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2 193 Genomic Markers ER-Negative Breast
4 Cancer

5 Thomas Karn and Christos Hatzis

7 Abstract8

9 In this chapter we will cover the role and value of genomic markers in the
10 ER-negative subset of breast cancer. Such genomic markers encompass
11 several different types of molecular alterations. The markers may represent
12 proteins that can be detected by immunohistochemistry, as for example the
13 progesterone receptor (PR), the androgen receptor (AR), or HER2. Other
14 types of genomic markers included in this overview are markers based on
15 gene expression data obtained from profiling breast tumor mRNA or small
16 RNAs, as well as respective genomic tests based on such expression
17 profiles. Furthermore, mutations in cancer genes, either hereditary or
18 somatic, will also be covered in this chapter because of their potential
19 prognostic and predictive value. Those mutations may represent single
20 altered genes or mutational patterns or structural variations that have been
21 identified through recent whole genome sequencing efforts. Regarding the
22 value of genomic markers in ER-negative breast cancer we distinguish
23 between risk factors for cancer susceptibility on the one hand, and factors
24 with prognostic or predictive value on the other. Finally, we discuss the
25 important but complex role that immune infiltration may have in
26 ER-negative breast cancer. What we do not cover however are standard
27 clinicopathologic factors, such as histopathological grading or age, which
28 undoubtedly also have an important prognostic role in addition to the
29 genomic markers discussed here.
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36
37 19.1 Breast Cancer Subtypes

38 Breast cancer is a heterogeneous disease con-
39 sisting of different molecular subtypes, each
40 having a distinct natural history and clinical
41 behavior. These subtypes are recognized based
42 on histological characteristics as well as on
43 molecular markers (Weigelt and Reis-Filho
44 2009). Currently the simplest and clinically
45 most useful stratification of breast cancer is based
46 on expression of the hormone receptors for both
47 estrogen (ER) and progesterone (PgR) as well as
48 the human epidermal growth factor receptor 2
49 (HER2) determined by immunohistochemistry
50 (IHC) methods (Sotiriou and Pusztai 2009).
51 Based on these three receptors tumors are char-
52 acterized as hormone receptor–positive,
53 HER2-positive (i.e., amplification or overex-
54 pression of HER2), or triple-negative breast
55 cancer (TNBC) lacking the expression of all
56 three receptors. In addition several refined strat-
57 ifications applying genomic methods or the
58 inclusion of additional immunohistochemical
59 markers (e.g., Ki67) allow the distinction of
60 “Basal-like” breast cancers as well as “Luminal
61 A” and “Luminal B” subgroups each with dif-
62 ferent prognosis and clinical behaviour (Perou
63 et al. 2000; van’t Veer et al. 2002; Prat et al.
64 2012; Reis-Filho and Pusztai 2011; Kaufmann
65 et al. 2011). The basal-like and HER2-like sub-
66 types are highly proliferative and have a poor
67 prognosis if untreated, but exhibit an increased
68 sensitivity to chemotherapy (Perou et al. 2000;
69 Sorlie et al. 2001; Rouzier et al. 2005; Rody et al.
70 2007). Still the additional clinical value of
71 molecular classification is limited by its close
72 correspondence with the status of ER, PR, and
73 HER2, along with tumor grade (Sotiriou and
74 Pusztai 2009). Relatively high concordance (75–
75 90 %) exists between molecular subtypes as

76�defined by genomic methods and IHC phenotype
77�(Reis-Filho and Pusztai 2011). Following either
78�of these subtyping methods, the main two classes
79�of ER-negative breast cancers are triple-negative
80�or basal-like cancers on one hand, and
81�HER2-positive cancers on the other. These two
82�subtypes are fundamentally different in their
83�biology and current clinical management and
84�thus should be considered separately. This is of
85�major importance given the lack of targeted
86�therapies for TNBC and the various
87�HER2-targeted therapeutic approaches. Conse-
88�quently, HER2 amplification represents the most
89�important genomic marker in ER-negative breast
90�cancer to distinguish HER2-positive from
91�triple-negative disease.

92
93�19.2 Hormone Receptor Subtypes
94�Within ER-Negative BC

95�Expression of the steroid hormone receptors
96�(HR) has long been recognized as important in
97�the clinical management of breast cancer, having
98�both prognostic and predictive implications for
99�endocrine therapy. The American Society of
100�Clinical Oncology and the College of American
101�Pathologists recommend testing for both estrogen
102�receptor (ER) and progesterone receptor (PR) on
103�all newly diagnosed invasive breast cancer cases
104�(Hammond et al. 2010). Although the importance
105�of ER expression is well established, the clinical
106�significance of PR expression remains contro-
107�versial, especially in ER-negative breast cancer.
108�PR expression has been hypothesized to be
109�associated with good prognosis in certain types
110�of HR-negative invasive carcinoma, such as
111�adenoid cystic carcinoma and secretory carci-
112�noma, which generally have excellent prognosis
113�(Rakha et al. 2007b). Compared to ER−/PR−
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114 tumors, ER−/PR+ tumors appear to have a more
115 favorable prognosis, lower proliferation and
116 absence of vascular invasion but no significant
117 difference in overall survival (Rakha et al.
118 2007b). In a large meta-analysis of 21,457
119 women with early stage breast cancer from 20
120 randomized trials with adjuvant tamoxifen, PR
121 expression was not predictive of benefit from
122 tamoxifen treatment in ER-negative breast can-
123 cer, although there was a slight early benefit from
124 tamoxifen in ER−/PR+ but it was not statistically
125 significant (Early Breast Cancer Trialists’ Col-
126 laborative et al. 2011).
127 The conflicting results have raised the possi-
128 bility that the ER−/PR+ classification is primar-
129 ily a technical artifact caused by false-negative
130 ER results (De Maeyer et al. 2008). In fact, with
131 the more recent definitions of ER-positivity as
132 minimal (1 %) ER expression, the proportion of
133 cases reported as ER−/PR+ have decreased from
134 about 4 % in the early 1990s to only 1 % in the
135 recent SEER cancer registry data (Early Breast
136 Cancer Trialists’ Collaborative et al. 2011).
137 A recent study that integrated gene expression
138 and clinicopathologic data from 20 studies
139 reported that PR is among the least variably
140 expressed genes in ER-negative breast cancer
141 and that ER−/PR+ is by far the least reproducible
142 subtype by a secondary method (Hefti et al.
143 2013). Therefore, given the rarity and the ques-
144 tionable biological significance of the ER−/PR
145 + phenotype, the clinical use of PR expression in
146 ER− breast cancer is uncertain (Olivotto et al.
147 2004).
148 In addition to ER and PR, another nuclear
149 steroid hormone receptor, the androgen receptor
150 (AR), is widely expressed in 70–90 % of all
151 breast cancers (Brys 2000). The role of AR as a
152 prognostic factor or as a potential therapeutic
153 target in breast cancer is controversial and
154 depends on the ER status (Fioretti et al. 2014;
155 Shah et al. 2013). In ER/PR-positive tumors
156 expressing AR, activation of AR with the
157 androgen dihydrotestosterone appears to decrease
158 estrogen-dependent signaling, likely through
159 translocation to the nucleus and competition with
160 ER and PR for binding to the estrogen-related
161 elements, thus reducing cell survival and

162�promoting apoptosis. In ER-negative breast
163�cancer, expression of AR varies widely from 9 to
164�50 %, and about 10–40 % of TNBC express AR
165�(Shah et al. 2013). The effect of AR expression
166�remains rather controversial. Molecular profiling
167�had identified a subgroup of ER-negative/
168�AR-positive breast tumors that had histological
169�apocrine features and was termed the molecular
170�apocrine subtype (Farmer et al. 2005b). This
171�subgroup demonstrated a molecular profile con-
172�sistent with increased androgen signaling and
173�which resembled that of ER-positive tumors.
174�Based on this, it was hypothesized that signaling
175�though AR replaces, or at least mimics,
176�ER-signaling and transcriptional activation
177�through involvement of the transcription factor
178�FOXA1 (Robinson et al. 2011) promoting cell
179�growth. Furthermore, AR expression appears to
180�be particularly enriched in ER-negative/
181�HER2-positive tumors (Niemeier et al. 2010).
182�In ER-negative/HER2-positive tumors express-
183�ing AR, androgens and AR can stimulate onco-
184�genic Wnt and HER2 signaling pathways by
185�FOXA1-dependent transcriptional upregulation
186�of WNT7B and HER3 (Ni et al. 2011). These
187�studies provided justification for targeting AR as
188�a therapeutic strategy in patients with
189�ER-negative or ER-negative/HER2-positive dis-
190�ease. A recent single-arm phase II study that
191�evaluated the effect of the antiandrogen bicalu-
192�tamide in ER-negative/PR-negative metastatic
193�breast cancers expressing AR reported a 6-month
194�clinical benefit rate of 19 % (Gucalp et al. 2013).
195�TNBC tumors expressing AR also appear to be
196�associated with a significantly higher frequency
197�of activating PIK3CA mutations (40 vs. 4 % in
198�AR-negative) and concurrent amplification of the
199�PIK3CA locus, suggesting the use of AR antag-
200�onists in combination with PI3K/mTOR inhibi-
201�tors as a potentially effective treatment strategy
202�(Lehmann et al. 2014). However these strategies
203�have yet to be tested in the clinic.
204�Several studies have investigated the prognos-
205�tic and predictive value of AR expression in
206�ER-negative breast cancer, but the results appear
207�conflicting (Shah et al. 2013; Vera-Badillo et al.
208�2014). In an ER-negative cohort of 303
209�post-menopausal women derived from theNurses’
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210 Health Study, 43 % of these tumors were
211 AR-positive, but no significant association was
212 found between AR expression and breast cancer
213 specific mortality (Hu et al. 2011). In another
214 cohort of 287 patients with resectable TNBC,
215 26 % of the cases were AR-positive and these
216 patients had disease free survival that was signif-
217 icantly longer than that of patients with
218 AR-negative breast cancer (He et al. 2012).
219 Another single-institution study involving 282
220 TNBC tumors, AR expression was demonstrated
221 in 13 % of the cases. Absence of AR expression
222 was significantly associated with higher histologic
223 grade, recurrence and development of distant
224 metastases (Rakha et al. 2007a). A meta-analysis
225 of 19 studies involving 7693 women with breast
226 cancer reported expression of AR in 32 % of the
227 ER-negative cases. Among ER-negative cases,
228 there was a trend towards better 5-year overall
229 (OS) and disease free survival (DFS) with AR
230 expression, but the association did not reach sta-
231 tistical significance in either case (Vera-Badillo
232 et al. 2014). In terms of predictive effects, results
233 from the GeparTrio trial of early stage breast
234 cancer women treated with neoadjuvant
235 docetaxel/doxorubicin/cyclophosphamide,
236 showed that among TNBC patients who achieved
237 complete pathologic response (pCR), those with
238 AR-positive tumors had a DFS of 100 % com-
239 pared to 79 % of AR-negative tumors (Loibl et al.
240 2011). However, AR status was not a significant
241 predictor of pCR rate in TNBC, as AR-positive
242 TNBC tumors had a pCR rate of 29 %compared to
243 33 % in AR-negative TNBC tumors (Loibl et al.
244 2011). Overall, an emerging volume of evidence
245 suggests that AR plays an important role in car-
246 cinogenesis and, as such, it could be a significant
247 prognostic factor andmay be further exploited as a
248 novel therapeutic target in ER− disease. However,
249 the plethora of controversial results suggests that
250 further standardization in the estimation of AR
251 expression, scoring systems and cut-off values
252 would be required (Anestis et al. 2015).

253
254�19.3 Gene Expression Based
255�Genomic Markers in Different
256�Breast Cancer Subtypes

257�The clinical utility of currently available genomic
258�tests in ER-negative breast cancer is limited since
259�their main value is in the prognostic stratification
260�of luminal ER-positive tumors (Prat et al. 2012;
261�Cobain and Hayes 2015). For example, the
262�Amsterdam 70-gene signature (Mammaprint)
263�and the Oncotype recurrence score classify
264�almost all ER-negative cancers as high risk.
265�Similarly, the Genomic Grade Index, Breast
266�Cancer Index, and EndoPredict assays are useful
267�only in ER-positive patients (Prat et al. 2012;
268�Gyorffy et al. 2015). While most available
269�multigene prognostic gene signatures may pro-
270�vide standardized, complementary information to
271�routine pathological variables that could assist
272�therapeutic decision-making in ER-positive can-
273�cers, they have only very limited utility in
274�ER-negative disease. One reason may be that
275�these so called “first generation signatures” were
276�developed in mixed cohorts including different
277�subtypes, the majority of which being ER posi-
278�tive (Sotiriou and Pusztai 2009). It became
279�increasingly clear that the subtype composition
280�of a dataset can strongly influence the prognostic
281�and predictive gene signatures derived from it
282�(Weigelt et al. 2012). Often these “first genera-
283�tion” signatures represent a surrogate marker for
284�the subtype distinction itself (Prat et al. 2012;
285�Reis-Filho and Pusztai 2011). As a consequence
286�subsequent guidelines have suggested to analyze
287�subtypes of breast cancers separately and to
288�derive subtype-specific genomic tests (Kaufmann
289�et al. 2011; Goldhirsch et al. 2011). However, it
290�has even been suggested that information on
291�some problems may be lacking from the gene
292�expression space (Hess et al. 2011), particularly
293�for ER breast cancer that appears to be
294�transcriptionally more heterogeneous than other
295�subtypes (Jiang et al. 2014; Tofigh et al. 2014).
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296
297 19.4 Gene Expression Signatures
298 Developed in ER-Negative
299 Breast Cancer

300 The realization that the different subtypes of
301 breast cancer are fundamentally distinct in their
302 transcriptional profiles led several groups to
303 investigate these subgroups separately, leading to
304 so-called second generation signatures
305 (Reis-Filho and Pusztai 2011; Alexe et al. 2007;
306 Teschendorff et al. 2007; Finak et al. 2008;
307 Desmedt et al. 2008; Bianchini et al. 2010a;
308 Lehmann et al. 2011; Hatzis et al. 2011; Rody
309 et al. 2011; Karn et al. 2011). Some second
310 generation prognostic signatures for TNBC could
311 identify a subset of cases that had good prognosis
312 when treated with standard of care chemother-
313 apy, but since 20–25 % of these cases were
314 predicted to relapse within 5 years the clinical
315 utility of these signatures was rather limited
316 (Hatzis et al. 2011). Many of these studies
317 identified immune cell infiltration as an important
318 component for prognosis and prediction in
319 ER-negative subtypes. In triple-negative breast
320 cancer studies also identified several subgroups
321 besides immune cell components that can be
322 clearly separated based on transcriptional pro-
323 files. Triple-negative disease seems to be com-
324 posed of basal-like cancers, a molecular apocrine
325 group, and the claudin-low subtype (Farmer et al.
326 2005b; Lehmann et al. 2011; Rody et al. 2011;
327 Prat et al. 2010; Burstein et al. 2015). Potential
328 therapeutic relevance of these subgroups has
329 been suggested (Vidula and Rugo 2015; Ng et al.
330 2015). In contrast to these relatively stable sep-
331 arable groups, immune cell infiltration seems to
332 represent a rather continuous parameter and may
333 be detected within all three of these subgroups
334 (Rody et al. 2011; Denkert et al. 2010; Karn et al.
335 2015). For ER-negative/HER2-positive disease
336 an important role of immune cells has also been
337 demonstrated (Alexe et al. 2007; Ignatiadis et al.
338 2012; Loi et al. 2014; Denkert et al. 2015). Yet,
339 despite refinements in the definition of
340 ER-negative subtypes, the efforts to define clin-
341 ically useful prognostic signatures in
342 ER-negative breast cancer has had limited suc-
343 cess (Pusztai et al. 2015).

344
345�19.5 The Role of Immune Cell
346�Infiltration as a Marker
347�in ER-Negative Breast Cancer

348�Until recently, molecular and clinical subtyping
349�of breast cancer was solely based on the molec-
350�ular features of the cancer cells without consid-
351�ering the importance of stromal components,
352�such as tumor infiltrating immune cells (Perou
353�et al. 2000; Kaufmann et al. 2011). However, an
354�association between cancer and immune response
355�components has long been observed (Balkwill
356�and Mantovani 2001). Different immune cells
357�may have either anti-tumor or tumor-promoting
358�effects (Grivennikov et al. 2010). It is also
359�important to recognize that the role of tumor
360�infiltrating lymphocytes (TILs) can differ by
361�breast cancer subtype (Karn et al. 2011; Cancer
362�Genome Atlas Network 2012). Gene expression
363�signal originating from immune cells is easily
364�recognized in high throughput transcriptional
365�profiling data, and the first microarray analyses
366�of breast cancer tissues had already described
367�signatures of TILs (Perou et al. 1999, 2000; Hu
368�et al. 2006). Later on, several larger microarray
369�studies with clinical follow up and meta-analyses
370�revealed the strong positive prognostic value of
371�immune signatures in ER-negative tumors (Des-
372�medt et al. 2008; Lehmann et al. 2011; Rody
373�et al. 2009, 2011; Schmidt et al. 2008; Bianchini
374�et al. 2010b; Nagalla et al. 2013). The prognostic
375�significance of immune signatures was subse-
376�quently validated with direct histological and
377�immunohistochemical assessment of TILs and
378�other immune components and are also in line
379�with several earlier studies (Loi et al. 2013, 2014;
380�Adams et al. 2014; Aaltomaa et al. 1992; Menard
381�et al. 1997). The common theme that emerges
382�from all these studies is a significant association
383�of an increasing number of TILs at the tumor
384�stroma with improved patient prognosis. It
385�should be noted that both the presence of
386�immune cell infiltration and its prognostic value
387�are characteristics mainly of ER-negative cancers
388�(Karn et al. 2015). Moreover, increased presence
389�of TILs has been found to be predictive of
390�improved response to neoadjuvant chemother-
391�apy, again mainly in ER-negative tumors
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392 (Denkert et al. 2010; Issa-Nummer et al. 2013).
393 Finally, for HER2-positive disease, there appears
394 to be an association of lymphocyte infiltration
395 with benefit from trastuzumab (Loi et al. 2013;
396 Perez et al. 2015). Thus, the “prognostic” value
397 of TILs in ER-negative breast cancer may result
398 from “pure prognostic” or “pure predictive”
399 effects or a combination of both.

400
401 19.6 Complexity of Immune Cell
402 Markers in ER-Negative Breast
403 Cancer

404 Although immune gene signatures can stratify
405 patients with ER-negative disease in terms of
406 survival outcomes, the use of this information in
407 clinical decision making is rather limited. Even
408 in those patients classified as having a better
409 prognosis, the number of relapses within 5 years
410 remains sufficiently high to justify adjuvant
411 chemotherapy. However, the interplay between
412 tumor and immune system is complex because of
413 the multiple opposing signals and feedback loops
414 that coexist between various immune cells and
415 cancer cells (Grivennikov et al. 2010). Therefore,
416 subtypes of lymphocytes, macrophages, granu-
417 locytes, and antigen presenting cells may need to
418 be considered separately when evaluating the
419 prognostic and predictive value of the immune
420 system. Specific metagene signatures for spe-
421 cialized T- and B-lymphocytes, and cells of the
422 dendritic or macrophage/monocyte lineage have
423 been used for this purpose (Rody et al. 2009,
424 2011; Schmidt et al. 2008; Bianchini et al.
425 2010b; Gu-Trantien et al. 2013). Similarly, large
426 immunohistochemical studies with specific anti-
427 bodies to track individual immune system com-
428 ponents have also been performed (Karn et al.
429 2015). However, in most tumors co-infiltration
430 by many different types of immune cells has been
431 observed (Rody et al. 2009; Ruffell et al. 2012)
432 resulting in high inter-correlation of all immune
433 markers. Even markers linked to immunosup-
434 pressive activity, such as PD-1, PD-L1, CTLA4,
435 show a significant positive correlation with other
436 immune markers and with TILs (Denkert et al.
437 2015). These findings fit well with the

438�intercorrelated nature of local immune biomark-
439�ers that may result from feedback loops between
440�immune activation and suppression. Antithetical
441�effects on prognosis have been observed for
442�some types of immune cells, such as CD68+ and
443�CD4+ cells, allowing their use as a combined
444�prognostic score (Ruffell et al. 2012). Likewise,
445�the combination of a B-cell metagene associated
446�with good prognosis with the opposing effect of
447�an IL-8 metagene resulted in a clinically relevant
448�gene signature for triple-negative and basal-like
449�breast cancer (Rody et al. 2011; Hanker et al.
450�2013). On the other hand modulation of T-cell
451�response has demonstrated clinical efficacy in
452�solid tumors (Topalian et al. 2012). Examples
453�include new therapeutic antibodies that unleash
454�the antitumor properties of the immune system
455�effectively as ipilimumab, or antibodies that
456�block PD1 (programmed cell death 1) and PD-L1
457�(programmed cell death 1 ligand 1) (Herbst et al.
458�2014). Current results allow monitoring potential
459�antitumor immunity in breast cancer, but we are
460�not yet able to reliably monitor the immuno-
461�suppressive activity in the tumor immune infil-
462�trate. Therefore, the clinical utility of immune
463�markers in ER-negative cancer still remains
464�marginal, but may have a greater potential in
465�combination with the upcoming immune thera-
466�peutic approaches.

467
468�19.7 Gene Mutations as Markers
469�in ER-Negative Breast Cancer

470�An additional class of genomic markers are
471�individual mutational changes within cancer
472�genes. In general, two types of gene mutations
473�can contribute to cancer. Somatic mutations that
474�occur during lifetime and generate a founder cell
475�of a cancer or a tumor subclone (Stratton 2011),
476�as well as germline mutations in cancer predis-
477�position genes, that are present in all cells and
478�increase the risk of cancer (Rahman 2014b).
479�Examples of the latter include the BRCA1 and
480�BRCA2 genes. The benefits of determining
481�whether a cancer is caused by a hereditary
482�germline mutation could be undeniable (Rahman
483�2014b; Narod 2010). For patients it may provide
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484 better understanding of the genetic causes of their
485 cancer and the higher cancer risk would justify
486 prophylactic testing of other family members. It
487 can also provide important information for dis-
488 ease management regarding surgery, radiother-
489 apy, and chemotherapy (Narod 2010; Trainer
490 et al. 2010). For example, platinum-based treat-
491 ment is not standard for breast cancer but can
492 have utility in BRCA mutation carriers (Byrski
493 et al. 2012; Turner and Tutt 2012; Foulkes and
494 Shuen 2013). Moreover, BRCA deficiency is the
495 basis for the synthetic lethality approach exem-
496 plified by PARP inhibitors (Foulkes and Shuen
497 2013; Fong et al. 2009; Farmer et al. 2005a).
498 Testing for BRCA1 mutations in patients with
499 breast cancer has been referred to as medical
500 genetic testing in contrast to predictive genetic
501 testing aimed to estimate cancer risk in unaf-
502 fected people (Rahman 2014a). BRCA1 muta-
503 tion frequency of 2–3 % has been reported in
504 women with breast cancer (Malone et al. 2006)
505 but may increase to more than 10 % among
506 younger patients with triple-negative disease
507 (Narod 2010; Trainer et al. 2010). This highlights
508 the importance of BRCA1 deficiency as a
509 genomic marker in ER negative, and especially
510 triple-negative breast cancer. With the advent of
511 next generation sequencing (NGS) methods
512 (Shendure and Ji 2008) faster and more afford-
513 able testing now allows eligibility criteria to be
514 relaxed and results to be delivered within the
515 timeframe required to impact cancer management
516 (Rahman 2014a). Besides the BRCA genes, a
517 handful of rare, highly penetrant genes, including
518 TP53, PTEN, LKB1, as well as more frequent
519 low penetrance genes, such as CHECK2, ATM,
520 PALB, have been described as hereditary factors
521 associated with breast cancer (Chung and Cha-
522 nock 2011). However, a clinically useful geno-
523 mic marker in breast cancer would require that
524 the respective mutation affects patient prognosis
525 or impacts her therapeutic management. In
526 addition to cancer predisposing genes which may
527 also have an impact on prognosis (Fasching et al.
528 2012) there is additional interest in the genetic
529 background that could result in variation in
530 drug-response phenotypes based on metabolism,
531 transportation elimination affecting both efficacy

532�and toxicity of a drug (Wang et al. 2011;
533�McLeod 2013). Such germline DNA variants
534�may help optimize cancer drug dosing and
535�adverse side effects to improve benefit/risk ratio
536�of cancer treatment. This field is referred to as
537�pharmacogenetics or pharmacogenomics.
538�Important examples of predictive factors regard-
539�ing targeted treatment have been identified in
540�other cancers, but no validated pharmacoge-
541�nomic markers for ER-negative breast cancer are
542�yet available since those studies involve major
543�challenges which are currently beginning to be
544�addressed (Wang et al. 2011; McLeod 2013).

545
546�19.8 Somatically Mutated Genes
547�in ER-Negative Breast Cancer

548�As already addressed, the clinically most
549�important somatically mutated gene and genomic
550�marker in ER-negative breast cancer is the
551�expression of HER2, altered mainly through
552�gene amplification but also by activating muta-
553�tions (Bose et al. 2013). Nevertheless, fueled by
554�dramatic improvements in sequencing power and
555�falling costs in the last decade, cancer genome
556�sequencing projects have vastly increased our
557�knowledge about the presence and frequency of
558�somatic mutations in cancer. Such somatic
559�mutations are identified by comparing tumor
560�DNA with germline sequence obtained. e.g.,
561�from peripheral blood lymphocytes. Somatic
562�mutations may be distinguished as either ‘driver’
563�mutations conferring a selective growth advan-
564�tage to the cancer cells or ‘passenger’ mutations
565�(Garraway and Lander 2013). Although this
566�definition is simple in principle, it is more diffi-
567�cult to clearly identify, which somatic mutations
568�belong into each category (Vogelstein et al.
569�2013). Passengers encompass all those neutral
570�mutations that have been accumulated during
571�normal development in the founder cell of the
572�tumor, before the oncogenic event had occurred
573�(Shibata 2012). These passenger mutations seem
574�to account for roughly half of the mutations
575�found in a typical breast cancer (Jones et al.
576�2008). A large part of the remaining mutations
577�would also be passengers acquired after the

19 Genomic Markers ER-Negative Breast Cancer 7

Layout: T4_Grey Book ID: 331091_1_En Book ISBN: 978-3-319-41759-2

Chapter No.: 19 Date: 28-8-2016 Time: 10:32 am Page: 7/15

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

578 tumor initiating event (Bozic et al. 2010). Indi-
579 vidual genes can contain both driver mutations
580 and passenger mutations. Thus the term
581 “Mut-driver genes” has been coined to categorize
582 genes suspected of increasing the selective
583 growth advantage of tumor cells (Vogelstein
584 et al. 2013). Although further cancer genome
585 sequencing may unveil additional Mut-driver
586 genes, the current data suggest that a plateau has
587 being reached (Garraway and Lander 2013;
588 Vogelstein et al. 2013). It has been estimated that
589 for each tumor type about two thousand samples
590 are needed to assemble the catalogue of coding
591 mutations present in at least 2 % of tumors of a
592 given type (Lawrence et al. 2014). For breast
593 cancer more than half of that number has been
594 profiled by The Cancer Genome Atlas (TCGA).
595 Thus, at least for the coding sequence, substantial
596 data are available on the frequency and distri-
597 bution of mutations in breast cancer subtypes
598 (Cancer Genome Atlas Network 2012; Stephens
599 et al. 2012). The sobering perspective on the
600 diversity is that driver mutations are operative in
601 many cancer genes, but only a few are commonly
602 mutated. Many infrequently mutated genes rep-
603 resent the long tail of the distribution, collec-
604 tively making up a substantial contribution in
605 myriad different combinations (Stephens et al.
606 2012). The number of genes frequently altered in
607 breast cancers is rather low. Only three genes
608 (PIK3CA, TP53, GATA3) were found to be
609 mutated in at least 10 % of breast tumors and
610 three additional genes in at least 5 % of the
611 patients (Cancer Genome Atlas Network 2012;
612 Stephens et al. 2012; Shah et al. 2012). However,
613 the majority of the 20,000 detected somatic
614 mutations in 500 breast cancers were observed
615 only sporadically (Cancer Genome Atlas Net-
616 work 2012; Stephens et al. 2012). It appears that
617 virtually no two tumors have a similar mutational
618 pattern (Karn 2013). Nevertheless, different
619 mutations may be grouped to common oncogenic
620 pathways somewhat reducing this complexity
621 (Cancer Genome Atlas Network 2012; Stephens
622 et al. 2012; Garraway and Lander 2013; Vogel-
623 stein et al. 2013; Hanahan and Weinberg 2011).
624 TP53 is the most frequently mutated gene in
625 ER-negative breast cancer, being mutated in

626�about 80 % of basal-like tumors and in 92 % of
627�ER-negative, HER2-enriched breast tumors
628�(Cancer Genome Atlas Network 2012; Stephens
629�et al. 2012). Unfortunately, however, TP53 cur-
630�rently does not represent a clinically “actionable”
631�mutation in breast cancer. Several potentially
632�targetable mutations (MAP3K1, MAP2K4,
633�GATA3) are seen predominantly in ER-positive
634�tumors. In 104 triple-negative tumors very few of
635�the identified mutations were potentially drug-
636�gable illustrating the challenges of developing
637�new treatments and respective predictive markers
638�for this subtype (Shah et al. 2012; Banerji et al.
639�2012). The frequency of PIK3CA mutations is
640�the highest in luminal subtypes of breast cancer,
641�but still considerable in ER-negative
642�HER2-positive disease (Cancer Genome Atlas
643�Network 2012). Because of the large amount of
644�preclinical data available on activated PI3K
645�pathway and resistance to HER2-targeted treat-
646�ment, the role of this marker has been intensively
647�studied. However, although differences in
648�response to neoadjuvant therapy with different
649�HER2-targeted treatments according to PIK3CA
650�mutation status have been observed (Loibl et al.
651�2014; Majewski et al. 2015), these did not
652�translate to significant clinical benefit in terms of
653�improved overall or disease free survival
654�(Pogue-Geile et al. 2015; Cescon and Bedard
655�2015). Thus, PIK3CA mutation testing is not a
656�clinically useful test to guide treatment selection
657�at the present time, but is should be incorporated
658�in trials assessing the value of PI3K inhibitor
659�combinations with HER2-targeted treatments
660�(Cescon and Bedard 2015).
661�Access to next generation sequencing tech-
662�nology has recently spread out to basic transla-
663�tional research and clinical laboratories, and even
664�if the throughput has not been adapted for high
665�coverage genome sequencing projects, these sys-
666�tems are well suited for targeted sequencing of a
667�smaller number of genes. Several cancer-specific
668�gene panels have been introduced based on the
669�assembled catalog of mutations from the recent
670�cancer genome projects, and are being offered as
671�high throughput genomic assays (Frampton et al.
672�2013). The clinical utility or actionability of the
673�respective gene mutations as genomic markers
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674 partially depends on how “actionability” is
675 defined; e.g., either in a broad prognostic sense or
676 narrowly regarding prediction of response to
677 specific drugs. Several institutional, regional, and
678 global molecular screening programs that apply
679 such gene panels have been launched with the
680 intent to use this information to inform clinical
681 decision-making (Hansen and Bedard 2013).
682 These programs may provide enrichment strate-
683 gies improving the likelihood of success for testing
684 new cancer drugs. The true merits of this approach
685 remain to be established. But in contrast to ineffi-
686 cient, sequential testing of rare alterations, such
687 comprehensive testing of multiple biomarkers
688 early in the course of disease together with access
689 to a broad portfolio of matched investigational or
690 approved drugs is most likely to advance person-
691 alized cancer medicine (Hansen and Bedard
692 2013). Even ultra-deep sequencing of such panels
693 can be performed to detect rare subclones coping
694 with the problem of tumor heterogeneity. Thus
695 personalized tumor profiling may be feasible in a
696 clinical setting ultimately translating genome
697 sequencing from bench to bedside (Corless 2011).

698
699 19.9 Global Genome Alterations
700 in ER-Negative Breast Cancer

701 Results from TCGA revealed that on average there
702 are 57 (range, 5–374) mutations in the coding
703 sequence of breast cancer (Cancer Genome Atlas
704 Network 2012). ER-negative breast cancer dis-
705 plays a clearly higher mutational frequency with
706 1.94 nonsilent coding mutations per Mb of DNA
707 compared to 1.35 in ER-positive tumors (Ng et al.
708 2015). Despite this higher mutational load, TP53
709 represents the single most recurrently mutated
710 gene (84.5 %) in ER-negative tumors, in contrast
711 to PIK3CA, GATA3, and MAP3K1 that are
712 mutatedmore frequently in ER-positive tumors. In
713 addition to somatic point mutations, cancers may
714 also be characterized by structural DNA alter-
715 ations such as deletions and copy number varia-
716 tions. Combining genomics, transcriptomics, and
717 epigenomics has already provided novel insights,
718 and new genome-driven integrated classifications
719 of breast cancer that include DNA copy number

720�changes have been proposed (Banerji et al. 2012;
721�Curtis et al. 2012;Dawson et al. 2013). The TCGA
722�breast cancer study used both SNP and CGH
723�arrays, DNA methylation analysis as well as both
724�transcriptome, proteome, and microRNA expres-
725�sion analysis to obtain comprehensive portraits of
726�the molecular subtypes through integrative anal-
727�ysis across platforms (Cancer Genome Atlas
728�Network 2012). This analysis revealed that in
729�addition to loss TP53, loss of RB1 and BRCA1 as
730�well as high MYC activation are basal-like fea-
731�tures. The basal-like subtype moreover displayed
732�similarity to high grade serous ovarian cancer,
733�which is in line with the suggested value of PARP
734�inhibitors and platinum compounds in both dis-
735�eases. Thus, it is conceivable that future genomic
736�markers for ER-negative breast cancer may also
737�combine several complementary molecular fea-
738�tures. Based on the dominance of eithermutational
739�changes or copy number alterations cancers may
740�be categorized as M or C class. While about two
741�third of ER-positive cancers seem to belong to the
742�M class, literally all TNBC are of the C class type
743�as are ovarian cancers (Ciriello et al. 2013).Whole
744�genome sequencing of some tumors has also
745�revealed massive genomic rearrangements
746�acquired in single catastrophic events during
747�cancer development (Stephens et al. 2011).
748�Markers for deficiency in homologous DNA
749�recombination (HRD) are of great interest since
750�they may predict response to PARP-inhibitors
751�and to platinum based chemotherapy, as dis-
752�cussed above for BRCA1. Different markers
753�have been developed to evaluate so-called
754�genomic scars that remained in the tumor gen-
755�ome (Abkevich et al. 2012; Birkbak et al. 2012;
756�Popova et al. 2012; Vollebergh et al. 2011; Wang
757�et al. 2012; Watkins et al. 2015). Such signatures
758�are associated with defects in error-free repair of
759�interstrand crosslinks (Watkins et al. 2014).
760�However, secondary events resulting in resis-
761�tance to PARP inhibitors and DNA damaging
762�chemotherapies limit the positive predictive
763�value and clinical utility of these biomarkers
764�(Watkins et al. 2014; Schouten and Linn 2015).
765�In addition to therapies directed at HRD, other
766�flaws in the genomic maintenance machinery that
767�leave a detectable imprint in the genome and
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768 which may be targeted therapeutically could also
769 become biomarkers. The large number of cancer
770 genomes available has allowed identification of
771 several mutational signatures giving further clues
772 on the mutational processes shaping tumors
773 (Alexandrov et al. 2013; Nik-Zainal et al. 2012).
774 For example, Signature 6 of Alexandrov et al.
775 was found to be associated with mismatch repair
776 deficient cancers (Alexandrov et al. 2013).
777 Another important aspect has been observed
778 through ultra-deep sequencing needed to establish
779 the frequency of different subclones within the
780 tumor. Such analyses have revealed extraordinary
781 high intra-tumoral heterogeneity, especially in
782 TNBC (Shah et al. 2012; Nik-Zainal et al. 2012).
783 Those studies raised concerns that biomarker
784 analyses from single biopsies may not cover the
785 heterogeneous subclonality of tumors, thus ulti-
786 mately leading to uncertainties in treatment deci-
787 sions (McGranahan and Swanton 2015). For
788 example tumor subclones resistant to single tar-
789 geted treatments may preexist within the cancer at
790 diagnosis. Consequently, this may suggest the
791 need for multitarget approaches already at the start
792 of therapy in order to eradicate the cancer
793 (Vogelstein et al. 2013; Aparicio and Caldas
794 2013). On the other hand, however, the high
795 mutational load in ER-negative breast cancer
796 associated with this heterogeneity may be benefi-
797 cial for the development of an immune response to
798 the tumor (Rizvi et al. 2015; Le et al. 2015). In this
799 respect mutational derived neoantigen load may
800 form a biomarker for potential future
801 immunotherapy of ER-negative breast cancer and
802 provide an incentive for the development of novel
803 therapeutic approaches that selectively enhance T
804 cell reactivity against this class of antigens
805 (Schumacher and Schreiber 2015).

806
807 19.10 Current Clinical Utility
808 of Genomic Tests
809 for ER-Negative Breast
810 Cancer

811 The clinically most useful biomarker for
812 ER-negative breast cancer is HER2 status.
813 Unfortunately, the clinical utility of other

814�available genomic tests for ER-negative breast
815�cancer is currently still limited. The Ki67 score, a
816�proliferation marker, post chemotherapy or the
817�reduction of the score during neoadjuvant
818�chemotherapy was not prognostic in TNBC
819�(Balko et al. 2014). Furthermore, gene expres-
820�sion based commercially available prognostic
821�tests have value mainly in ER-positive disease
822�(Reis-Filho and Pusztai 2011; Gyorffy et al.
823�2015). Substratification of TNBC by gene
824�expression, or integrated analyses including copy
825�number alterations, allows to further distinguish
826�subtypes with different prognosis and potential
827�therapeutic targets. Still those classification sys-
828�tems may not yet be ready for prime time (Ng
829�et al. 2015). Immune biomarkers are established
830�and validated prognostic and predictive factors
831�for both triple-negative and for HER2-positive
832�breast cancers (Karn et al. 2015). They should be
833�used as stratification tools in future clinical trials
834�and several biological and therapeutic hypotheses
835�can be formulated based on these associations.
836�However, the clinical utility of immune param-
837�eters for informing decisions about standard
838�adjuvant therapies for TNBC or HER2-positive
839�cancers is currently limited. A very promising
840�research direction is to explore the potential
841�predictive value of immune cell infiltration for
842�future immunotherapeutic regimens; e.g., as
843�checkpoint inhibitors. Currently, among potential
844�analyses of mutated genes only tests for
845�BRCA1/2 have clinical utility regarding thera-
846�peutic decisions (Foulkes and Shuen 2013).
847�PIK3A testing is not at present a clinically useful
848�test to guide treatment selection in ER-negative
849�disease (Cescon and Bedard 2015). Also, vali-
850�dated pharmacogenomic markers are not yet
851�available for ER-negative breast cancer (McLeod
852�2013). Gene panel sequencing approaches com-
853�bining comprehensive lists of genes found to be
854�somatically mutated in tumors are currently
855�under evaluation in several large studies. These
856�may provide strategies for enrichment of cohorts
857�for testing new drugs but their clinical utility has
858�still to be established (Hansen and Bedard 2013).
859�Several tests based on mutational scars in the
860�genome as surrogates for DNA repair deficien-
861�cies have been developed and some of them are
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862 currently tested in clinical trials. However, final
863 results for their use in clinical practice are not yet
864 available (Schouten and Linn 2015).

865
866 19.11 Conclusions

867 One current and rapidly evolving topic in
868 ER-negative breast cancer and in other solid
869 tumors is the development of onco-immune
870 therapies and the beginning understanding of
871 the complex nature of the interface between
872 tumor and host. It may be conceivable that a
873 better understanding of these relationships may
874 also provide new superior biomarkers for
875 ER-negative breast cancers.
876 The recent developments in high throughput
877 sequencing also suggest that this field may gen-
878 erate important novel genomic markers for can-
879 cer in general. Pilot studies have already shown
880 that it is possible to analyze the complete genome
881 of patients’ tumors in a cost-effective and clini-
882 cally relevant timeframe (Corless 2011). It is
883 hoped that identified mutations may allow pre-
884 diction of response to therapy with the ultimate
885 aim of personalized cancer diagnostics (Corless
886 2011). Because of the infrequency of most
887 alterations such methods would be germane to
888 allow experimental “genome forward” trials or
889 bucket trials for new therapeutics targeting such
890 specific alterations (Bedard et al. 2013; Simon
891 and Roychowdhury 2013). Whole genome
892 sequencing data further suggest that each breast
893 cancer has at least one DNA rearrangement.
894 Thus, personalized cancer sequencing could lead
895 to specific individual genomic markers which are
896 suited for highly sensitive non-invasive disease
897 monitoring by liquid biopsies (Aparicio and
898 Caldas 2013). An important drawback for geno-
899 mic markers may be the high heterogeneity and
900 clonal diversity revealed by such methods,
901 especially in ER-negative breast cancers (Shah
902 et al. 2012; Nik-Zainal et al. 2012; Bedard et al.
903 2013). This can lead to both spatial and temporal
904 heterogeneity within primary cancers and
905 metastases posing questions about the value of
906 single biopsies (McGranahan and Swanton
907 2015). Therefore, currently it is also far from

908�clear how to define a threshold for an “action-
909�able” alteration based on its subclonal frequency
910�in the tumor (Ng et al. 2015), while on the other
911�hand heterogeneity itself may also represent a
912�biomarker (McGranahan and Swanton 2015).
913�Furthermore, it is entirely possible that what
914�constitutes a driver mutation is not universal but
915�instead is cancer-specific. Inherited risk-
916�modifying functional germline mutations could
917�interact with somatic mutations appearing later to
918�give rise to a founder cancer cell, whereas the
919�same somatic mutation may be inactive in a
920�different genetic background (Agarwal et al.
921�2015).
922�In conclusion, even when until now no new
923�genomic markers in ER-negative breast cancers
924�beside HER2 status have provided utility in
925�clinical practice, their development is a con-
926�stantly evolving topic. However, especially
927�because of the poor prognosis of TNBC
928�tremendous research efforts in this area are cur-
929�rently undertaken and may eventually result in
930�the translation of clinically relevant biomarkers
931�into the clinic.
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