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Zusammenfassung
Nach Abschluss des humanen Genomprojektes zu Be-
ginn des Jahrtausends führten globale Untersuchungen 
mittels «Genomics»-Methoden zu vielen neuen Ergeb-
nissen in der Krebsforschung. In der Brustkrebsfor-
schung gehörten dazu die Definition der sogenannten 
«intrinsischen Subtypen» des Mammakarzinoms sowie 
die Entwicklung einer ganzen Reihe von molekularen 
Tests zur Prädiktion von Prognose und Therapiean-
sprechen. In den letzten Jahren hat die Zunahme der 
 Sequenzierungsgeschwindigkeit bei gleichzeitiger im-
menser Kostenreduktion durch «Next-Generation-Se-
quencing»-Techniken zu einer weiteren Umwälzung 
 geführt. Die Zahl der komplett entschlüsselten Tumor-
genome explodierte in den Jahren 2011–2013 auf mehr 
als 6000 Proben. Die Untersuchungen führten zu einer 
Vielzahl von wichtigen und auch überraschenden Ent-
deckungen in Bereich der Grundlagenforschung aber 
auch zu möglichen klinischen Anwendungen. So kann 
«Whole-Genome-Sequencing» einen bedeutenden Bei-
trag zur Tumorklassifikation liefern und wird wahr-
scheinlich in überschaubarer Zeit Eingang in die klini-
sche Anwendung finden.
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Summary
Following the completion of the human genome se-
quence at the beginning of the new millennium, a series 
of high-throughput methods have changed cancer re-
search. Using these techniques, global analysis such as 
expression profiling could be carried out on a genomic 
scale. In breast cancer they led to the classification of the 
intrinsic subtypes, and the development of several prog-
nostic and predictive ‘genomic tests’ for patient stratifi-
cation. During the last 2 years we have faced a similar 
dramatic revolution with the introduction of next genera-
tion sequencing (NGS). These techniques allow sequenc-
ing of the complete human exome or whole genome 
with a cost reduction in the order of 10,000–100,000 fold. 
Consequently, the number of known cancer genome 
 sequences exploded with more than 6,000 samples, 
 published between 2011 and 2013. These studies have 
led to important and surprising discoveries both for 
basic cancer research and clinical applications. They re-
late to understanding the development of cancer as well 
as the heterogeneity of the disease, and how to use this 
information to guide the development and application of 
therapies. Although it is foreseeable that the sequencing 
surveys of neoplasms will soon conclude, their introduc-
tion into clinical practice is just beginning.

Introduction

The sequencing of the human genome was completed at 
the end of the millennium. Since then, translational cancer re-
search has been affected by several tidal waves caused by the 

advancements in high-throughput genomic techniques [1]. 
The first such wave presented technologies that transformed 
mRNA expression analysis, comparative genomic hybridiza-
tion (CGH), and single nucleotide polymorphism (SNP) anal-
yses, pushing these forward into high-throughput microarray 
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formats. These array platforms allowed investigations on a 
global genomic scale, resulting in an enormous flood of data 
and new bioinformatic and statistical challenges [2, 3]. Subse-
quently, sequencing techniques were also revolutionized, ac-
companied by an even more tremendous data torrent during 
the previous 2 years. In this review we focus on gene expres-
sion profiling by microarray methods and mutation profiling 
through next generation sequencing (NGS). Since a large 
number of reviews on gene expression signatures in breast 
cancer and the corresponding genomic tests have recently 
 appeared [4–7], the emphasis here will be on the newer devel-
opments in cancer genome sequencing.

High Throughput Gene Expression Profiling –  
the First Wave

One decade ago microarray profiling emerged as a new 
method allowing the global analysis of gene expression in 
 tumors. The application of these ‘transcriptome’ techniques 
improved our understanding of breast cancer biology, leading 
to new prognostic information [8–10] and a refined molecular 
system of tumor classification [11, 12].

Results from Unsupervised Methods –  
Molecular Portraits of Breast Cancer
Unsupervised methods for the analysis of gene expression 

datasets led to the definition of the intrinsic subtypes of breast 
cancer [4, 11]. The basic classification of these intrinsic sub-
types encompasses the estrogen receptor (ER)-negative 
 ‘basal-like’ and ‘HER2-like’ subgroups as well as two differ-
ent ER-positive ‘luminal A’ and ‘luminal B’ subtypes 
(table 1). The intrinsic subtypes differ both in their prognosis 
[12] and their response to systemic therapies [5–7]. The basal-
like and HER2-like subtypes, for example, display a poor 
prognosis but an increased response to chemotherapy [13–15]. 
However, the additional clinical value of molecular classifica-
tion is limited by its close correspondence with the status of 
ER, PR, and HER2, along with tumor grade [4]. Recent re-
sults of unsupervised analyses demonstrate further heteroge-
neity within the intrinsic subtypes, showing that additional 
clinically relevant subgroups can be stratified within the basal-
like subtype [16–18].

Supervised Analysis and the Development of Clinical Assays
On the other hand, supervised methods using information 

from outcome variables such as follow-up or treatment re-
sponse were applied to identify prognostic or predictive gene 
signatures [5]. Some of these signatures (e.g. MammaPrint, 
OncotypeDX, Genomic Grade Index, and EndoPredict) have 
made their way to clinically usable prognostic tests, as re-
cently reviewed in detail [4–7, 19]. Most of these assays have 
mainly prognostic value, and can be applied only partially for 
prediction of treatment response. They appear to quantify 
mainly tumor grade and proliferation and displayed similar 
performance when tested in the same datasets. An important 
limitation of all these assays is that they assign the high-risk 
category to almost all ER-negative patients. The gene signa-
tures are most useful in ER-positive patients and the expres-
sion of cell cycle- and proliferation-related genes drive the 
performance of most of them [4]. Since conventional chemo-
therapy targets the proliferating fraction of tumors, the find-
ing that those signatures also predict benefit from conven-
tional chemotherapy regimens was not unexpected. Predictors 
of response to specific chemotherapy agents derived from 
 empirical analyses of response to neoadjuvant therapy were 
less successful [4]. Although many predictive signatures were 
developed, at present there is no validated and commercially 
available gene signature to predict response to a specific 
 therapeutic agent [5]. The realization that the different sub-
types of breast cancer are fundamentally distinct in their 
mRNA expression profiles led several groups to investigate 
these subgroups separately, leading to so-called second gen-
eration signatures. These studies identified immune infiltra-
tion as an important component for prognosis and prediction 
in ER-negative subtypes [17, 20–24].

Further Array Platforms
Subsequent to the first microarrays for analyzing the 

 transcriptome, additional arrays have followed for studying 
the microRNA profiles, arrayCGH for studying copy number 
variations (CNV), and SNP arrays allowing copy number 
analysis and genome-wide association studies (GWAS). 
GWAS have emerged as an important tool for discovering 
 regions in the human genome associated with cancer risk, and 
their current status has recently been reviewed [25, 26]. Other 
high-throughput methods for epigenetics, proteomics, and 
metabolomics still lack the comprehensiveness, usability and 
robustness of the DNA- and RNA-based technologies. 

Molecular subtype Basal-like HER2-like Luminal A Luminal B

ER-positive 0–19% 25–59% 91–100% 91–100%
PR-positive 6–13% 25–30% 70–74% 41–53%
HER2-positive 9–13% 66–71%  8–11% 15–24%
Ki-67 high high low high
Grade G3 88–93% 55–89% 13–30% 41–62%
Prognosis poor poor good intermediate/
Chemotherapy benefit high intermediate low poor intermediate

Table 1.  
Molecular subtypes 

of breast cancer  

from gene expression 

profiling [5]
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High-Throughput Mutation Profiling –  
the Next Wave

As with microarrays at the beginning of the millennium, 
during the last 2 years we have faced a similar revolution 
through the introduction of NGS techniques [1, 27]. While 
just 2 genome sequences of breast cancers were published in 
the years 2009 [28] and 2010 [29], the sample sizes of those 
studies literally exploded during 2011 and 2012. The total 
number of published cancer genomes surpassed 6,000 cases in 
2013 and still counting (fig. 1). The number of breast cancer 
genomes reached more than 900 samples in 2012, and there 
are many more samples in the waiting queue. For example, 
> 16,000 cancer samples had been genome/exome sequenced 

by late 2012 at one institution alone (Broad institute) [30]. 
This dramatic increase in sequencing throughput has been 
achieved through NGS technologies. In the last 10 years we 
have witnessed a tremendous increase in sequencing speed 
paralleled by costs falling dramatically by 10,000–100,000 fold 
compared to the classical Sanger method. The National 
Human Genome Research Institute (NHGRI) has tracked 
the costs associated with DNA sequencing performed at the 
sequencing centers funded by the Institute. The results pre-
sented in figure 2 give the cost of sequencing a human ge-
nome, demonstrating the remarkable improvements in DNA 
sequencing technologies and data-production pipelines in 
 recent years [31]. Genome sequencing projects previously re-
quiring decades can now be accomplished within days [27]. 

The conceptual breakthrough of NGS relates to the aban-
donment of gel electrophoresis and a massive increase in par-
allelization. All methods are principally based on clonal am-
plification and immobilization of numerous short fragments 
of DNA on surfaces. Afterwards all these spatially separated 
clones are sequenced simultaneously in situ. The subsequent 
analysis is performed by digitally counting the short sequence 
reads after aligning them to a reference genome sequence. In 
addition to the detection of somatic mutations and germ-line 
variants, this quantitative analysis also allows the determina-
tion of DNA copy number alterations [32]. Moreover, by in-
creasing the coverage of the analysis to several 100× (‘ultra 
deep sequencing’), it is possible to detect small amounts of 
mutated DNA from mixed populations of cells. Sequencing of 
RNA through NGS (RNA-seq) even allows transcriptome ex-
pression profiling through digital counting of transcripts, the 
identification of expressed fusion genes, and altered splicing 
events [27]. 

Applications of NGS
Several applications of NGS in cancer research exist  

(table 2). The substantial increase in sequencing power facili-
tates studies on germ-line mutations in cancer, e.g. the identi-
fication of predisposing factors in hereditary forms of cancer 
or pharmacogenomics studies and GWAS approaches [25, 
26]. In this review, however, we focus mainly on somatic mu-
tations in cancer. Whole genome or whole exome sequencing 
provides the opportunity to identify new ‘driver’ mutations in 
cancer. Such mutations are defined as conferring a selective 
growth advantage (which has been estimated in the range of 
0.4%) [33]. Although this definition is simple in principle, it is 
more difficult to identify which somatic mutations are drivers 
and which are ‘passengers’ [34]. Passenger mutations encom-
pass, for example, all those neutral mutations that have been 
accumulated in the founder cell during normal development 
before the oncogenic event occurred [35]. These passengers 
seem to account for roughly half of the mutations found in a 
typical breast cancer [36], and a large part of the remaining 
mutations would also be passengers acquired after the tumor-
initiating event [33]. Individual genes can contain both driver 

Fig. 2. Decrease in the cost of sequencing a human genome. A logarith-
mic scale is used on the Y axis of this graph to show the decrease in the 
sequencing costs since 2001. A straight line represents the hypotheti-
cal data reflecting Moore’s Law, which describes a long-term trend in 
the computer hardware industry that involves the doubling of ‘compute 
power’ every 2 years. However, there is a sudden and profound out-
pacing of Moore’s Law beginning in January 2008, when the sequencing 
centers changed from using Sanger-based (dideoxy chain termination 
 sequencing) to ‘next-generation’ DNA sequencing technologies [31].

Fig. 1. Increase in the number of published cancer genomes. The cumula-
tive number of cancer genome sequences has been plotted for 109 publi-
cations reporting new whole genome or whole exome sequences of cancer 
samples, sorted according to their publishing date between October 2006 
and August 2013.
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mutations and passenger mutations. Thus, the term ‘Mut-
driver genes’ has been coined to categorize genes suspected of 
increasing the selective growth advantage of tumor cells [34]. 
Since the rate of mutation varies dramatically both between 
tumors and also within the human genome [37], statistical 
methods based on mutation frequencies can only prioritize 
genes as belonging to this group. However, a simple classifica-
tion has been proposed requiring a prevalence (> 20%) of 
 either missense mutations at recurrent positions for an onco-
gene or inactivating mutations for a tumor suppressor gene. 
This ‘20/20 rule’ is far surpassed by all well-documented can-
cer genes, and identified a total of 125 Mut-driver genes from 
294,881 mutations of genome sequencing of 3,284 tumors [34]. 
Although it is conceivable that further cancer genome se-
quencing will unveil additional Mut-driver genes, the current 
data suggest that a plateau is being reached [30, 34]. Even 

when many of the identified Mut-driver genes had been 
known previously, cancer genome sequencing projects have 
uncovered several surprises (table 3). Nearly half of the newly 
discovered genes are implicated in chromatin regulation. Fur-
thermore, alterations were detected in genes implicated in 
mRNA splicing and genes related to tumor metabolism. Will 
we get further driver events from cancer genome sequencing? 
In fact we do not know, but it has been estimated that for 
each tumor type about 2,000 samples are needed to assemble 
the catalogue of coding mutations present in at least 2% of 
tumors of a given type. Moreover, many more cancer drivers 
may be lurking in the so-called ‘dark matter’ of the genome. 
Today’s ‘tier 1’ projects focus on the 1% of the genome con-
taining coding sequences (the exome). What currently cannot 
be readily interpreted are ‘tiers 2–4’, the noncoding (e.g. regu-
latory) regions, including copy number alterations and chro-
mosomal rearrangements [30, 34, 38].

The complete mutational profile of cancer samples may be 
used to classify tumors based on driver mutations and copy 
number alterations with the goal, for example, of refining the 
current breast cancer classification [32, 39, 40]. In addition, 
identified mutations could allow prediction of response to 
therapy [41], with the ultimate aim of personalized cancer 
 diagnostics [42]. Moreover, personalized cancer sequencing 
could lead to specific individual genomic markers that are 
suited for highly sensitive non-invasive disease monitoring [43].

One important result from cancer genome sequencing 
studies is the enormous heterogeneity both between and 
within tumors. First, the number of genes with frequent alter-

Table 2. Applications of next-generation sequencing in cancer research

Germline mutations
GWAS
Hereditary forms of cancer
Predisposing of protective mutations
Pharmacogenomics

Somatic mutations
Identification of new ‘driver’ mutations for cancer
Tumor classification
Prediction of response based on mutations conferring drug resistance
Disease monitoring
Analysis of inter- and intra-tumoral heterogeneity

RNA-sequencing
Digital expression profiling
Identification of fusion genes
Altered splicing

Table 3. Genes identified from cancer genome sequencing and corresponding cellular processes [30]

Cancer genes discovered or extended to new cancer types Cellular process

EGFR, ERBB2, MET, ALK, JAK2, RET, ROS, FGFR1, FGFR2, PDGFRA, CRKL RTK signaling
KRAS, NRAS, BRAF, MAP2K1 MAPK signaling (oncogenes)
NF1 MAPK signaling (tumor suppressor gene, TSG)
PIK3CA, AKT1, AKT3 PI3K signaling (oncogenes)
PTEN, PIK3R1 PI3K signaling (TSG)
NOTCH1, NOTCH2, NOTCH3 Notch signaling (oncogene or TSG)
STK11,TSC1,TSC2 TOR signaling (TSG)
APC, CTNNB1 Wnt/b-catenin signaling (TSG)
SMAD2, SMAD4, TGFBR2 TGF-b signaling (TSG)
MYD88 NF-kB signaling
RAC1, RAC2, CDC42, KEAP1, MAP3K1, MAP2K4, ROBO1, ROBO2, SLIT2,  
SEMA3A, SEMA3E, ELMO1, DOCK2

Other signaling

DNMT3A Epigenetics DNA methylation
TET2 Epigenetics DNA hydroxymethylation
MLL, MLL2, MLL3, EZH2, NSD1, NSD3 Chromatin histone methyltransferases
JARID1A, UTX, KDM5A, KDM5C Chromatin histone demethylases
CREBP, EP300 Chromatin histone acetyltransferases
SMARCA1, SMARCA4, ARID1A, ARID2, ARID1B, PBRM1 Chromatin SWI/SNF complex
CHD1, CHD2, CHD4 Chromatin other
MITF, NKX2–1, SOX-2, ERG, ETV1, CDX2 Transcription factor lineage dependency or oncogene
MYC, RUNX1, GATA3, FOXA1, NKX3.1, SOX9, NFE2L2, MED12 Transcription factor other
SF3B1, U2AF1, SFRS1, SFRS7, SF3A1, ZRSR2, SRSF2, U2AF2, PRPF40B Splicing
DIS3 RNA abundance
SPOP, FBXW7, WWP1, FAM46C, XBP1 Translation/protein homeostasis/ubiquitination
IDH1, IDH2 Metabolism
TP53, MDM2, MSH, MLH, ATM Genome integrity
TERT promoter mutations Telomere stability
CCND1, CCNE1 Cell cycle (oncogene)
CDKN2A, CDKN2B, CDKN1B Cell cycle (TSG)
MCL1, BCL2A1, BCL2L1 Apoptosis regulation
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has been proposed [32]. As a next step, genome sequencing 
must expand beyond primary tumors to preneoplastic lesions, 
metastases from different sites, and tumors that show differ-
ent types of responses to therapies [45, 49]. Carefully consid-
ered sample selection according to a specific clinical question 
will be the critical point in such studies.

New treatment options may be developed for novel targets 
identified by whole genome sequencing, even though this can 
be challenging. First, many of the identified genes have no 
enzymatic activity, in contrast to e.g. protein kinases (against 
which all the currently clinically approved drugs that target 
products of genetically altered genes are directed) [34]. 
Secondly inactivating mutations predominate over activating 
mutations in most common solid tumors. The observed 
heterogeneity of tumors presents us with an additional 
challenge. It is expected that mutations conferring resistance 
to any targeted drug would pre-exist in at least 1 cell of a 
typical tumor. Thus, simultaneous treatment with 2 or more 
drugs will likely be necessary to circumvent the otherwise-
inevitable development of resistance (as learned for example 
from HIV therapy) [34]. However, the paucity of individual 
oncogene alterations presents a considerable problem to this 
strategy. Nevertheless, it is certain that treatment according to 
pathways could lead to an appropriate solution [30, 34, 48].

There are also different exciting possibilities for integrating 
NGS into clinical practice. One approach will be targeted re-
sequencing of mutations with therapeutic importance. Bench-
top versions of genome sequencers have already arrived in the 
clinical laboratory [59]. Even though the throughput of these 
systems has not been adapted for high coverage genome 
 sequencing projects, they are well suited, for example, for tar-
geted re-sequencing of gene panels. Even ultra deep sequenc-
ing of such panels can be performed to detect rare subclones, 
coping with the problem of tumor heterogeneity. Thus, per-
sonalized tumor profiling should be feasible in a clinical 
 setting, ultimately translating genome sequencing from bench 
to bedside [1, 38]. Pilot studies have already shown that it is 
possible to analyze the complete genome of patients’ tumors 
in a cost-effective and clinically relevant time frame [42]. 
Whole genome sequencing data further suggest that each 
breast cancer has at least one DNA rearrangement. There-
fore, personal tumor sequencing could be used for the devel-
opment of highly sensitive PCR assays for an individual 
tumor, allowing personal monitoring of disease through spe-
cific detection of tumor DNA in peripheral blood [43, 60]. In 
summary, even though we should avoid unjustified over opti-
mism with respect to a new technology, which will undoubt-
edly also come with new problems; it is an exciting time in the 
fascinating field of cancer genomics. Hopefully, some of its 
promises will ultimately make their way to the patient.
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ations in cancers is rather low [44]. In breast cancer, only  
3 genes (PIK3A, TP53, GATA3) were recurrently found 
 mutated in at least 10% of all patients [45–47]. 3 additional 
genes were found mutated in at least 5% of the patients. 
However, the majority of the 20,000 detected somatic muta-
tions in 500 patients were only sporadically observed [40]. It 
appears that there are virtually no two tumors with a similar 
mutational pattern. Nevertheless, further analysis of the ge-
netic changes seem to suggest that different mutational events 
may be grouped to common oncogenic pathways, somewhat 
reducing this complexity [30, 34, 40, 48]. 

On the other hand, a large degree of intra-tumoral hetero-
geneity has been detected through ‘ultra deep sequencing’. 
This highly redundant sequencing of the genome allows the 
relative proportion of specifically mutated DNA molecules to 
be counted digitally, thereby establishing the frequency of dif-
ferent genetically distinct subclones within the tumor. Such 
sequencing has been extensively performed for hematological 
cancers [35, 49] but data on breast cancer are also available 
[46, 50]. Based on a ‘molecular clock’ of mutations, it is possi-
ble to calculate an ancestral tree of the subclones to describe 
their evolution within the tumor. The obtained results cor-
roborate data from earlier studies [36, 51] and demonstrate 
waves of subclonal evolution within the tumor, adding further 
complexity to the disease [43, 46, 52–54]. 

The large amount of sequencing data on cancer genomes 
also spurred recent studies on the mechanisms of cancer de-
velopment. The patterns of ‘mutation signatures’ observed in 
cancer genomes have given new clues on the mutational pro-
cesses shaping human tumors [37, 55–57]. They also high-
lighted skewed mutation frequencies between different genes 
and regions in the genome, underscoring the critical role of the 
bioinformatic algorithms used to identify mutated genes [37].

Future Perspectives and Challenges

Given the long-tailed distribution of cancer genes and the 
variable background mutation rates, the currently needed 
studies to finish compiling the catalogue of significantly mu-
tated genes will require thousands of tumor-normal pairs. 
However, the current speed of progress suggests that accom-
plishing this goal will probably not take long [38, 30]. Moreo-
ver, the analyses must expand beyond the exome and cover 
the whole genome, including translocations and the transcrip-
tome. Combining genomics, transcriptomics, and epigenomics 
has already proven to lead to important insights in breast can-
cer [39, 58]. For example, in the breast cancer TCGA study 
both SNP and CGH arrays, DNA methylation analysis and 
transcriptome, proteome, and microRNA expression analyses 
were included [40, 44]. Many of the ‘comprehensive’ insights 
of this study were enabled through integrative analysis across 
platforms, and a new genome-driven integrated classification 
of breast cancer, which includes DNA copy number changes, 
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