs. >2 cm 296 vs. 403 <0.001 0.50 (0.36–0.68)

Histological grading Poor vs. well/intermediate 230 vs. 469 0.43 1.14 (0.83f–1.58)

ER status Positive vs. negative 541 vs. 158 0.62 0.91 (0.62–1.33)

ErbB2 status High vs. low 104 vs. 595 0.044 1.44 (1.01–2.05)

Ki67 expression Low vs. high 346 vs. 353 0.001 0.59 (0.43–0.80)

Fig. 6 Relationship of MDR1 and GCS gene expression among breast
cancers. Scatter plot of MDR1 and GCS gene expression values from
AVymetrix microarrays
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is evaluated as a possible medical treatment for several
lipid-storage diseases and proven in vitro for some types of
cancer (Butters 2007; TiVt and Proia 2000; Lachmann
2003; Jeyakumar et al. 2002). Glucosyl ceramide synthase
inhibitors have already been approved for treatment of type
I Gaucher disease and used in trials for Fabry disease, the
GM2 gangliosidoses and Niemann-Pick disease (Patterson
et al. 2007). They have been proven in principle in Tay-
Sachs and SandhoV mice models (Jeyakumar et al. 2002)
and investigated in a clinical setting recently (Bembi et al.
2006). These clinical as well as the in vitro data might also
propose a possible application of these drugs in breast can-
cer. In this context it will be crucial to deWne those sub-
groups of patients which might beneWt from such treatment.
According to our data, patients with ER positive and Her-2-
neu negative tumors would be the most adequate starting
point for trials of GCS inhibiting drugs since those tumors
display high GCS expression.

In conclusion our results suggest that there seems to be
no prognostic value of GCS expression in a treatment naïve
cohort but ER positive tumors may be the most promising
candidates for a potential therapeutic application of GCS
inhibitors.
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