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predictors of response to neoadjuvant immune checkpoint inhibition in
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Background: The predictive value of tumor mutational burden (TMB), alone or in combination with an immune gene
expression profile (GEP), for response to neoadjuvant therapy in early triple negative breast cancer (TNBC) is currently
not known, either for immune checkpoint blockade (ICB) or conventional chemotherapy.
Patients and methods: We obtained both whole exome sequencing and RNA-Seq data from pretreatment samples of
149 TNBC of the recent neoadjuvant ICB trial, GeparNuevo. In a predefined analysis, we assessed the predictive value of
TMB and a previously developed immune GEP for pathological complete remission (pCR).
Results: Median TMB was 1.52 mut/Mb (range 0.02e7.65) and was significantly higher in patients with pCR (median 1.87
versus 1.39; P¼ 0.005). In multivariate analysis, odds ratios for pCR per mut/Mb were 2.06 [95% confidence intervals (CI)
1.33e3.20, P¼ 0.001] among all patients, 1.77 (95% CI 1.00e3.13, P¼ 0.049) in the durvalumab treatment arm, and 2.82
(95% CI 1.21e6.54, P¼ 0.016) in the placebo treatment arm, respectively.We also found that both continuous TMB and
immune GEP (or tumor infiltrating lymphocytes) independently predicted pCR. When we stratified patients in groups
based on the upper tertile of TMB and median GEP, we observed a pCR rate of 82% (95% CI 60% to 95%) in the group
with both high TMB and GEP in contrast to only 28% (95% CI 16% to 43%) in the group with both low TMB and GEP.
Conclusions: TMB and immune GEP add independent value for pCR prediction. Our results recommend further analysis
of TMB in combination with immune parameters to individually tailor therapies in breast cancer.
Key words: neoadjuvant immune checkpoint inhibition, triple negative breast cancer, tumor mutational burden, exome
sequencing
INTRODUCTION

Combining immune checkpoint blockade (ICB) with
chemotherapy increased response rates in patients with
metastatic triple negative breast cancer (mTNBC).1,2 For
early triple negative breast cancer (TNBC), recent results of
the neoadjuvant randomized phase II GeparNuevo study
suggest that the addition of durvalumab to anthracycline/
taxane-based neoadjuvant chemotherapy increases the
rate of pathological complete remission (pCR), mainly in the
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subgroup of patients treated with durvalumab alone before
the start of chemotherapy.3

In several cancer types, predictive factors for ICB
response include programmed death-ligand 1 (PD-L1)
expression,1 gene expression profiles (GEP) of infiltrating
immune cells,4 as well as microsatellite instability (MSI)5

and tumor mutational burden (TMB).4,6e9 Based on re-
sults from bucket trials of ICB in metastatic cancer, Cristescu
et al. recently proposed a combination of TMB with im-
mune GEP as a predictor of response.10

In early TNBC, immune GEP and tumor infiltrating lym-
phocytes (TIL) have both prognostic and predictive values
for response to chemotherapy.11,12 A high TMB could in-
crease neoantigens inducing immune response. Indeed, in
pooled analyses of diverse cancer types, overall a positive
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association of TMB and tumor immune cell infiltration has
been observed.13 Similarly, comparison of breast cancer
subtypes reveals that both high TMB and high immune
infiltration are more frequent in TNBC compared with
luminal breast cancers.14,15 However, within the TNBC
subgroup, no such positive correlation of TMB and immune
infiltration was detected, which may be attributed to
immunoediting.16

The predictive value of TMB, alone or in combination
with immune GEP, for response to neoadjuvant therapy in
early TNBC is currently not known, either for ICB or con-
ventional chemotherapy. It is especially not clear whether
TMB will add to the predictive value of immune GEP.
Therefore, our goal was to study these two parameters in
pretreatment samples of TNBC from the neoadjuvant ICB
trial GeparNuevo. We found that both parameters add in-
dependent value for pCR prediction for chemotherapy with
and without ICB. Our results recommend further analysis of
TMB in combination with immune parameters to individu-
ally tailor therapies in breast cancer.

METHODS

All analyses were carried out according to the reporting
recommendations for tumor marker prognostic studies
(REMARK) criteria.17 A CONSORT type diagram18 of the flow
of samples through the study is shown in supplementary
Figure S1 (available at Annals of Oncology online).

Patients

The details of the GeparNuevo study (NCT02685059) have
been described in a recent publication.3 In total, 174 patients
were treated with nab-paclitaxel followed by dose-dense
epirubicin/cyclophosphamide chemotherapy and were
randomly assigned to either simultaneous treatment with
durvalumab or placebo.The study was approved by the ethics
committee and the competent authority. All patients provided
written informed consent for study conduct, biomaterial
collection, and analysis. In the window phase, durvalumab/
placebo alone was given 2 weeks before the start of nab-
paclitaxel; 117 of the 174 participated in this window phase.
Randomization was stratified by stromal tumor infiltrating
lymphocyte (sTILs). Patientswith primary cT1b-cT4a-d disease,
centrally assessed sTILs, and confirmed TNBC were included.
The primary objective was pCR (ypT0 ypN0).The pCR rate with
durvalumabwas 53.4% (42.5% to64.1%) versus placebo44.2%
(33.5% to 55.3%; P ¼ 0.287), corresponding to odds ratio
(OR) ¼ 1.45 (0.80e2.63, unadjusted Wald P ¼ 0.224). The
durvalumab effect was significant in the window cohort
(pCR 61.0% versus 41.4%, OR ¼ 2.22, 1.06e4.64, P ¼ 0.035;
interaction P ¼ 0.048).3 The complete set of molecular pa-
rameters was successfully obtained only for a subset of the
patients: TMB was available for 149 patients (supplementary
Figure S1, available at Annals of Oncology online).

TIL scoring and PD-L1 immunohistochemistry

TIL scoring and PD-L1 immunohistochemistry were carried
out as previously described.3 In brief, PD-L1 status was
Volume 31 - Issue 9 - 2020
determined using the Ventana SP263 antibody. We evalu-
ated the PD-L1 expression as the percentage of tumor cells
with membranous staining and percentage of TILs with
membranous or cytoplasmic staining (relative to total TILs).3

Stromal TILs were evaluated based on the standardized
guidelines of the international TIL working group.19 When
TILs are included as continuous scores in logistic regression
analysis, odds ratios are presented per 10% increase.

Whole exome sequencing for TMB and mutational
signatures

Whole exome sequencing (WES) was conducted on fresh-
frozen pre-therapeutic core biopsies and patient-matched
blood samples with Illumina HiSeq 4000 (Illumina Inc., San
Diego, CA). High-quality data were obtained for 149 (85.6%)
of the 174 patients from the trial (supplementary Figure S1,
available at Annals of Oncology online). Full details on the
methods are given in the supplementary Methods (available
at Annals of Oncology online). For TMB calculation, we used
the final list of 12 314 non-synonymous single-nucleotide
variants (SNVs) and indels, obtained after filtering, together
with an effective DNA coverage of 46 Mb to determine
mutations per Mb for each sample. Mutational signatures
were identified as described by Alexandrov et al.20 R
package SomaticSignatures was employed to estimate the
proportion of each sample’s mutations that have been
assigned to each of the 21 mutational signatures.21

RNA sequencing

RNA sequencing was carried out on formalin-fixed paraffin-
embedded (FFPE) tissue using an HTG EdgeSeq instrument
(HTG Molecular Inc., Tucson, AZ) with the HTG EdgeSeq
Oncology Biomarker Panel (2549 genes) based on an RNA-
extraction-free chemistry and a nuclease protection
assay.22 The tumor area was marked on a slide stained with
hematoxylin and eosin and the area of invasive breast
cancer recorded. From a corresponding unstained slide, 15
mm2 tissue was scraped and used for library preparation
according to the manufacturer’s instructions. Libraries were
quantified, pooled, and sequenced on an Ion Torrent S5
instrument (Thermo Fisher Scientific, Waltham, MA). Count
tables were generated using the HTG parsing tool. Full de-
tails are given in the supplementary Methods (available at
Annals of Oncology online). RNA sequencing data from pre-
therapeutic cores were available for 159 of the 174 patients
(supplementary Figure S1, available at Annals of Oncology
online).

Molecular subtyping from RNA-Seq and immune GEP

Molecular subtyping from RNA-Seq was carried out using
the AIMS method23 (details in supplementary Methods,
available at Annals of Oncology online). We also evaluated a
predefined immune GEP predictive for neoadjuvant
response that was created from a list of genes we previ-
ously identified in the GeparSixto study (GeparSixto im-
mune signature: CXCL9, CCL5, CD8A, CD80, CXCL13, IDO1,
PDCD1, CD274, CTLA4, FOXP3).4 The genes CD21 and IGKC
https://doi.org/10.1016/j.annonc.2020.05.015 1217
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Table 1. Differences in tumor mutational burden (TMB) according to
clinical parameters of the GeparNuevo samples
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were omitted because they were not covered by the mRNA
sequencing assay. The immune GEP was calculated as the
mean of the expression of the genes from the signature.
Parameter Category Median TMB P value
(Wilcoxon test)

Age <40 years
�40 years

1.11
1.74

<0.001

Stage 0eI
IIA or higher

1.43
1.62

0.086

Histol. grade G2
G3

1.56
1.52

0.826

Treatment arm Placebo
Durvalumab

1.59
1.47

0.672

Window treatment No
Yes

1.70
1.46

0.303

TILs <60%
�60%

1.61
1.35

0.190

PD-L1 Negative
Positive

1.43
1.59

0.989

Response RD
pCR (ypT0 ypN0)

1.39
1.87

0.005
Aggregation of WES and HTG-RNA-Seq data

The analyses of the pseudonymized genomic datasets were
carried out fully blinded to any clinical or pathological sam-
ple information. The final blinded whole exome sequencing
(WES) and HTG-RNA-Seq datasets were transferred to
German Breast Group (GBG) headquarters. WES and RNA-
Seq were available for 149 and 159 patients, respectively,
with both data available for 136 patients (supplementary
Figure S1, available at Annals of Oncology online). A com-
parison of the complete trial cohort, theWES cohort, and the
WESþRNA-Seq cohort is provided in supplementary Table S1
(available at Annals of Oncology online).
pCR, pathological complete remission; PD-L1, programmed death-ligand 1; RD, re-
sidual disease; TILs, tumor infiltrating lymphocytes.
Significant P values are given in bold.
Statistical analysis

All clinical data, including age, stage, histological grade,
treatment arm, window treatment, TILs, PD-L1, and pCR
(ypT0 ypN0), were extracted from the clinical study data-
base at GBG headquarters and represent central assess-
ment. Both TMB and the immune GEP (GeparSixto immune
signature) from RNA-Seq were used as continuous param-
eters in univariate and multivariate logistic regression. In
addition, we present results of predefined dichotomized
TMB and GEP for illustration of pCR frequencies and com-
parison with previous studies. For GEP, a median split of the
cohort was used. TMB was dichotomized at the upper ter-
tile (�95 mutations) based on the previously suggested
pan-cancer cutoff for ICB response prediction (>100 mu-
tations).10 Pearson’s chi-square and Fisher’s exact test were
applied to assess associations between categorical param-
eters. To analyze the predictive value of molecular markers
for pCR, univariate and multivariate logistic regression
models adjusted for prespecified variables were used. The R
software environment (version 3.3.2, http://www.r-project.
org/) and SPSS24 (http://www.ibm.com/) were used for all
analyses. All confidence intervals (CI) reported are 95%. All
P-values are two-sided and P � 0.05 was considered as
significant.

RESULTS

TMB and correlation with pCR in the GeparNuevo trial

We successfully obtained high-quality WES data from the
tissue of 149 (86%) of the 174 patients from the Gepar-
Nuevo study (supplementary Table S1, available at Annals
of Oncology online, compares clinical data of the WES
cohort and the complete study cohort). Median TMB was
1.52 mut/Mb (range 0.02e7.65). As shown in Table 1, we
found significantly higher median TMB values in older pa-
tients (P < 0.001) and a trend for higher values in patients
with higher stage of cancer (P¼ 0.086). Numerically, we saw
lower values for median TMB in tumors with high numbers of
TILs and in those without PD-L1 expression, but this was not
significant. Patients with a pCR displayed a significantly
1218 https://doi.org/10.1016/j.annonc.2020.05.015
higher TMB (median with pCR 1.87 versus 1.39 without pCR;
P ¼ 0.005). Figure 1 shows the distribution of TMB values of
patients with and without a pCR. Interestingly, a high TMB
among pCR cases was especially seen in the placebo
(chemotherapy alone) treatment arm (Figure 1).

As shown in Table 2, we detected a predictive value of
continuous TMB for pCR among all patients both in uni-
variate (OR 1.62, 1.20e2.20; P ¼ 0.002) and multivariate
logistic regression (including age, stage, grading, stromal
TILs, PD-L1 status, and window treatment, OR 2.06, 1.33e
3.20; P ¼ 0.001). When we separately analyzed the two
treatment arms, we detected a significant positive corre-
lation between TMB and pCR in both arms in multivariate
analyses; in the univariate analysis we found a strong
trend in the durvalumab arm and a significant correlation
in the placebo arm (Table 2). We did not observe an
interaction with the treatment arm (P ¼ 0.439 and P ¼
0.436 for univariate and multivariate analysis, respectively,
Table 2).

We also present results for TMB dichotomized using the
upper tertile of our cohort (2.05 mut/Mb), which was
similar to a previously published cutoff from a pan-cancer
analysis of ICB response prediction.10 As shown in
Table 2, dichotomized TMB significantly predicted pCR
among all patients (univariate OR 2.22, 1.11e4.43, P ¼
0.024; multivariate OR 3.45, 1.41e8.48, P ¼ 0.007). Also in
this analysis we found no significant interaction with the
treatment arm (Table 2). After dichotomization of TMB at
the top tertile, 50 patients had high TMB and 29 of these
(58%) achieved a pCR, while 99 had low TMB and only 38 of
these (38%) had a pCR (P ¼ 0.007) (supplementary
Figure S2, available at Annals of Oncology online). In the
durvalumab treatment arm, pCR rates were 17/27 (63%)
and 19/47 (40%) for high and low TMB, respectively (P ¼
0.028), and in the placebo arm 12/23 (52%) for high, and
19/52 (37%) for low TMB (P ¼ 0.232, supplementary
Figure S2, available at Annals of Oncology online).
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http://www.r-project.org/
http://www.r-project.org/
http://www.ibm.com/
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015


bamulavruDstneitap llA
arm

Placebo arm

8

6

4

2

0

RD pCR

P = 0.005

RD pCR

P = 0.238

RD pCR

P = 0.005

T
M

B
 (

m
ut

/M
b)

Figure 1. Association of pathological complete response and tumor mutational burden (TMB) in GeparNuevo.
Distribution of TMB values in pretreatment samples of GeparNuevo patients stratified as either residual disease or pathological complete remission (pCR) among all
patients and separately in the durvalumab and placebo arm, respectively.
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Joint relationship of TMB and immune gene expression
profile with pCR in GeparNuevo

We previously reported that TILs and immune GEP pre-
dicted pCR in the GeparNuevo study.3,25 For 136 patients,
both WES and RNA-Seq data were available (supplementary
Figure S1, available at Annals of Oncology online). Both a
predefined immune GEP (GeparSixto immune signature)
and TILs predicted pCR in this cohort in multivariate analysis
(OR 1.73, 2.16-2.59, P ¼ 0.008 and OR 1.32, 1.08e1.60, P ¼
0.006 for GEP and stromal TILs, respectively). Therefore, we
also analyzed whether GEP or TILs correlate with contin-
uous TMB. We found no significant correlation of either the
immune GEP (Spearman’s rho þ0.03, �0.14 to þ0.19, P ¼
0.771) or TILs (Spearman’s rho �0.09, CI �0.25 to þ0.07,
P ¼ 0.269) with TMB. In contrast, we could clearly detect
that age, for example, was strongly correlated with
Table 2. Predictive value of tumor mutational burden (TMB) for pathological co

All pati

Continuous TMB (mut/Mb) Univariate n 149
OR (95% CI) 1.62 (1.
P value 0.002

Multivariatea n 133
OR (95% CI) 2.06 (1.
P value 0.001

Dichotomized TMB
(upper tertile)

Univariate n 149
OR (95% CI) 2.22 (1.
P value 0.024

Multivariatea n 133
OR (95% CI) 3.45 (1.
P value 0.007

CI, confidence interval; OR, odds ratio.
Significant P values are given in bold.
a Including age, stage, grading, stromal tumor infiltrating lymphocytes, PD-L1 status, and w
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continuous TMB (Spearman’s rho þ0.36, 0.21e0.49, P <
0.001). The observed independence of TMB and immune
GEP or TILs from each other suggests that both factors may
add predictive value for response, as has been suggested for
other cancer types.10 Figure 2 demonstrates this contribu-
tion of both factors for TMB and GEP (see supplementary
Figure S3, available at Annals of Oncology online, for indi-
vidual treatment arms). In a multivariate model, both
continuous parameters were independent significant pre-
dictors of pCR (supplementary Table S2, available at Annals
of Oncology online). As shown in Figure 2B, the pCR rate
among patients with both high TMB and high GEP in pre-
treatment samples was 82% (60% to 95%) compared with
only 28% (16% to 43%) in the groups with both low TMB
and GEP. When we used TILs instead of immune GEP, we
obtained similar results with a pCR rate of 83% (36% to
mplete remission (pCR) in GeparNuevo

ents Durvalumab Placebo Test for
interaction

74 75
20e2.20) 1.45 (0.99e2.14) 1.87 (1.13e3.08)

0.060 0.014 0.439
64 69

33e3.20) 1.77 (1.00e3.13) 2.82 (1.21e6.54)
0.049 0.016 0.436
74 75

11e4.43) 2.51 (0.95e6.64) 1.89 (0.70e5.12)
0.065 0.208 0.694
64 69

41e8.45) 4.66 (1.18e18.48) 2.21 (0.60e8.12)
0.028 0.232 0.438

indow treatment.
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Figure 2. Joint relationship of tumor mutational burden (TMB) and immune gene expression profile (GEP) with pCR in GeparNuevo.
(A) Scatter plot of TMB and immune GEP in pretreatment biopsies of GeparNuevo patients colored by response [burgundy triangles, pathological complete remission
(pCR); green circles, residual disease (RD)]. Cutoffs of median GEP and upper tertile of TMB are given by dashed vertical and horizontal lines, respectively. (B) pCR rates
in percentages and 95% confidence intervals (CI) in subgroups defined by the cutoffs given as dashed lines in A.
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100%) in the group with both high TMB and high TILs
compared with 33% (23% to 44%) in the low/low group
(supplementary Figure S4, available at Annals of Oncology
online), and again both parameters were independent sig-
nificant pCR predictors (supplementary Table S3, available
at Annals of Oncology online).
TMB as a potential surrogate marker for biologically
distinct groups of tumors

We next asked whether a high TMB may be a surrogate
marker for a specific type of genomic alteration or for
molecular subtypes, which could add mechanistic explana-
tions for its association with response. We studied contin-
uous scores of the mutational signatures 2, 3, 6, and 13 of
Alexandrov et al.20 and binary classifications of tumors
characterized by specific driver mutations as well as RNA-
based molecular subtypes (AIMS method).23 We observed
a strong positive correlation of TMB with continuous scores
for mutational signature 2 (APOBEC-related, rho ¼ 0.44,
0.30e0.56, P < 0.001) and signature 3 [homologous
recombination deficiency (HRD)-related, rho ¼ 0.37, 0.22e
0.50, P < 0.001] and a weak negative correlation with
signature 6 (MMR-related, rho ¼ �0.18, �0.33 to �0.02,
P ¼ 0.030). As shown in supplementary Table S4 (available
at Annals of Oncology online), we also compared the me-
dian TMB in groups of tumors characterized by specific
driver mutations or molecular subtype. We found no dif-
ference in median TMB between TNBC of the ‘basal-like’ or
‘HER2-enriched’ subtype. In contrast, we detected signifi-
cant higher TMB values in tumors with mutations in BRCA2,
TP53, and ARID1A (P ¼ 0.004, P ¼ 0.011, and P ¼ 0.040,
respectively) and a trend for BRCA1, NOTCH1, and PTEN
(P ¼ 0.091, P ¼ 0.063, and P ¼ 0.099, respectively) but no
differences for ATM, CCNE1, MYC, and PIK3CA
(supplementary Table S4, available at Annals of Oncology
online). Moreover, a predefined panel of 16 genes involved
1220 https://doi.org/10.1016/j.annonc.2020.05.015
in HRD identified 45 mutated tumors with significantly
higher TMB (1.89 versus 1.37 mut/Mb, P < 0.001;
supplementary Table S4, available at Annals of Oncology
online).

A recent paper identified specific copy number gains in
immune-related genes in those breast cancers with high
TMB but poor immune cell infiltration.15 When we analyzed
GeparNuevo samples characterized by these copy number
gains, we observed a non-significantly higher TMB
(supplementary Figure S5A, available at Annals of Oncology
online). However, we were not able to detect an association
with a reduced immune infiltration in high TMB patients in
our sample cohort (supplementary Figure S5B, available at
Annals of Oncology online).
DISCUSSION

The predictive value of TMB for response to ICB has been
reported for several cancers, mostly in the metastatic
setting.6e9 However, its value for response to neoadjuvant
therapy in early TNBC is not known, especially in combi-
nation with other parameters as immune GEP or TILs either
for ICB or for neoadjuvant chemotherapy alone. We
analyzed the predictive value of TMB for pCR (ypT0 ypN0)
both alone and in combination with an immune GEP or TILs
in a randomized neoadjuvant ICB trial in TNBC. We found
that both TMB and immune GEP or TILs add independent
value for pCR prediction. Interestingly, this result was ob-
tained for both arms of the trial, that is for ICB in combi-
nation with chemotherapy and for chemotherapy alone.

These are novel results for breast cancer. But knowledge
about TMB and response to chemotherapy is also limited in
other cancers. In ovarian cancer TCGA data, a positive
prognostic effect of high TMB was confined to BRCA1/2
mutated cases.26 Among more than 5000 different meta-
static cancers without ICB treatment, no prognostic effect
could be detected.9 In contrast, in colon cancer treated with
Volume 31 - Issue 9 - 2020

https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015


T. Karn et al. Annals of Oncology
chemotherapy, high TMB was associated with improved
survival, independent of its association with hypermutated
tumors.27 In the latter case, high TMB could be a surrogate
for increased immune cell infiltration. However, our study
indicates that both parameters seem to contribute inde-
pendent prognostic value.

TMB values among more than 100 000 tumors differed
largely (0e1241 mut/Mb) with medians between different
cancer types from 0.8 up to 45.2 mut/Mb.20,28 Moreover,
different platforms and analysis pipelines influence nu-
merical TMB values.9,28 Therefore development of TMB
cutoffs is challenging.9,10,28 While targeted sequencing ap-
proaches used different fixed cutoff values, most WES
studies applied percentiles of cohorts.6e10,28 We have
applied both continuous TMB and a dichotomized score.
The upper tertile we used includes samples with �95 total
mutations, not far from the optimized cutoff of >100 mu-
tations in a pan-cancer analysis of ICB.10 In fact, 41 TNBC
from our study (28%) surpass this published cutoff.10 In a
recent study of breast cancers from TCGA, the prognostic
value of an immune GEP was detected only in samples with
TMB >1.63 mut/Mb.15 Again, this cutoff value is similar to
the upper tertile of TNBC (1.75 mut/Mb) in the respective
TCGA dataset. Despite clinical demand for dichotomized
TMB cutoffs, optimization resembles that of other contin-
uous parameters such as TILs and Ki67 in breast cancer19,29

and the quest for the ‘right cutoff’ may be difficult.
Importantly, our results suggest that a combination of

TMB and immune GEP can increase the precision of
response prediction. We also obtained similar results when
we replaced GEP with TIL scoring, which could be easier to
incorporate into routine settings. TMB did not correlate
significantly with TILs or with immune GEP and contributes
independent prognostic information.

We were also interested in whether TMB represents a
surrogate for distinct biological groups of tumors. We
observed no difference between TNBC of ‘basal-like’ or
‘HER2-enriched’ subtype but found three driver genes
significantly associated with TMB: BRCA2, TP53, and ARID1A
(supplementary Table S4, available at Annals of Oncology
online). Interestingly, these genes were also among the top
7% of TMB-associated genes in a previous comprehensive
study of more than 100 000 tumors.28 However, we
detected no predictive value for pCR of these individual
genes: BRCA2 P ¼ 0.977, TP53 P ¼ 0.408, ARID1A P ¼ not
available, HRD panel P ¼ 0.407. This suggests that TMB
captures predictive information beyond individual driver
genes.

The strengths of our study include the use of samples
from a prospectively randomized controlled trial with cen-
tral TNBC confirmation and TIL assessment. In addition, we
focused on a biologically motivated, limited set of pre-
specified variables and our WES dataset represents the
largest so far for early breast cancers with neoadjuvant ICB
treatment. However, our study clearly has limitations. First,
the sample size is still small and the complete set of mo-
lecular data was only available for a subset of the trial pa-
tients, which could introduce bias even if we detected no
Volume 31 - Issue 9 - 2020
differences in baseline parameters. Second, the clinical
impact of the study is limited by the fact that neither TMB
or immune GEP or TILs had a specific predictive effect for
the addition of immunotherapy but identified patients with
a high chance of pCR in both arms of the trial. Finally, a
proper validation dataset for our findings is missing.

In conclusion, our study shows for the first time that TMB
and immune infiltration add independent value for pCR
prediction both for ICB and for chemotherapy. Our results
merit validation and recommend further study of both pa-
rameters to individually tailor therapies in breast cancer.

ACKNOWLEDGEMENTS

The authors would like to thank all patients, clinicians, and
pathologists for participating in the GeparNuevo trial and
the staff of the German Breast Group, especially Bärbel
Felder, for their help coordinating samples and clinical in-
formation and support in this translational research project.

FUNDING

This work was supported by grants from H.W. & J. Hector-
Stiftung, Mannheim, Germany [grant number M82] to UH
and TK. The trial was funded by AstraZeneca. Drug were
supplied by AstraZeneca and Celgene. Whole exome
sequence analysis was funded by AstraZeneca (no grant
number). The funding sources had no influence on the study
design; collection, analysis, and interpretation of data;
writing of the report; and the decision to submit the paper
for publication.

DISCLOSURE

This work was supported by grants and non-financial support
from Astra Zeneca and other from Celgene during the
conduct of the study, grants from Teva and Vifor, grants and
other from AbbVie; Amgen; AstraZeneca; Celgene; Novartis;
Pfizer; Roche; and Daiichi-Sankyo, other from Seattle
Genetics; PriME/Medscape; Lilly; Samsung; and Eirgenix, and
personal fees from Chugai outside the submitted work to
SL. In addition, SL has a patent EP18209672 pending. CD
reports personal fees from Teva; Novartis; Pfizer; Roche;
Amgen; MSD; Celgene; and AstraZeneca; outside the sub-
mitted work, CD has patents EP20150702464 issued and
EP18209672 pending and is a co-founder of Sividon Di-
agnostics. KEW had shares from Sividon Diagnostics,
received employee inventor remuneration from a patent on
the EndoPredict test, and has a patent EP18209672 pending.
TK has a patent EP18209672 pending. CH reports personal
fees from Roche; Novartis; Lilly; Amgen; AstraZeneca; and
Pfizer outside the submitted work. BWH reports being an
employee of and owning stock in AstraZeneca. JH reports
grants from Celgene; Novartis; Hexal; and personal fees from
Lilly; Novartis; Roche; Pfizer; AstraZeneca; MSD; Celgene;
Eisai; AbbVie; Hexal; and Daichi outside the submitted work.
JB reports personal fees from Amgen; AstraZeneca; Genomic
Health; MSD;Myriad; Novartis; Pfizer; Roche; and SonoScape
outside the submitted work. FM reports personal fees
from Roche; AstraZeneca; Pfizer; Tesaro; Novartis; Amgen;
https://doi.org/10.1016/j.annonc.2020.05.015 1221

https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015


Annals of Oncology T. Karn et al.
PharmaMar; Genomic Health; CureVac; Eisai; Clovis; and
Celgene outside the submitted work. WDS reports per-
sonal fees from AstraZeneca outside the submitted work.
SW reports that he is an employee and shareholder of
AstraZeneca. MvM reports personal fees from Amgen;
AstraZeneca; Genomic Health; Novartis; and Lilly outside
the submitted work. VM reports grants, personal fees, and
other from Roche, personal fees and other from Novartis;
Pfizer; and Nektar, and personal fees from Amgen; Astra
Zeneca; Daiichi-Sankyo; Eisai; Teva; Tesaro; Hexal; and
Novartis outside the submitted work. PAF reports grants
from Novartis and BioNtech and personal fees from
Novartis; Roche; Pfizer; Celgene; Daiichi-Sankyo; Teva;
AstraZeneca; Merck Sharp & Dohme; Myelo Therapeutics;
MacroGenics; Eisai; Puma; Cepheid; and Lilly during the
conduct of the study. CJ reports personal fees from Roche
and Celgene outside the submitted work. MU reports
personal fees and non-financial support from Odonate and
Puma Biotechnology and personal fees and non-financial
support to his institution from Lilly; MSD; Mundipharma;
Myriad; Pfizer; Roche; Sanovi; Teva; Novartis; Pierre Fabre;
and Clovis outside the submitted work. AS reports grants
from Celgene; Roche; AbbVie; and Molecular Partner and
personal fees from Roche; AstraZeneca; Celgene; Pfizer;
Novartis; MSD; Tesaro; and Lilly outside the submitted
work. All remaining authors have declared no conflicts of
interest.
REFERENCES

1. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in
advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):
2108e2121.

2. Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of
immunotherapy in breast cancer: a review. JAMA Oncol. 2019. https://
doi.org/10.1001/jamaoncol.2018.7147.

3. Loibl S, Untch M, Burchardi N, et al. A randomised phase II study
investigating durvalumab in addition to an anthracycline taxane-based
neoadjuvant therapy in early triple negative breast cancer: clinical
results and biomarker analysis of GeparNuevo study. Ann Oncol.
2019;30(8):1279e1288.

4. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):
133e150.

5. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts
response of solid tumors to PD-1 blockade. Science. 2017;357(6349):
409e413.

6. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical
response to CTLA-4 blockade in melanoma. N Engl J Med.
2014;371(23):2189e2199.

7. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Muta-
tional landscape determines sensitivity to PD-1 blockade in non-small
cell lung cancer. Science. 2015;348(6230):124e128.

8. van Allen EM, Miao D, Schilling B, et al. Genomic correlates of
response to CTLA-4 blockade in metastatic melanoma. Science.
2015;350(6257):207e211.

9. Samstein RM, Lee C-H, Shoushtari AN, et al. Tumor mutational load
predicts survival after immunotherapy across multiple cancer types.
Nat Gen. 2019;51(2):202e206.
1222 https://doi.org/10.1016/j.annonc.2020.05.015
10. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for
PD-1 checkpoint blockade-based immunotherapy. Science.
2018;362(6411):eaar3593.

11. Rody A, Karn T, Liedtke C, et al. A clinically relevant gene signature in
triple negative and basal-like breast cancer. BCR. 2011;13(5):R97.

12. Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating
lymphocytes and prognosis in different subtypes of breast cancer: a
pooled analysis of 3771 patients treated with neoadjuvant therapy.
Lancet Oncol. 2018;19(1):40e50.

13. Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties
of tumors associated with local immune cytolytic activity. Cell.
2015;160(1e2):48e61.

14. Safonov A, Jiang T, Bianchini G, et al. Immune gene expression is
associated with genomic aberrations in breast cancer. Cancer Res.
2017;77(12):3317e3324.

15. Thomas A, Routh ED, Pullikuth A, et al. Tumor mutational burden is a
determinant of immune-mediated survival in breast cancer. Oncoim-
munology. 2018;7(10):e1490854.

16. Karn T, Jiang T, Hatzis C, et al. Association between genomic metrics
and immune infiltration in triple-negative breast cancer. JAMA Oncol.
2017;3(12):1707e1711.

17. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommen-
dations for tumor marker prognostic studies. J Clin Oncol. 2005;23(36):
9067e9072.

18. Moher D, Schulz KF, Altman D. The CONSORT statement: revised rec-
ommendations for improving the quality of reports of parallel-group
randomized trials. JAMA. 2001;285(15):1987e1991.

19. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-
infiltrating lymphocytes (TILs) in breast cancer: recommendations by
an International TILs Working Group 2014. Ann Oncol. 2015;26(2):
259e271.

20. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational
processes in human cancer. Nature. 2013;500(7463):415e421.

21. Gehring JS, Fischer B, Lawrence M, Huber W. SomaticSignatures:
inferring mutational signatures from single-nucleotide variants. Bioin-
formatics. 2015;31(22):3673e3675.

22. Martel RR, Botros IW, Rounseville MP, et al. Multiplexed screening
assay for mRNA combining nuclease protection with luminescent array
detection. Assay Drug Dev Technol. 2002;1(1 Pt 1):61e71.

23. Paquet ER, Hallett MT. Absolute assignment of breast cancer intrinsic
molecular subtype. J Natl Cancer Inst. 2015;107(1):357.

24. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lym-
phocytes and response to neoadjuvant chemotherapy with or without
carboplatin in human epidermal growth factor receptor 2-positive and
triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983e
991.

25. Loibl S, Sinn BV, Karn T, et al. Abstract PD2-07: mRNA signatures
predict response to durvalumab therapy in triple negative breast
cancer (TNBC) e Results of the translational biomarker programme of
the neoadjuvant double-blind placebo controlled GeparNuevo trial.
Cancer Res. 2019;79(4 Suppl):Abstract nr PD2-07.

26. Birkbak NJ, Kochupurakkal B, Izarzugaza JMG, et al. Tumor mutation
burden forecasts outcome in ovarian cancer with BRCA1 or BRCA2
mutations. PLoS One. 2013;8(11):e80023.

27. Domingo E, Camps C, Kaisaki PJ, et al. Mutation burden and other
molecular markers of prognosis in colorectal cancer treated with
curative intent: results from the QUASAR 2 clinical trial and an
Australian community-based series. Lancet Gastroenter Hepatol.
2018;3(9):635e643.

28. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human
cancer genomes reveals the landscape of tumor mutational burden.
Genome Med. 2017;9(1):34.

29. Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast
cancer: recommendations from the International Ki67 in breast cancer
working group. J Natl Cancer Inst. 2011;103(22):1656e1664.
Volume 31 - Issue 9 - 2020

http://refhub.elsevier.com/S0923-7534(20)39836-7/sref1
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref1
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref1
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref1
https://doi.org/10.1001/jamaoncol.2018.7147
https://doi.org/10.1001/jamaoncol.2018.7147
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref3
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref4
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref4
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref4
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref4
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref5
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref5
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref5
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref5
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref6
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref6
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref6
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref6
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref7
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref7
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref7
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref7
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref8
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref8
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref8
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref8
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref9
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref9
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref9
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref9
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref10
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref10
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref10
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref11
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref11
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref12
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref12
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref12
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref12
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref12
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref13
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref13
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref13
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref13
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref13
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref14
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref14
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref14
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref14
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref15
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref15
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref15
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref16
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref16
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref16
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref16
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref17
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref17
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref17
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref17
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref18
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref18
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref18
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref18
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref19
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref19
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref19
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref19
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref19
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref20
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref20
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref20
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref21
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref21
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref21
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref21
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref22
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref22
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref22
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref22
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref23
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref23
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref24
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref24
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref24
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref24
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref24
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref25
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref26
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref26
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref26
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref27
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref28
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref28
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref28
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref29
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref29
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref29
http://refhub.elsevier.com/S0923-7534(20)39836-7/sref29
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015
https://doi.org/10.1016/j.annonc.2020.05.015

	Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhi ...
	Introduction
	Methods
	Patients
	TIL scoring and PD-L1 immunohistochemistry
	Whole exome sequencing for TMB and mutational signatures
	RNA sequencing
	Molecular subtyping from RNA-Seq and immune GEP
	Aggregation of WES and HTG-RNA-Seq data
	Statistical analysis

	Results
	TMB and correlation with pCR in the GeparNuevo trial
	Joint relationship of TMB and immune gene expression profile with pCR in GeparNuevo
	TMB as a potential surrogate marker for biologically distinct groups of tumors

	Discussion
	Acknowledgements
	Funding
	Disclosure
	References





1 


 


 


Supplementary Material 


Supplementary Methods 


Supplementary information is available online at https://github.com/tkarn/G9-TMB. 


Whole Exome sequencing 


Whole exome sequencing was conducted on fresh-frozen pre-therapeutic core biopsies and patient-


matched blood samples. Tumor purity and cellularity can have impact on the detection of mutations 


from whole exome sequencing and thereby potentially confound TMB estimation (see below). 


Therefore, selection of tumor tissue was performed by experienced pathologists to obtain samples with 


high cellularity (>50%). For each sample 10x 5µm cryosections were used for whole exome sequencing 


with Illumina HiSeq 4000 (Illumina Inc., San Diego, CA, USA) for 2 x 100 paired end reads. High 


quality data was obtained for 149 (85.6%) of the 174 patients from the trial (Supplementary Figure S1). 


The sequence reads were mapped to human reference genome hg19 using BWA (Burrows-Wheeler 


aligner) [1]. Samtools and Bedtools were used to calculate mapping rate and coverage for quality control 


(QC) [2, 3].  Mutect2 [4] was used to make somatic variant calls, including single-nucleotide-variant 


(SNV) and small-insertion-deletion (indel). Gene and functional annotation of the called SNVs and 


indels was carried out using ANNOVAR [5]. We used COSMIC v86 and dbSNP v152 variants as white 


and black lists for MuTect2 respectively. This resulted in 34,082 mutations in 10,969 genes. 96 genes 


from a black list  and 16,471 SNVs flagged in germline by ANNOVAR were excluded. Of the remaining 


15,682 mutations 3,368 synonymous SNV were filtered resulting in a final list of 12,314 mutations. For 


somatic copy number alterations pure CN [6] was used. 


Tumor mutational burden and mutational signatures 


For TMB calculation we used the final list of 12,314 non-synonymous SNVs and indels together with 


an effective DNA coverage of 46 Mb to determine mutations per Mb for each sample. Mutational 


signatures were identified as described by Alexandrov et al [7]. R package SomaticSignatures [8] was 


employed to estimate the proportion of each sample’s mutations that have been assigned to each of the 


21 mutational signatures. 



https://github.com/tkarn/G9-TMB
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Based on our previous analyses of TNBC from TCGA we were concerned that high immune infiltration 


cells could bias towards a lower TMB, because of reduced tumor cell content. In that previous study we 


found a negative correlation between TMB and immune cell infiltration (despite ≥50% tumor cell 


content mandatory for TCGA samples) [9]. However, in the GeparNuevo dataset we did not detect such 


negative correlation between immune cell gene expression and TMB (Fig. 2A). Moreover, in the TCGA 


dataset we had also found a positive correlation between TMB and tumor cellularity (as measured by 


ASCAT) [9]. Again, in the GeparNuevo data we did not observe such a correlation between TMB and 


purity (as measured by pureCN, Spearman’s rho=0.006). Thus, despite no systematic data on 


histological assessment of tumor content was available, these observations argue against a strong bias 


of TMB by tumor cellularity in the GeparNuevo dataset. 


RNA sequencing 


RNA sequencing was performed on formalin-fixed paraffin-embedded (FFPE) tissue using a HTG 


EdgeSeq instrument (HTG Molecular Inc, Tucson, AZ, USA) with the HTG EdgeSeq Oncology 


Biomarker Panel (2549 genes)  according to the manufacturer’s instructions. Tumor area was marked 


on an H&E stained slide and the area of invasive breast cancer recorded. From a corresponding unstained 


slide 15 mm2 tissue was scraped and used for library preparation. The method is based on an RNA-


extraction-free chemistry and a nuclease protection assay [10]. Libraries were quantified, pooled and 


sequenced on an Ion Torrent S5 instrument (Thermo Fisher Scientific, Waltham, MA, USA). Count 


tables were generated using the HTG parsing tool. For quality control, we transformed the reads to 


counts-per-million and calculated the mean of five negative and four positive internal controls for each 


sample. We repeated processing for a sample if the mean of its positive controls was below two standard 


deviations (SDs) of the grand mean across all samples or if the mean of its negative controls were above 


two SDs from the grand mean (Supplementary Figure S6). The data was median normalized within a 


sample and across the experiment by calculating a scaling factor for each sample as the median gene 


expression value for each sample-gene count adjusted by the geometric mean over all genes. RNA 


sequencing data from pre-therapeutic cores were available for 159 of the 174 patients (Supplementary 


Figure S1). 
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Molecular subtyping by AIMS from RNA-Seq 


Molecular subtyping from RNA-Seq was performed using the Absolute Intrinsic Molecular Subtyping 


(AIMS) method by applying the R package AIMS. Of the 136 patients with both WES and RNA-Seq 


data, 82 (60.3%) were classified as basal-like, 50 (36.7%) as HER2-enriched, 3 (2.2%) as normal-like, 


and 1 (0.7%) as luminal A. The HTG-EdgeSeq Oncology Biomarker Panel encompasses 2549 genes, 


which includes 41 of the 100 gene pairs proposed as rules for the AIMS algorithm. The respective list 


of available gene pairs is given in Supplementary Table S5 with 6-10 rules per subtype. In the original 


AIMS publication [11] the agreement between AIMS and PAM50 classification dropped below 10 rules 


per subtype. Therefore, the lower number of rules available in our study may be one explanation for the 


relatively high frequency of HER2-enriched cases (36.7%) among TNBC in our cohort in contrast to 


PAM50 data from the literature e.g. 7.8% [12]. 


Immune gene expression profiles (GEP) from RNA-Seq 


We evaluated a predefined immune gene expression profile (GEP) predictive for neoadjuvant response 


that was created from a list of genes we previously identified in the GeparSixto study (“GeparSixto 


immune signature”: CXCL9, CCL5, CD8A, CD80, CXCL13, IDO1, PDCD1, CD274, CTLA4, FOXP3) 


[13]. The genes CD21 and IGKC were omitted because they were not covered by the HTG-EdgeSeq 


Oncology Biomarker Panel. The immune GEP was calculated as mean of the expression of the genes 


from the signature. We also verified substantial agreement of this pre-specified signature with various 


other gene signatures for lymphocyte infiltration (Pearson corrlation values 0.74-0.97, Supplementary 


Figure S7). 


Aggregation of WES and HTG-RNA-Seq data 


The analyses of the pseudonymized genomic datasets were performed fully blinded to any clinical or 


pathological sample information. The final blinded WES and HTG-RNA-Seq datasets were transferred 


to GBG-headquarters. WES and RNA-Seq were available for 149 and 159 patients, respectively, with 


both data available for 136 patients (Supplementary Figure S1). A comparison of the complete trial 


cohort, the WES cohort, and the WES+RNA-Seq cohort is provided in Supplementary Table S1. An 


integrated view of all meaures is presented in Supplementary Figure S8. 







4 


 


 


Supplementary References 


1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 


Bioinformatics (Oxford, England) 2009;25(14):1754–60. 


2. Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. 


Bioinformatics (Oxford, England) 2009;25(16):2078–79. 


3. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. 


Bioinformatics (Oxford, England) 2010;26(6):841–42. 


4. Cibulskis K, Lawrence MS, Carter SL et al. Sensitive detection of somatic point mutations in 


impure and heterogeneous cancer samples. Nature biotechnology 2013;31(3):213–19. 


5. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-


throughput sequencing data. Nucleic acids research 2010;38(16):e164. 


6. Riester M, Singh AP, Brannon AR et al. PureCN: copy number calling and SNV classification 


using targeted short read sequencing. Source code for biology and medicine 2016;11:13. 


7. Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational processes in human 


cancer. Nature 2013;500(7463):415–21. 


8. Gehring JS, Fischer B, Lawrence M, Huber W. SomaticSignatures: inferring mutational signatures 


from single-nucleotide variants. Bioinformatics (Oxford, England) 2015;31(22):3673–75. 


9. Karn T, Jiang T, Hatzis C et al. Association Between Genomic Metrics and Immune Infiltration 


in Triple-Negative Breast Cancer. JAMA oncology 2017;3(12):1707–11. 


10. Martel RR, Botros IW, Rounseville MP et al. Multiplexed screening assay for mRNA combining 


nuclease protection with luminescent array detection. Assay and drug development technologies 


2002;1(1 Pt 1):61–71. 


11. Paquet ER, Hallett MT. Absolute assignment of breast cancer intrinsic molecular subtype. J. Natl. 


Cancer Inst. 2015;107(1):357. 


12. Prat A, Adamo B, Cheang MCU et al. Molecular characterization of basal-like and non-basal-like 


triple-negative breast cancer. The oncologist 2013;18(2):123–33. 


13. Denkert C, Minckwitz G von, Brase JC et al. Tumor-infiltrating lymphocytes and response to 


neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 


2-positive and triple-negative primary breast cancers. Journal of clinical oncology : official journal 


of the American Society of Clinical Oncology 2015;33(9):983–91. 


14. Rooney MS, Shukla SA, Wu CJ et al. Molecular and genetic properties of tumors associated with 


local immune cytolytic activity. Cell 2015;160(1-2):48–61. 


15. Ayers M, Lunceford J, Nebozhyn M et al. IFN-γ-related mRNA profile predicts clinical response 


to PD-1 blockade. The Journal of clinical investigation 2017;127(8):2930–40. 


16. Karn T, Meissner T, Weber KE et al. A Small Hypoxia Signature Predicted pCR Response to 


Bevacizumab in the Neoadjuvant GeparQuinto Breast Cancer Trial. Clinical cancer research : an 


official journal of the American Association for Cancer Research 2020. 


17. Rody A, Karn T, Liedtke C et al. A clinically relevant gene signature in triple negative and basal-


like breast cancer. Breast cancer research : BCR 2011;13(5):R97. 


 







5 


 


 


Supplementary Tables 


Suppl. Table S1: Clinical data of the complete study cohort vs. the WES cohort and the WES+RNA-Seq cohort.  


Parameter Category Complete study 


cohort 


WES cohort P-value WES + RNA-


Seq cohort 


P-value 


Number of patients  174 149  136  


Age < 40yr 47 (27.0%) 37 (24.8%) 0.144 33 (24.3%) 0.149 


 ≥ 40yr 127 (73.0%) 112 (75.2%)  103 (75.7%)  


Stage 0-I 61 (35.1%) 51 (34.2%) 0.652 47 (34.6%) 0.848 


 IIA or higher 113 (64.9%) 98 (65.8%)  89 (65.4%)  


Histol. Grade G2 29 (16.7%) 22 (14.8%) 0.142 21 (15.4%) 0.461 


 G3 145 (83.3%) 127 (85.2%)  115 (84.6%)  


TILs < 60% 149 (85.6%) 128 (85.9%) 0.762 116 (85.3%) 1.000 


 ≥ 60% 25 (14.4%) 21 (14.1%)  20 (14.7%)  


PD-L1 negative 20 (12.7%) 16 (12.0%) 0.526 14 (11.3%) 0.382 


 positive 138 (87.3%) 117 (88.0%)  110 (88.7%)  


Treatment arm Placebo 86 (49.4%) 75 (50.3%) 0.667 67 (49.3%) 1.000 


 Durvalumab 88 (50.6%) 74 (49.7%)  69 (50.7%)  


Window treatment No 57 (32.8%) 48 (32.2%) 0.818 47 (34.6%) 0.435 


 Yes 117 (67.2%) 101 (67.8%)  89 (65.4%)  


Response RD 89 (51.1%) 82 (55.0%) 0.017 72 (52.9%) 0.463 


 pCR (ypT0ypN0) 85 (48.9%) 67 (45.0%)  64 (47.1%)  
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Suppl. Table S2: Logistic regression of pCR using TMB and immune GEP 


Bivariate N 136 


 TMB (mut/Mb) OR (95% CI) 1.77 (1.24-2.51) 


  P-value 0.001 


 Immune GEP OR (95% CI) 1.81 (1.22-2.68) 


  P-value 0.003 


   


Multivariate # N 124 


 TMB (mut/Mb)  OR (95% CI) 2.06 (1.34-3.16) 


  P-value 0.001 


 Immune GEP OR (95% CI) 1.58 (1.03-2.41) 


  P-value 0.036 
#  including age, stage, grading, and window treatment (PD-L1 status was not included as additional 


covariate since PD-L1 is included in GEP) 


 


 


Suppl. Table S3: Logistic regression of pCR using TMB and TILs 


Bivariate N 149 


 TMB (mut/Mb) OR (95% CI) 1.78 (1.27-2.50) 


  P-value <0.001 


 TILs (per 10 %) OR (95% CI) 1.38 (1.27-2.50) 


  P-value <0.001 


   


Multivariate # N 133 


 TMB (mut/Mb) OR (95% CI) 2.06 (1.33-3.20) 


  P-value 0.001 


 TILs (per 10 %) OR (95% CI) 1.32 (1.08-1.61) 


  P-value 0.006 
#  including age, stage, grading, PD-L1 status, and window treatment 
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Suppl. Table S4: Correlation of TMB with molecular subtypes and genomic alterations 


Parameter Category (n) Median TMB P-value § 


(Wilcoxon test) 


Molecular subtype (AIMS) † Basal-like (82) 1.49  


 HER2-enriched (50) 1.60 0.299 


 other (4) 1.25 0.512 


ATM mut (6) 1.44  


 wt (143) 1.52 0.931 


ARID1A mut (5) 2.46  


 wt (144) 1.47 0.040 


BRCA1 mut (20) 1.85  


 wt (129) 1.43 0.091 


BRCA2 mut (9) 2.70  


 wt (140) 1.43 0.004 


CCNE1 amp (11) 1.30  


 wt (138) 1.53 0.569 


NOTCH1 mut (5) 2.50  


 wt (144) 1.50 0.063 


MYC amp (39) 1.43  


 wt (110) 1.56 0.269 


PIK3CA mut/amp (17) 1.39  


 wt (132) 1.56 0.900 


PTEN mut/del (17) 1.87  


 wt (132) 1.47 0.099 


TP53 mut (103) 1.65  


 wt (46) 1.14 0.011 


HRD-panel # mut/del (45) 1.89  


 wt (104) 1.37 <0.001 


§ P-values not corrected for multiple testing 


† Molecular subtype from RNA-seq was available only for 136 of the 149 samples with WES (see 


Supplementary Figure S1). 


# The predefined HRD-panel encompassed: BRCA1, BRCA2, ATM, PALB2, BARD1, DRIP1, 


RAD51B, RAD51C, RAD51D, FAAP20, CHECK2, FAN1, FANCE, FANCM, POLQ, NBN 


 


 







8 


 


 


Suppl. Table S5: AIMS gene pairs included in HTG EdgeSeq Oncology Biomarker Panel 


Subtype rank† gene Entrez   gene Entrez 


BasalL 1 FOXA1 3169 < CDC20 991 


BasalL 2 TFF3 7033 < KIF2C 11004 


BasalL 3 CA12 771 < PTTG1 9232 


BasalL 4 ESR1 2099 < FOXC1 2296 


BasalL 6 NAT1 9 < ASPM 259266 


BasalL 9 DNAJC12 56521 < MELK 9833 


BasalL 17 KRT18 3875 < CSTB 1476 


BasalL 19 SPDEF 25803 < TNFRSF21 27242 


HER2E 2 SERPINA3 12 < ERBB2 2064 


HER2E 3 RBBP8 5932 < RRM2 6241 


HER2E 6 STC2 8614 < FOXA1 3169 


HER2E 13 SLC39A6 25800 < TSPAN13 27075 


HER2E 14 ESR1 2099 < NQO1 1728 


HER2E 15 SCUBE2 57758 < UBE2C 11065 


HER2E 16 KIT 3815 < FGFR4 2264 


HER2E 17 IRS1 3667 < MELK 9833 


HER2E 18 KRT17 3872 < S100A8 6279 


HER2E 20 FOXC1 2296 < CDC20 991 


LumA 1 CCNB2 9133 < MAP2K4 6416 


LumA 2 BIRC5 332 < HPN 3249 


LumA 4 KIF2C 11004 < SHC2 25759 


LumA 8 PRC1 9055 < GAMT 2593 


LumA 9 MELK 9833 < APH1B 83464 


LumA 12 TTK 7272 < FMO5 2330 


LumA 17 CDKN3 1033 < MNAT1 4331 


LumA 20 CKS2 1164 < STC2 8614 


LumB 5 CRYAB 1410 < RACGAP1 29127 


LumB 6 CDH3 1001 < PRC1 9055 


LumB 11 MMP7 4316 < TOP2A 7153 


LumB 14 CX3CL1 6376 < KIF2C 11004 


LumB 16 GSN 2934 < ESR1 2099 


LumB 20 ANXA3 306 < CEP55 55165 


NormL 4 CEP55 55165 < COL17A1 1308 


NormL 5 PCNA 5111 < CAV1 857 


NormL 7 CKS2 1164 < ITM2A 9452 


NormL 8 RRM2 6241 < IGF1 3479 


NormL 10 CDKN3 1033 < TSPAN7 7102 


NormL 11 TYMS 7298 < SFRP1 6422 


NormL 12 MCM2 4171 < CDKN1C 1028 


NormL 17 UBE2C 11065 < PTN 5764 


NormL 20 RFC4 5984 < IGFBP6 3489 


† Rank of the respective rule among the 20 rules for each subtype used by AIMS [11] 
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Supplementary Figures 


 


 


 


Supplementary Figure S1: CONSORT diagram of the flow of samples through the study 
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Supplementary Figure S2: Association of pathological complete response and TMB in 


GeparNuevo 


Response rates (pCR) among patients with high (upper tertile) or low TMB in all 


GeparNuevo patients, and separately presented according to treatment arm (P-values from 


multivariate analysis). 
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Supplementary Figure S3: Joint relationship of TMB and immune gene expression profile with 


pCR separately within the treatment arms of GeparNuevo  


A) Scatter plot of TMB and immune GEP in pretreatment biopsies of patients from the 


GeparNuevo durvalumab arm coloured by response. Median of GEP (of all samples 


from both arms) and upper tertile of TMB are given by dashed vertical and horizontal 


lines, respectively. 


B) pCR rates in percentages and 95% confidence intervals (CI) in subgroups defined by 


the cutoffs given as dashed lines in (A).  


C) Scatter plot of TMB and immune GEP in pretreatment biopsies of patients from the 


GeparNuevo placebo arm coloured by response. Median of GEP (of all samples from 


both arms) and upper tertile of TMB are given by dashed vertical and horizontal lines, 


respectively. 


D) pCR rates in percentages and 95% confidence intervals (CI) in subgroups defined by 


the cutoffs given as dashed lines in (C).  
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Supplementary Figure S4: Joint relationship of TMB and TILs with pCR in GeparNuevo 


A) Scatter plot of TMB and TILs in pretreatment biopsies of  GeparNuevo patients 


coloured by response. The cutoff for “lymphocyte predominant breast cancer” (LBPC, 


≥60% TILs) and the upper tertile of TMB are given by dashed vertical and horizontal 


lines, respectively. 


B) pCR rates in percentages and 95% confidence intervals (CI) in subgroups defined by 


the cutoffs given as dashed lines in (A).  
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C) Scatter plot of TMB and TILs in pretreatment biopsies of patients from the 


GeparNuevo durvalumab arm coloured by response. The LPBC cutoff (≥60% TILs) 


and the upper tertile of TMB are given by dashed vertical and horizontal lines, 


respectively. 


D) pCR rates in percentages and 95% confidence intervals (CI) in subgroups defined by 


the cutoffs given as dashed lines in (C).  


E) Scatter plot of TMB and TILs in pretreatment biopsies of patients from the 


GeparNuevo placebo arm coloured by response. The LPBC cutoff (≥60% TILs) and 


the upper tertile of TMB are given by dashed vertical and horizontal lines, respectively. 


F) pCR rates in percentages and 95% confidence intervals (CI) in subgroups defined by 


the cutoffs given as dashed lines in (E).  
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Supplementary Figure S5: Relationship of TMB and immune GEP in samples with specific copy 


number gains in GeparNuevo patients 


A) Box plot of TMB in sample groups characterized by specific copy number gains on 


Chr 1 (1q24.2, 1q25.1, 1q32.1). These amplifications have been previously associated 


with tumors that display low immune infiltration despite a high TMB (Thomas et al. 


2018 Oncoimmunology, PMID 30386679). In the amplified cases a numerically but not 


significantly higher TMB was detected (P=0.135, Wilcoxon rank sum test). 


B) Box plot of immune gene expression in tumor groups classified both by the specific 


copy number gains (1q24.2, 1q25.1, 1q32.1) and TMB. No inverse association of TMB 


and immune GEP could be detected in the group characterized by the copy number 


gains. 


 







15 


 


 


 


Supplementary Figure S6: Quality control of RNA sequencing data from HTG EdgeSeq 


RNA-Seq reads were transformed to counts-per-million and the mean of five negative and 


four positive internal controls calculated for each sample. A sample was excluded if the 


mean of its positive controls was below two standard deviations (SDs) of the grand mean 


across all samples or if the mean of its negative controls were above two SDs from the 


grand mean (shaded regions in the figure). 
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Supplementary Figure S7: Correlation of different T-cell signatures from HTG EdgeSeq data 


Several published gene signatures describing lymphocyte infiltration in breast cancer were 


obtained from HTG EdgeSeq data of the GeparNuevo samples. Results are compared by 


scatter plots and Pearson correlations presented. The following signatures were used: (1) 


The pre-specified 10 gene “GeparSixto immune signature” applied throughout all current 


analyses [13], (2) a 4 gene core of the GeparSixto immune signature, (3) the 2 gene “CYT” 


metric [14], (4) an 18 gene T-cell cluster from unsupervised clustering of the GeparNuevo 


HTG EdgeSeq data, (5) the “T-cell inflamed GEP” from Ayers et al. [15], as well as those 


genes available from the HTG EdgeSeq Oncology Biomarker Panel of the T cell clusters 


from studies of (6) FFPE-RNA-Seq of GeparQuinto [16], (7) RNA-Seq from TNBC of 


TCGA [9], and (8) Affymetrix microarrays of TNBC [17] . 
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Supplementary Figure S8: Integrated view of parameters in GeparNuevo samples 


Combined heatmap presentation to visualize the correlation of GEP, TILs, PD-L1 status, 


TMB, treatment arms, and pCR, among the 136 samples with data on both GEP and TMB. 


Samples have been ordered from left to right according to GEP as presented in the most 


lower panel. Colour codes for the different variables are given on the right. 


 





