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Abstract

Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value
in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due
to small sample sizes.

Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated
on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes.
Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an
independent validation cohort (n = 261 cases).

Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and ,3.5%, a larger (n = 264 probesets)
and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these
genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No
correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature,
wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like
signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03
(95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free
survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value
(AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the
prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC
which is unrelated to previously known prognostic signatures.
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Introduction

Breast cancer represents a heterogeneous disease and the

currently most relevant clinical classification is based on the

expression of the estrogen receptor (ER), progesteron receptor

(PgR), as well as the human epidermal growth factor receptor 2

(HER2) [1,2]. Molecular analyses of breast cancer have led to the

introduction of molecular subtypes that largely recapitulate this

clinical classification schema [3,4] even when studies directly

comparing those two approaches for individual samples have

shown considerable discrepancies [5,6]. To develop clinically

more useful novel markers it will be necessary to study the known

subtypes separately to avoid rediscovering genes that are highly

co-expressed with ER, PgR, and HER2 [7]. The presently

available prognostic gene signatures for breast cancer mainly

reflect proliferation status and are most useful in ER-positive

cancers [4]. For triple negative breast cancers (TNBC) [8] which

lack the expression of all three receptors and represent an

aggressive disease the use of these molecular prognostic signatures

is limited.

In previous studies we demonstrated that analysis of a cohort

of only TNBC allows the identification of different molecular

phenotypes within this subtype of breast cancer [9,10]. For the

current study we assembled all publically available TNBC gene

expression datasets generated on Affymetrix gene chips to achieve the

largest possible size for prognostic marker discovery and validation.
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To minimize inter-laboratory variation only highly comparable

arrays were included and dataset-biased genes were also removed.

We partitioned the data into a discovery (i.e finding) and validation

cohort and used a supervised approach to develop prognostic

signatures. We also assessed the correlation between the resulting

prognostic predictors with 16 previously described metagenes that

can be used to categorize TNBC into molecular subsets [9,10]. The

prognostic signatures showed the highest correlation with the

Interleukin-8(IL-8)/inflammation, Vascular endothelial growth factor

(VEGF), and Histone metagenes. However, the signatures did not

correlate with previously published prognostic signatures. The

majority of prognostic genes that we identified were associated with

poor prognosis, the few genes associated with good prognosis were

mainly genes that correlated with immune cell metagenes.

Materials and Methods

The REMARK recommendations for tumor marker studies

[11] were applied in all analyses of this study. The analytical

strategy and use of samples is illustrated in Figure 1, including the

number of cases used in each stage of the analysis. The R software

environment [12] (http://www.r-project.org/) and SPSS version

17.0 (SPSS Inc., Chicago, Illinois) were used for all analyses. Chi

square test was applied to assess associations between categorical

parameters. All reported P values are two sided and P#0.05 was

considered significant. An R script of the analyses is available as

Data S1 with accompanying data in an R.Data file as Data S2.

Assembly of a combined Affymetrix dataset from triple
negative breast cancers

To generate a homogeneous dataset for the identification of genes

with prognostic power among TNBC we used (i) only one array

platform (Affymetrix U133 gene chips) and (ii) included only

samples defined as triple negative based on the mRNA expression

levels of ER, PgR, and HER2 as previously described [13,14]. The

assembly of the finding cohort of 394 TNBC samples has been

reported previously [9,10]. This yielded gene expression data from

n = 3488 primary breast cancers including 28 different datasets

(Table S1). The data was processed with the MAS5.0 algorithm [15]

of the affy package [16] of the Bioconductor software project [17].

Data from each array were log2-transformed, median-centered, and

the expression values of all the probesets from the U133A array

were multiplied by a scale factor S so that the magnitude (sum of the

squares of the values) equals one. Within this large breast cancer

dataset, 579 triple negative breast cancers (TNBC) were identified

based on the expression of ER, PgR, and HER2 from microarray

[14]. The complete normalized expression data of the 579 TNBC is

available from Gene Expression Omnibus as supplementary file,

accession number GSE31519. In addition raw microarray data of

all new samples and all relationships to re-analyzed samples are

given under this accession. Next, we calculated a comparability

metric C for each of the 579 arrays to identify the most comparable

samples. This metric C is derived from the sum of the squared

differences of the mean (m) within a specific dataset and among all

datasets, respectively, normalized by the standard deviation (s)

calculated for all genes (g) on the array:

cdataseti
~
Xn

g~1

mg,dataseti
{ mg,total

sg,total

� �2

All datasets were sorted according to this metric and the top 15

datasets with the lowest values (norm. C#0.03), corresponding to

394 samples in total, were used as the discovery cohort (Figure S1).

The remaining 185 samples with lower array comparability

together with an additional set of 76 TNBC samples that were

obtained from an independent cohort of breast cancers [18] were

used for validation (n = 261) (see Figure 1).

Supervised prognostic signature generation by SAM
We applied a supervised classification method using all 22,283

probesets on the Affymetrix microarrays to identify a prognostic

gene expression signature. The Cox score option of Significance

Analysis of Microarrays (SAM) [19] using the R-package samr was

applied to the finding cohort of 297 TNBC samples with known

follow up to train the predictor. Delta values of 0.3 and 0.5 with

median false discovery rates of 25% and ,3.5%, respectively,

were used to select prognostic probesets and a compound

covariate predictor was developed that used the SAM-Score as a

weight for each corresponding probeset. For Kaplan-Meier

analysis we split the cases into quantiles of prediction scores and

plotted survival curves by quartiles and also for the highest quartile

versus all the rest.

Assessment of dataset bias among probesets with
prognostic value

Informative probesets obtained by SAM analysis were checked

for dataset bias (i.e. differential expression by dataset of origin that

would indicate laboratory-bias or sampling differences compared

to the rest). To assess dataset bias, we used Kruskal Wallis statistic

comparing the expression of each probeset with the primary

dataset vector across the 394 TNBC. Each probeset was then

tagged with that Kruskal Wallis value throughout all analyses

(Figure S5). Cutoffs for exclusion of probesets due to strong dataset

bias were derived from the distribution of the Kruskal Wallis

statistic over all datasets for each probeset (Figure S2). Those

cutoff values were used in stability analyes to validate the

robustness of the obtained results (Figure S8).

Correlation of prognostic genes with molecular
phenotypes of TNBC

To determine if the genes (i.e probesets) from the prognostic

signature correspond to or serve as surrogates for previously

described molecular subtypes within the TNBC group, we calculated

the correlation between each of the genes from the prognostic gene

lists and 16 previously established metagenes that represent different

cell populations and different molecular variants of TNBC. These

metagenes included the intrinsic genes of the basal-molecular class

[3], an apocrine/androgen receptor signalling signature [20,21], five

signatures related to different types of immune cells [22,23,24,25], a

stromal signature [26], the claudin-CD24 signature [27,28,29],

markers of blood [30] and adipocytes [3], as well as an angiogenesis

signature [31,23] and an inflammatory signature [32,33,34]. The

discovery of these metagenes was published previously [9,10] and

probeset IDs are isted in Table S2. Metagene values were calculated

as mean expression of all probesets that define the metagene. Both

the compound prognostic signature scores as well as the individual

expression of each of the probesets from the SAM lists were

correlated with the expression values of the 16 metagenes. Probesets

that did not correlate to any of the metagenes at a pre-specified cutoff

(see Results section) were designated as ‘‘unclassified’’.

Correlation of the identified prognostic signature scores
with published gene signatures in breast cancer

The correlation of the newly identified prognostic signatures

with seven previously published prognostic signatures was

Novel Prognostic Signatures for TNBC
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analyzed by calculating the Pearson correlation coefficient

between signature scores in the finding cohort of TNBC. The

following prognostic signatures were included in this analysis:

Recurrence score [35], genomic grade index [36], 70-gene

signature [37], wound response signature [38], 7-gene immune

response module [39], stroma derived prognostic predictor [40],

and a medullary like signature [18]. The genefu R-package [41,42]

was used to calculate the signature score as continuous variables

Figure 1. Development and validation of prognostic predictors according to REMARK criteria (McShane et al. J Clin Oncol.
2005;23:9067). The outline of the analysis strategy is schematically shown. The upper part shows the selection of the homogenous sample cohort
of 394 TNBC. The middle part shows the identification of prognostic genes for TNBC, the development of the prognostic predictor, and the validation
of this gene signature. The lower part displays the analysis of the genes which make up the signature regarding their relationship to previous known
molecular factors among TNBC.
doi:10.1371/journal.pone.0028403.g001

Novel Prognostic Signatures for TNBC
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and these were visualized through hierarchical clustering including

the current TNBC-derived prognostic signatures and all other

previously described prognostic signatures and the 16 metagenes.

Survival analyses
Follow-up data was available for 297 of the 394 TNBC samples

from the finding cohort, and for 105 of the 261 samples from the

validation cohort (Table S1). All survival intervals were measured

from the time of surgery to the survival endpoint that was available

for that dataset. In 11 datasets (n = 241), the end point was relapse

free survival (RFS) and in 6 other dataset (n = 161) it was distant

metastasis free survival (DMFS). RFS includes local recurrences as

events whereas DMFS does not. In order to plot Kaplan-Meier

survival curves and perform survival analysis of the pooled data,

we combined both types of endpoints into a single event free

survival (EFS) endpoint that includes either RFS or DMFS

whichever is available for the particular case. We have previously

shown that the effect of using these different endpoints was rather

small in the overall dataset [14]. All results from the pooled

survival analyses were also verified by examining the effect of the

different endpoints in stratified analyses. Follow-up data for those

women in whom the survival end point was not reached were

censored at the last follow-up or at 120 months. Subjects with

missing values were excluded. We constructed Kaplan-Meier

curves and used the log-rank test to determine the univariate

significance of the variables. Cox regression analysis was applied to

analyze the univariate hazard ratio of individual metagenes as

continous variables. A Cox proportional-hazards model was used

to simultaneously examine the effects of multiple covariates on

survival. The effect of each individual variable was assessed with

the use of the Wald test and described by the hazard ratio and

95% confidence intervals (95% CI).

Predictive value of prognostic genes for response to
neoadjuvant chemotherapy in TNBC

A cohort of TNBC treated with neoadjuvant chemotherapy was

assembled for which gene expression data from pre-treatment

biopsies were available. Samples from biopsies which were

microdissected were excluded. For 191 samples from seven

datasets information on pathological complete remission (pCR)

was available (see Table S5). Receiver operator characteristics

(ROC) analyses was applied to test the value of the TNBC-derived

prognostic signatures as predictors of pathological complete

response (pCR) to neoadjuvant chemotherapy. The predictive

value of the newly identified signatures was also compared to that

of a B-cell metagene as well as a combination of both markers. We

have previously demonstrated a strong correlation of B-cell and T-

cell metagenes in breast cancers [22]. This result is in line with the

observation by our group and others that lymphocyte infiltration

in breast cancer generally represents a mixture of both B- and T-

cells [22]. Consequently both B- and T-cell metagenes carry

nearly identical information and can both be used as a surrogate

marker for infiltration of both types of lymphocytes with similar

results. Superiority of one of these markers generally results from

the specific dataset and/or cutoff point used [9,22]. In the TNBC

cohort used in this study the B-cell metagene outperformed the T-

cell metagene as a continous factor [9].

Results

Identification of prognostic markers within the subgroup
of triple negative breast cancer

The Cox score option of Significance Analysis of Microarrays (SAM)

[19] of the R-package samr was applied to the finding cohort

(n = 297 samples with follow up). A delta value of 0.3 resulted in

264 prognostic probesets (235 probesets associated with poor

prognosis and 29 probesets associated with good prognosis). The

median false discovery rate (FDR) when using this delta value was

25%. A more stringent delta of 0.5 resulted in 26 probesets

associated with poor prognosis with a median false discovery rate

,3.5% (Table 1). These 26 probesets are a subset of the larger 235

probesets list (Table S9). No probesets were associated with good

prognosis at this higher stringency. The detailed results from the

SAM analysis are given in Table S3. Two distinct signatures were

constructed from the 264 and 26 probesets, respectively. The

prognostic values of both signatures were highly significant in the

finding cohort when analysed as a continous variable in

multivariate Cox regression (Table S4). Inspection of the Kaplan

Meier survival curves corresponding to the 4 prognostic score

quartiles (for both the 264- and 26-gene predictors) suggested the

highest quartile as a natural cutoff to dichotomize the patient

population (Figure S3). This cutoff was used to plot survivals

curves that are presented on Figure 2 and include the results for

both the finding and the validation cohorts. Both signatures had

strong and similar prognostic value in the discovery as well as in

the validation datasets. Table 2 includes the corresponding

multivariate Cox regression analyses of standard parameters and

the prognostic signatures. In the validation cohort the stratification

according to the 264-probeset signature resulted in a hazard ratio

(HR) of 2.76 (95% CI 1.24–6.13; P = 0.013) in univariate analysis,

and HR 4.03 (95% CI 1.71–9.48; P = 0.001) in multivariate

analysis (Table 2). For the 26-probeset signature, in the validation

cohort we observed a HR of 3.26 (95% CI 1.54–6.90; P = 0.002) in

univariate, and HR 4.08 (95% CI 1.79–9.28; P = 0.001) in

multivariate analysis. In the multivariate analyses only lymph node

status (P = 0.048) retained its significance in the presence of the 26-

probeset signature while age, tumor size, and histological grading

did not reach significance (Table 2).

Correlation of the prognostic signature scores with
molecular phenotypes in triple negative breast cancer

Several investigators described molecular subgroups within

TNBC defined by the variable expression of various metagenes

(i.e. average expression of highly co-expressed genes). In order to

examine if our TNBC-derived prognostic signatures correspond to

previously described metagenes that were used to subdivide

TNBC, we calculated the correlation between the our signature

scores and 16 different previously published TNBC-related

metagenes [9,10]. Figure S4 displays the results of hierarchical

clustering (based on Person correlation) of the 264-gene signature

score and the different metagenes. The highest correlation was

observed to the VEGF, Histone, and IL-8 metagenes in the finding

cohort (Figure S4 panel A). In the validation cohort, the Stroma and

Hemoglobin metagenes also clustered within this group (Figure S4

panel B). Of note however, these latter two metagenes are

associated with a high dataset bias (see Figure S5). A similar result

was obtained with the 26-probeset signature which is shown in

Figure S4 panel C and D. This signature also clustered together

with VEGF, IL-8, and Histone metagenes.

Correlation of individual markers from the prognostic
signatures with triple negative breast cancer metagenes

In order to examine if the individual genes that constitute the

TNBC-derived prognostic signatures correspond to the previously

described gene clusters within TNBC or represent new potential

markers, we also calculated the correlation between each individual

probeset from the supervised signatures and the 16 TNBC-related

Novel Prognostic Signatures for TNBC
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metagenes. Figure S6 shows a heat map of the correlation matrix

corresponding to the 264 probesets (235 associated with poor

prognosis and 29 with good prognosis in panel A and B,

respectively) and 16 metagenes in the 394 TNBC samples. The

highest correlation coefficient for each of the probesets and the 16

metagenes is given in Table S3. A correlation coefficient $0.2 was

used as threshold to assign a probeset to a specific metagene as

correlated (Figure S6 panel A and B). Sixty eight of the 264

probesets (25.8%) showed correlation ,0.2 to any metagene and

these were designated as ‘‘unclassified’’ (Figure S6 panel A;

alternatively we also applied a more stringent correlation coefficient

cutoff $0.3 for a stability analysis which is shown in Figure S6 panel

C and D). Of the 235 probesets that were associated with a poor

prognosis, the largest probeset groups that were assigned to

metagenes included Stroma-related (n = 51, 21.7%), Histone-related

(n = 23, 9.8%), Molecular-Apocrine–related (n = 21, 8.9%), Prolifera-

tion–related (n = 17, 7.2%), and IL-8/inflammation–related (n = 13,

5.5%) (Table S3 and Figure S6 panel A). In contrast 21 of the 29

probesets (72.4%) associated with good prognosis were assigned to

five metagenes each related to immune cell infiltration (B-cell, T-cell,

MHC-1, MHC-2, and IFN metagenes; Figure S6 panel B).

Correlation of the identified prognostic signature scores
with published gene signatures in breast cancer

Several gene signatures were previously described that are predictive

of prognosis of breast cancer in general. We also examined if our

TNBC-derived signatures represent a surrogate of these previously

reported breast cancer prognostic signatures including the recurrence

score [35], the genomic grade index [36], the 70-gene signature [37],

the wound response signature [38], the 7-gene immune response score

[39], the stroma derived prognostic predictor [40], and a medullary like

signature [18]. We assessed the correlation between our signatures and

these signatures in our finding cohort. Figure 3 shows hierarchical

clustering result of the 264-probeset signature score as continuous

variable and the 16 metagenes and the seven previously published

prognostic gene signatures. The recurrence score, the genomic grade

index, the wound response signature, and the 70-gene signature, all

clustered together with the proliferation and the basal-like metagenes.

This indicates that many of the genes included in these signatures are

related to proliferation. In contrast, the stroma derived prognostic

predictor, the 7 gene immune response score, and the medullary-like

signature clustered together with the different immune cell metagenes

in a second large cluster. None of these signatures were related to our

new TNBC-derived prognostic signature which clustered together with

the VEGF-, IL-8-, Molecular apocrine-, Claudin-CD24-, and Histone-

metagenes in a separate cluster (Figure 3). Similar results were obtained

when we used the smaller 26-probeset signature (Figure S7).

Predictive value of prognostic genes for response to
neoadjuvant chemotherapy in TNBC

We have previously shown that tumor infiltration by lympho-

cytes reflected in the high expression of B-Cell and T-Cell

Table 1. 26 probeset supervised prognostic signature for TNBC from SAM.

Affy_ID GeneSymbol SAM-Score direction of prognostic value (poor/good)

211506_s_at IL8 3.754 POOR

211708_s_at SCD 3.377 POOR

39249_at AQP3 3.308 POOR

202859_x_at IL8 3.299 POOR

202627_s_at SERPINE1 3.136 POOR

212909_at LYPDC1 3.118 POOR

200737_at PGK1 3.090 POOR

204344_s_at SEC23A 3.075 POOR

205810_s_at WASL 3.071 POOR

217356_s_at PGK1 3.031 POOR

215779_s_at HIST1H2BG 3.017 POOR

212344_at SULF1 3.008 POOR

209875_s_at SPP1 3.002 POOR

219434_at TREM1 2.982 POOR

219508_at GCNT3 2.966 POOR

208881_x_at IDI1 2.959 POOR

215427_s_at ZCCHC14 2.958 POOR

214603_at MAGEA2 2.956 POOR

219875_s_at PNAS-4 2.951 POOR

204083_s_at TPM2 2.948 POOR

218468_s_at GREM1 2.937 POOR

204615_x_at IDI1 2.902 POOR

212354_at SULF1 2.858 POOR

218469_at GREM1 2.836 POOR

212353_at SULF1 2.809 POOR

202497_x_at SLC2A3 2.797 POOR

doi:10.1371/journal.pone.0028403.t001

Novel Prognostic Signatures for TNBC
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Table 2. Multivariate Cox analyses of event free survival of TNBC according to standard parameters and expression of the 264-
probeset signature and the 26-probeset signature.

Finding Cohort Validation Cohort

Variable
No. of
patients1

Hazard
Ratio 95% CI P-Value{

No. of
patients1

Hazard
Ratio 95% CI

P-
Value{

264-probeset signature High vs Low* 59 vs 178 4.44 2.82–6.99 ,0.001 11 vs 85 4.03 1.71–9.48 0.001

Lymph node status LNN vs LNP 210 vs 27 0.73 0.38–1.40 0.341 55 vs 41 0.50 0.23–1.09 0.080

Age .50 vs #50 113 vs 124 0.73 0.47–1.15 0.176 60 vs 36 2.03 0.91–4.54 0.085

Tumor size #2 cm vs .2 cm 72 vs 165 1.00 0.60–1.64 0.964 21 vs 75 0.94 0.36–2.47 0.899

Histological grading G3 vs G1&2 166 vs 71 1.13 0.69–1.87 0.622 71 vs 25 0.75 0.32–1.72 0.491

26-probeset signature High vs Low* 62 vs 175 3.76 2.38–5.94 ,0.001 15 vs 81 4.08 1.79–9.28 0.001

Lymph node status LNN vs LNP 210 vs 27 0.71 0.37–1.36 0.300 55 vs 41 0.45 0.21–0.99 0.048

Age .50 vs #50 113 vs 124 0.67 0.42–1.06 0.090 60 vs 36 1.87 0.84–4.16 0.125

Tumor size #2 cm vs .2 cm 72 vs 165 0.96 0.58–1.58 0.860 21 vs 75 0.97 0.37–2.53 0.946

Histological grading G3 vs G1&2 166 vs 71 1.01 0.61–1.67 0.986 71 vs 25 0.68 0.29–1.59 0.372

1information on all parameters was available for 237 of the 297 TNBC samples with follow up data from the finding cohort and 96 of the 105 TNBC samples with follow
up data from the validation cohort.

{Significant P-Values are given in bold.
*highest quartile of expression score vs. rest (see Supplementary Table S4 for analysis of continous signature scores).
doi:10.1371/journal.pone.0028403.t002

Figure 2. Kaplan Meier analysis according to the prognostic signatures in the finding and validation cohort. A) The 394 TNBC samples
from the finding cohort were stratified according to the highest quartile of expression of the 264-probeset signature score. Kaplan Meier analysis of
event free survival of 297 samples with follow up information is shown. B) The 261 TNBC samples from the validation cohort were stratified according
to the highest quartile of expression of the 264-probeset signature score. Kaplan Meier analysis of event free survival of 105 samples with follow up
information is shown. C) The same analysis as in (A) was performed using the 26-probeset signature. D) The same analysis as in (B) was performed
using the 26-probeset signature.
doi:10.1371/journal.pone.0028403.g002

Novel Prognostic Signatures for TNBC
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metagenes in the cancer is predictive of response to neoadjuvant

chemotherapy [22]. This predictive value was observed for both

ER-positive and ER-negative cancers [22]. To test the potential

predictive value of our newly identified prognostic signatures we

assembled gene expression data from TNBC treated with

neoadjuvant chemotherapy encompassing 191 samples that also

had pathological complete response (pCR) data available (Table

S5). Figure 4A shows the results of receiver operator characteristics

(ROC) analyses for a previously published B-cell metagene which

has known predictive value and for the 26-gene TNBC-derived

prognostic signature. The area under the curve (AUC) for the B-

cell metagene was 0.606 (95% CI 0.512–0.699, P = 0.025) and for

the 264-gene signature it was 0.588 (95% CI 0. 504–0.673,

P = 0.061). A simple linear combination of both scores led to an

improved AUC of 0.656 (95% CI 0.568–0.743, P = 0.001). A

similar but non-significant trend was seen in a separate 95 TNBC

samples from the TOP-trial [43] (Table S5). In this independent

validation dataset, the AUC of the B-cell metagene alone was

0.587 (95% CI 0.418–0.757, P = 0.33; Figure 4B) and it was 0.621

(95% CI 0.446–0.797, P = 0.175) for the combination of the 26-

probeset signature and the B-cell metagene.

Discussion

We identified two prognostic signatures including 264 and 26

probe sets each from gene expression data of triple negative breast

cancers (TNBC) using a supervised discovery method. The smaller

signature based on probe sets with the lowest false discovery rate

represent a subset of the larger signature. We validated the

independent prognostic value of both signatures in a separate

validation cohort both using the signatures as continuous scores

(P,0.0001; Table S4) as well as dichotomous variables (P = 0.001;

Table 2). These gene signatures remained statistically significant

prognostic predictors in multivariate analysis that included age,

tumor size, nodal status and histologic grade. In order to develop

these signatures we used TNBC cases only. Previous attempts to

develop prognostic predictors almost invariable used mixed patient

cohorts [37,44,45,46,47,48,49,50]. The resulting signatures from

those studies have frequently mirrored the differences in prognosis

between molecular subtypes of breast cancer and were mainly

associated with ER status and proliferation [4]. Consequently our

new TNBC-derived prognostic signatures did not closely relate to

the published general prognostic signatures (Figure 3). In contrast,

the new signatures are mostly related to two metagenes which we

previously described in TNBC, the IL-8/inflammation and VEGF

metagenes. These metagenes were discovered through unsuper-

vised analysis of the same dataset and are based on strong and

consistent co-expression patterns and provided us with a tool to

subclassify TNBC in a previous publication [9,10]. Recent

laboratory studies have demonstrated that IL-8 could directly

increase the survival of breast cancer stem cells after chemother-

apy [51] which can be blocked with IL-8 directed drugs [52]. The

cytokine loops and cellular pathways regulated by IL-8 closely

resemble those activated during chronic inflammation and wound

healing which have previously been implicated in cancer [53].

A signature highly similar to our VEGF metagene was also

described in an independent dataset recently [31]. In that study

the VEGF metagene demonstrated high expression in metastatic

breast cancer samples and was significantly associated with poor

outcome in both breast and lung cancer and glioblastomas. These

observations are consistent with our findings. Interestingly many of

the genes included in VEGF metagene contain HIF1a binding

sites and are known to be transcriptionally regulated by this

hypoxia-induced factor and therefore may represent a molecular

measure of tumor hypoxia [31]. This raises the possibility that the

VEGF metagene and our prognostic signature that is related to it

may only be a surrogate of increasing tumors size. But this seems

not to be the case since we observed a negative correlation

between the prognostic signature and tumors size (Table S6).

The 264-probest signature contains 29 probesets (11.0%) which

were inversely associated with a poor prognosis and therefore we

refer to it as good prognosis genes. Twenty one of these (72.4%)

were correlated with immune cell metagenes which is consistent

with several other publications which have shown that lymphocyte

infiltration of TNBC is associated with an improved prognosis

[22,24,25,39,18]. Metagenes which serve as surrogate markers for

lymphocyte infiltration of the tumor (e.g. the B-Cell and T-Cell

metagenes) are also predictive of response to neoadjuvant

chemotherapy [22]. Therefore, we also assessed the chemotherapy

predictive value of our prognostic signatures and found that it had

only a week association with response to chemotherapy (Figure 4).

Our study has several limitations. The definition of TNBC was

based on gene expression data which is not the standard definition

used in the clinic. This definition holds the promise that samples

erroneously characterized as receptor-negative by immunohisto-

chemistry do not introduce noise into our analysis but discrepan-

cies to cohorts defined by immunohistochemistry can occur. We

found agreement of ER status between immunohistochemistry and

gene expression data for 444 (84.4%) of 526 samples (86.8% and

81.3% in the finding and validation cohorts, respectively). For PgR

status we found agreement for 407 (87.5%) of 465 samples (84.8%

and 90.5% in finding and validation cohort), and for HER2

agreement for 347 (94.3%) of 368 samples (94.4% and 94.1% in

finding and validation cohort). Agreement for the status of all three

receptors was found for 276 (76.2%) of 362 samples (78.7% and

Figure 3. Relationship of the 264 probeset signature to the 16
metagenes and seven known prognostic signatures in TNBC.
The 394 TNBC samples were analyzed for the expression of 16
metagenes and seven previously published prognostic signatures
(recurrence score, genomic grade index, 70-gene signature, wound
response signature, 7-gene immune response module, stroma derived
prognostic predictor, and a medullary like signature). Resulting
continous scores were used for hierarchical clustering using the
Pearson correlation as a distance metric. The mutual relationships of
all signatures is presented by the hierarchical dendrogram.
doi:10.1371/journal.pone.0028403.g003
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73.9% in finding and validation cohort, respectively). Regarding

histological grading the proportion of grade 3 tumors is 73.5% and

74.1% in finding and validation cohort, respectively (Table S7).

These numbers are clearly smaller than 92–98% in previously

reported studies [8,54,55] indicating that the cohorts used in our

study may not be truly representative of triple negative breast

cancers in general. However despite the higher number of G1 and

G2 samples histological grading was not a significant factor for

survival in our cohort neither in multivariate nor univariate

analysis. Most TNBC are high grade and therefore grade is not as

important for prognosis in this subtype as it is in ER positive

disease. Age and tumor size were also not significant in our

cohorts, even in univariate analysis. TNBCs are also often

associated with younger age but the impact of age for prognosis

within this subtype is not yet fully clear. Several lines of evidence to

suggest that tumour size may not be prognostic in TNBC [8,56].

Still it cannot be excluded that a bias in our cohort is the reason

for the lack of significance of these factors.

Our analysis involved pooling of several datasets to increase

sample size and power for discovery and validation. This strategy

bears the risk of a confounding effect through systematic technical

differences that exist between individual datasets [57,58]. To

minimize this confounder we performed multiple filtering steps to

remove biased datasets and dataset-biased genes (see Methods). In

order to validate the robustness of the obtained results we also

performed a stability analysis by using different filtering cutoffs

(Figure S2). As shown in Figure S8 the validation of several

alternative signatures generated through a variety of filtering

combinations resulted in similar results in the validation cohort

indicating a robust finding. This study also has the limitation of

heterogeneous therapy of the cases included, some cancers were

treated with surgery alone others received adjuvant or neoadju-

vant chemotherapy of various types. This treatment heterogeneity

limits the clinical interpretation of the findings, however since the

prognostic signatures had limited predictive value for neoadjuvant

chemotherapy response, we infer that their outcome predictive

value is mostly derived from its prognostic components. However

the ‘‘good’’ prognostic group still has more than 20% recurrence

at 5 years. Thus this outcome would not change the actual clinical

management of this subset of patients but could help to develop a

clinically useful multivariate prognostic model for TNBC.

During the generation of this report Lehmann et al. [59]

described a similar strategy of a pooled dataset of TNBC samples

with microarray data. These authors identified seven different

TNBC subtypes by unsupervised k-means clustering. The

expression profiles of these subtypes are similar to many of the

metagenes that we have reported for TNBC [9,10]. Thus we

wondered whether our supervised signature would also correlate

Figure 4. Analysis of the predictive value of an immune cell metagene and the supervised prognostic signature for response to
neoadjuvant chemotherapy in TNBC. A) Neoadjuvant treated TNBC samples with information on pathological complete response (pCR) and
available Affymetrix expression data were assembled from 7 datasets (MDA133, GSE16716, GSE18728, GSE19697, GSE20194, GSE20271, Frankfurt-3).
Only pretherapeutic biopsies that were not microdissected were included (n = 191 nonredundant samples) of which 52 (27%) experienced a pCR.
Three separate ROC curves for prediction of pCR by the B-Cell metagene, no-pCR by the 26-probeset signature, and pCR by a combination of both
gene signatures are shown. The areas under the curve (AUC) were 0.606, 0.588, and 0.656, respectively. B) The same analyses as presented in (A) were
performed using a smaller independent validation cohort of 95 TNBC from the TOP-Trial (GSE16446). AUC of 0.587, 0.603, and 0.621, respectively, and
only a trend towards significance (P = 0.175) was observed in these data.
doi:10.1371/journal.pone.0028403.g004
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with any of these subtypes. However as shown in Figure S9 no

clear correlation of the supervised signature with any of these

seven subtypes described by Lehmann et al. was observed. We

have also analyzed whether our signature captures similar

information as the well known intrinsic molecular subtypes of

breast cancer [3,60]. To this end we used a recently published

implementation of different variants of the centroid method to

assign single samples to a molecular subtype [61]. The

corresponding results are shown in Table S8. We applied two

alternative variants of the method which both led to the conclusion

that no significant difference in subtype assignment was observed

when samples were classified according to the expression of the

264-probeset signature.

In our previous study [9] we had used unsupervised methods to

identify subgroups of TNBC without considering outcome in the

first place. Based on subsequent correlation of the obtained groups

with prognosis we then constructed a simple binary classifier from

expression of B-cell- and IL-8-metagenes. In contrast, the

supervised signature presented here seem to include information

from several additional biological characteristics. In fact this

supervised signature can outperform the simple combination of the

two parameters used in our previous study. However, the

interpretation of the biology of such an amalgamated signature

could be much more difficult than the interpretation of metagenes.

In summary, in this paper we demonstrated that the use of a

homogenous TNBC dataset allowed us to identify prognostic gene

signatures that are unrelated to previously published general breast

cancer prognostic signatures. The composition of the signature

suggests that IL-8 mediated inflammation and VEGF related

signaling herald very poor prognosis in TNBC and immune

infiltration predicts better outcome. These observations could also

suggest potential novel therapeutic strategies for these patients as

e.g. inhibiting IL-8 signalling [51,52] might be combined with

anti-angiogenesis therapies [31], and immune augmentation [10].

Supporting Information

Figure S1 Selection of the TNBC finding cohort from
multiple datasets based on dataset comparibility. Triple

negative breast cancers (TNBC, n = 579) from 28 datasets were

sorted by dataset according to a dataset comparability metric

(horizontally). Shown are the full array data of normalized

Affymetrix U133A microarrays. The 15 most comparable datasets

encompassing n = 394 TNBC samples were subsequently used as a

finding cohort and the remaining 13 datasets (n = 185 TNBC

samples) withhold as validation cohort.

(PDF)

Figure S2 Analysis of a potential dataset bias among
probesets of the prognostic signatures from the super-
vised analysis. A) The standard Kruskal-Wallis rank test was

used to analyze the dependence of each individual probesets’

expression on the vector of the 15 different datasets in the finding

cohort of n = 394 samples. The distribution of the rank sum

statistics for all 22,283 probesets from the U133A array is shown.

Two dotted vertical lines mark the used cutoff values of 75 (yellow)

and 150 (red). B) Distribution of the Kruskal-Wallis rank sum

statistics for the 235 probesets identified by SAM as associated

with poor prognosis. Used cutoffs are represented by dotted

vertical lines as in (A). C) Distribution of the Kruskal-Wallis rank

sum statistics for th 29 probesets identified by SAM as associated

with good prognosis. Used cutoffs are represented by dotted

vertical lines as in (A).

(PDF)

Figure S3 Kaplan Meier analysis of quartiles according
to the prognostic signature scores in the finding and
validation cohorts. A) The 394 TNBC samples from the

finding cohort were stratified according to quartiles of expression

of the 264-probeset signature score. Kaplan Meier analysis of

event free survival of 297 samples with follow up information is

shown. B) The 261 TNBC samples from the validation cohort

were stratified according to quartiles of expression of the 264-

probeset signature score. Kaplan Meier analysis of event free

survival of 105 samples with follow up information is shown. C)

The same analysis as in (A) was performed using the 26-probeset

signature. D) The same analysis as in (B) was performed using the

26-probeset signature.

(PDF)

Figure S4 Correlation of the prognostic signatures with
metagenes for molecular phenotypes in triple negative
breast cancer. A) The continous score of the 264-probeset

signature was correlated with the expression of 16 metagenes for

molecular phenotypes in the 394 TNBC samples from the finding

cohort. Shown is the result from hierarchical average linkage

clustering based on absolute Pearson correlation. The signature

score clustered together with VEGF, Histone, and IL-8 metagenes.

B) The same analysis as in (A) was performed in the validation

cohort of 261 independent TNBC samples. In this analysis the

signature score clustered together with Stroma, Hemoglobin,

VEGF, and IL-8 metagenes. Of note, however, Stroma and

Hemoglobin metagenes are associated with a high dataset bias (see

Supplementary Figure S5). C) The same analysis as in (A) was

performed with the 26-probeset signature in the 394 TNBC

samples from the finding cohort. The 26-probeset signature which

was obtained by higher stringency in SAM analysis clustered

together with IL-8, VEGF, and Histone metagenes. D) The same

analysis as in (C) was performed with the 26-probest signature in

the validation cohort of 261 samples. Similar as in (C) the 26-

probeset signature clustered together with VEGF, IL-8, Prolifer-

ation, and Histone metagenes.

(PDF)

Figure S5 Analysis of dataset bias of metagenes and the
prognostic signatures. A) The dependence of earch probeset

from the U133A array on the dataset vector was analyzed using

the standard Kruskal-Wallis rank test in the finding cohort of 394

samples (see Suppl. Fig. S2). Box plots are shown for the Kruskal-

Wallis statistics of the probesets of each metagene on the left and

for the two prognostic signatures on the right. The highest dataset

bias was observed for Stroma and Hemoglobin metagenes which is

related to different applied biopsy methods (fine needle biopsy vs.

surgical resection). B) The 261 samples from the validation cohort

were used to calculate the Kruskal-Wallis rank sum statistics for all

probesets. Again box plots are shown as in (A), but the Kruskal-

Wallis statistics from the validation cohort were applied. Several

metagenes are characterized by higher bias in the validation

cohort.

(PDF)

Figure S6 Correlation of individual markers from the
prognostic signatures with known metagenes in triple
negative breast cancer. From the 264 Affymetrix probsets of

the supervised prognostic signature, 235 probesets were associated

with poor prognosis (analyzed in panels A and C) and 29 with

good prognosis (analyzed in panels B and D). A) The 235

individual probesets associated with poor prognosis (horizontically)

were analyzed for their correlation with the expression of 16

metagenes (vertically) for molecular phenotypes in the 394 TNBC

samples from the finding cohort. 116 probesets displaying a
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Pearson correlation above a cutoff 0.2 are sorted (horizontically)

on the left according to the assigned metagene while 60 probesets

remained unclassified. B) The 29 individual probesets associated

with good prognosis were analyzed as in (A) and 21 assigned to

metagenes (cutoff 0.2) are sorted horizontically on the left while 8

remained unclassified. C) The same analysis as in (A) was

performed using the more stringent cutoff 0.3 for assignment to

a metagene resulting in 118 probesets correlated to metagenes

from the list of 235 probesets associated with poor prognosis. D)

The same analysis as in (B) was perfomed using the more stringent

cutoff 0.3 resulting in 18 of the 29 good prognosis probesets

assigned to metagenes. All individual correlation values are given

in Supplementary Table S3.

(PDF)

Figure S7 Relationship of the 26 probeset signature to
the 16 metagenes and seven known prognostic signa-
tures in TNBC. The 394 TNBC samples were analyzed for the

expression of 16 metagenes and seven previously published

prognostic signatures as described in Figure 3 and hierachical

clustered using Pearson correlation as distance metric. Abbrevi-

ations: SAMmean = 26 probeset signature wound.score$score =

Wound response signature rs.394$score = recurrence score ggi.

score$score = genomic grade index gene70.score$score = 70-gene

signature sabatier.score$score = medullary like signature Tesch7.

score$score = 7-gene immune response module sdpp.sore$score =

stroma derived prognostic predictor.

(PDF)

Figure S8 Stability analysis of the prognostic signatures
from the supervised analysis. The 264 Affymetrix probsets of

the supervised prognostic signature were filtered according to their

dataset bias measured through Kruskal-Wallis statistic and

different stringency from SAM analysis as given in the Table

below the graphs. The resulting probeset lists of 252, 24, 181, and

16 probesets were used for prognostic signature generation as the

original 264 probeset list. In upper panels A, B, C, and D the

correlation of the four alternative signatures to the 264-probeset

signature is shown by scatter plot analysis. The lower panels

display the results from the Kaplan-Meier analyses of the

validation cohort of 261 TNBC (105 samples with follow up

information). In addition P-Values of multivariate Cox regression

analysis of the validation cohort using continous signature scores

are given in the table below.

(PDF)

Figure S9 Expression of the 264-probeset and 26-
probeset signature scores in seven different TNBC
subtypes according to Lehmann et al. A) Box plots

comparing the expression of the 264-probeset signature in the

seven different TNBC subtypes according to Lehmann et al. (J

Clin Invest. 2011; 121: 2750) separately for our finding and

validation cohorts. No clear correlation of the expression of the

signature with any of the subtypes was observed. The seven

subtypes have been ordered according the expression of the

signature in the finding cohort. Highest expression was observed in

the ‘‘basal-like 2’’ (BL2) and ‘‘luminal androgen receptor’’ (LAR)

subtypes of the finding cohort. However this effect was not

reproduced in the validation cohort. B) The same analysis as in (A)

was performed for the expression of the 26-probeset signature.

The observed result was similar in that no reproducible correlation

of the signature with any subtypes was detected.

(PDF)

Table S1 Summary of Affymetrix microarray datasets
used in this study.

(PDF)

Table S2 List of 355 Affymetrix probesets used for
metagene calculation.

(PDF)

Table S3 Details of probesets from the supervised
signatures.

(XLS)

Table S4 A) Multivariate Cox regression of continous
264-probeset signature and standard parameters for
event free survival in the finding cohort B) Multivariate
Cox regression of continous 26-probeset signature and
standard parameters for event free survival in the
finding cohort.

(PDF)

Table S5 Pre-therapeutic samples from neoadjuvant
treated TNBC.

(PDF)

Table S6 Clinical parameters of TNBC according to
expression of the 264-probeset signature.

(PDF)

Table S7 Histological grade among samples in the
finding and validation cohort.

(PDF)

Table S8 Distribution of intrinsic molecular subtypes
according to expression of the 264-probeset signature in
TNBC.

(PDF)

Table S9 264 probeset supervised prognostic signature
for TNBC from SAM.

(PDF)

Data S1 R script of the analyses.

(R)

Data S2 R.Data file (contains 11 data objects used in the R

script from Data S1).

(7z)
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Supplementary Table S8: Distribution of intrinsic molecular subtypes according to expression of 


the 264-probeset signature in TNBC  


    Basal-like HER2-like Luminal A 
Normal 


breast -like Unclassified Total 


SSP-prediction in cohort of all subtypes (n=1304 total, n=221 TNBC) * 


 


264-probeset signature Centroid-Single Sample Predictor (data centered) 
 


 
highest quartile 53 (88.3%) 3 (5.0%) 0 4 (6.7%) 0 60 


 


low expression 139 (86.3%) 2 (1.2%) 1 (0.6%) 19 (11.8%) 0 161 


 
total 192(86.9%) 5 (2.3%) 1 (0.5%) 23 (10.4%) 0 221 


SSP-prediction in pure TNBC cohort (n=579) † 


 


264-probeset signature Centroid-Single Sample Predictor (data not centered) 


 


 


highest quartile 100 (64.9%) 2 (1.3%) 2 (1.3%) 0 50 (32.5%) 154 


 


low expression 296 (69.6%) 6 (1.4%) 12 (2.8%) 4 (0.9%) 107 (25.5%) 425 


 


total 396 (68.4%) 8 (1.4%) 14 (2.4%) 4 (0.7%) 157 (27.1%) 579 


* A nearest centroid single sample predictor (SSP) method either with centering as described by 


Weigelt et al. (2010, Lancet Oncol; 11:339) was applied to seven larger datasets (Frankfurt, 


Mainz, NewYork, Stockholm, Transbig, Uppsala, Rotterdam) to assign a total of 1304 breast 


cancer samples to a molecular subtype (according to Hu et al. 2006, BMC Genomics, 7:96). The 


data for the 221 TNBC samples from this cohort that are included in our study are shown. The 


majority of the TNBC are assigned to the basal-like group by the centroid method (86.9%). In 


the group with high expression of the 264-probeset signature the proportion of "HER2-like" 


samples is somewhat higher (5.0 vs 1.2%) and those of the "Normal-breast-like" somewhat 


lower (6.7 vs 11.8%) but these differences did not reach statistical significance (P=0.24). 


† Application of the centroid method to the cohort of 579 TNBC samples (without including non-


TNBC samples). Data centering is not applicable to a complete ER negative cohort as previously 


described (Lusa et al. 2007, J Natl Cancer Inst. 99:1715). Therefore the uncentered version of 


the method described by Weigelt et al (2010, Lancet Oncol; 11:339) was applied for this 


cohort. This version of the method results in 27.1% of "unclassified" samples. Still  the overall 


results are similar to those of the uncentered method applied to the dataset including non-


TNBC samples above with most of the remaining samples assigned to "Basal-like" (68.4%). 


Similar to the results of the centered method above no significant difference of subtype 


assignment was observed between samples with high or low expression of the 264-probeset 


signature, respectively (P=0.27). 


Detailed information and corresponding R-code for the applied SSP-methods can be downloaded 


from the authors of Weigelt et al. (2010, Lancet Oncol; 11:339) at: 


http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid


%20Correlations.pdf 


 



http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid%20Correlations.pdf

http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid%20Correlations.pdf
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Supplementary Figure S9: Expression of the 264-probeset and 26-probeset signature scores in seven 


different TNBC subtypes according to Lehmann et al. 


A) Box plots comparing the expression of the 264-probeset signature in the seven different TNBC subtypes 


according to Lehmann et al. (J Clin Invest. 2011; 121: 2750) separately for our finding and validation 


cohorts.  


No clear correlation of the expression of the signature with any of the subtypes was observed. The seven 


subtypes have been ordered according the expression of the signature in the finding cohort. Highest 


expression was observed in the "basal-like 2" (BL2) and "luminal androgen receptor" (LAR) subtypes of the 


finding cohort. However this effect was not reproduced in the validation cohort. 


 


B) The same analysis as in (A) was performed for the expression of the 26-probeset signature. The observed 


result was similar in that no reproducible correlation of the signature with any subtypes was detected. 
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Supplementary Figure S2: Analysis of a potential dataset bias among probesets of the prognostic signatures 


from the supervised analysis 


A) The standard Kruskal-Wallis rank test was used to analyze the dependence of each individual 


probesets' expression on the vector of the 15 different datasets in the finding cohort of n=394 


samples. The distribution of the rank sum statistics for all 22,283 probesets from the U133A array is 


shown. Two dotted vertical lines mark the used cutoff values of 75 (yellow) and 150 (red). 


B) Distribution of the Kruskal-Wallis rank sum statistics for the 235 probesets identified by SAM as 


associated with poor prognosis. Used cutoffs are represented by dotted vertical lines as in (A). 


C) Distribution of the Kruskal-Wallis rank sum statistics for the 29 probesets identified by SAM as 


associated with good prognosis. Used cutoffs are represented by dotted vertical lines as in (A). 
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Supplementary Figure S3: Kaplan Meier analysis of quartiles according to the prognostic signature scores in 


the finding and validation cohorts 


A) The 394 TNBC samples from the finding cohort were stratified according to quartiles of expression of the 


264-probeset signature score. Kaplan Meier analysis of event free survival of 297 samples with follow up 


information is shown. 


B) The 261 TNBC samples from the validation cohort were stratified according to quartiles of expression of 


the 264-probeset signature score. Kaplan Meier analysis of event free survival of 105 samples with follow 


up information is shown. 


C) The same analysis as in (A) was performed using the 26-probeset signature. 


D) The same analysis as in (B) was performed using the 26-probeset signature. 
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Supplementary Table S1:     Summary of Affymetrix microarray datasets used in this study 


  % of samples (complete datasets)  No. of samples    
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Rotterdam-EMC344 GSE2034, GSE5327 55 35 100 72 100 0 0 28  344 82 82 0 0.0085 x + i,ii,iii 
TransBIG GSE7390 80 18 100 75 100 0 0 43  198 40 40 0 0.0110  + iv 
Mainz GSE11121 33 33 100 71 100 0 0 38  200 21 21 0 0.0115 x + v 
Stockholm GSE1456    74 45 55 0 40  159 25 25 0 0.0119  + vi 
Uppsala GSE3494 (n=251), GSE6232 (n=5), 


GSE4922 (n=1), GSE2990 (n=1) 
37 41 68 59 86 14 0 26  258 27 27 0 0.0124  + vii,viii 


Frankfurt-2 This study 50 0 39 56    33  67 19 19 0 0.0146  - ix 
Frankfurt This study 33 42 83 83 0 0 100 33  119 24 24 0 0.0155  + x 
New York GSE2603 40 11 49  0 4 96 48  99 35 35 0 0.0155 x + xi 
Oxford-Untreated GSE2990 (n=61), GSE6532 (n=8) 54 46 100 60 100 0 0 45  69 13 13 0 0.0157  + xii 
Hamburg-2 This study 0 0 71 40 0 100 0 20  77 7 7 0 0.0180 x + xiii 
Hamburg-1 This study 53 33 80 86 0 0 100 47  77 15 15 0 0.0182  + xiv 
Signapore GSE5364          183 36 36 0 0.0186  + xv 
MDA133 mdanderson.org 38 21 24 83      133 29 29 0 0.0189  - xvi 
Boston GSE3744    100      40 16 16 0 0.0224  + xvii 
Tampa GSE10780          39 5 5 0 0.0262  + xviii 


Rotterdam-EMC204 GSE12276 55 22  71 63 25 13   204 56 0 56 0.0320  + xix 
MDA100 GSE16716 48 3 18 73 0 0 100   100 33 0 33 0.0327  - xx 
EORTC GSE1561  0 43 68      49 21 0 21 0.0338  - xxi 
Genentech GSE12763          30 5 0 5 0.0389  + xxii 
Frankfurt-3 This study 0 50 50 50 0 100 0 50  52 2 0 2 0.0427  + xxiii 
San Francisco E-TABM-158 52 35 52 45 17 13 70 22  118 23 0 23 0.0441 x + xxiv 
Paris GSE13787    100      23 10 0 10 0.0487  + xxv 
Berlin GSE6596 29 29  71      24 7 0 7 0.0598  + xxvi 
Veridex-Tam GSE12093   100  0 100 0 0  136 1 0 1 0.0650 x + xxvii 
London-2 GSE9195 0 100 100 100 0 100 0 0  77 2 0 2 0.0663  + xxviii 
London GSE6532 50 0 0 100 0 100 0 50  87 2 0 2 0.0687  + xxix 
expO GSE2109 35 33 42 83      301 22 0 22 0.1001  + xxx 
Edinburgh GSE5462     0 100 0   116 1 0 1 0.1285  - xxxi 
Oxford-Tamoxifen GSE6532          109 0   n.a.   xii 


TOTAL:  48 25 68 72 57 12 31 35  3488 579 394 185   495  


                   
Additional datasets:                   


Validation-Cohort GSE21653          266 76 0 76   + xxxii 


Total             394 261     


                   







* Remarks: Datasets are sorted according to the comparability of the microarrays of only TNBC samples. The complete TransBIG dataset contains independent replicate samples from 19 patients of the 


Uppsala cohort and 22 patients of the Oxford-Untreated cohort. Affymetrix HG-U133A microarrays were applied in all studies except that in part HG-U133Plus arrays were used in datasets GSE2109, 


GSE3744, GSE6532, GSE9195, GSE10780, GSE12763, GSE12276, and GSE13787. In these cases only the probe sets identical to HG-U133A arrays were used. 
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Supplementary Table S9: 264 probeset supervised prognostic signature for TNBC from SAM 


Affy_ID GeneSymbol SAM-
Score 


 direction of 
prognostic 
value: 
poor / good 


included  
in 264-
probeset 
signature 
(FDR 
25%) 


included 
in 26-
probeset 
signature 
(FDR 
<3.5%) 


 


Poor prognosis markers 
211506_s_at IL8 3.754 


 
POOR yes yes 


 211708_s_at SCD 3.377 
 


POOR yes yes 
 39249_at AQP3 3.308 


 
POOR yes yes 


 202859_x_at IL8 3.299 
 


POOR yes yes 
 202627_s_at SERPINE1 3.136 


 
POOR yes yes 


 212909_at LYPDC1 3.118 
 


POOR yes yes 
 200737_at PGK1 3.090 


 
POOR yes yes 


 204344_s_at SEC23A 3.075 
 


POOR yes yes 
 205810_s_at WASL 3.071 


 
POOR yes yes 


 217356_s_at PGK1 3.031 
 


POOR yes yes 
 215779_s_at HIST1H2BG 3.017 


 
POOR yes yes 


 212344_at SULF1 3.008 
 


POOR yes yes 
 209875_s_at SPP1 3.002 


 
POOR yes yes 


 219434_at TREM1 2.982 
 


POOR yes yes 
 219508_at GCNT3 2.966 


 
POOR yes yes 


 208881_x_at IDI1 2.959 
 


POOR yes yes 
 215427_s_at ZCCHC14 2.958 


 
POOR yes yes 


 214603_at MAGEA2 2.956 
 


POOR yes yes 
 219875_s_at PNAS-4 2.951 


 
POOR yes yes 


 204083_s_at TPM2 2.948 
 


POOR yes yes 
 218468_s_at GREM1 2.937 


 
POOR yes yes 


 204615_x_at IDI1 2.902 
 


POOR yes yes 
 212354_at SULF1 2.858 


 
POOR yes yes 


 218469_at GREM1 2.836 
 


POOR yes yes 
 212353_at SULF1 2.809 


 
POOR yes yes 


 202497_x_at SLC2A3 2.797 
 


POOR yes yes 
 202539_s_at HMGCR 2.745 


 
POOR yes no 


 214522_x_at HIST1H3D 2.745 
 


POOR yes no 
 212942_s_at KIAA1199 2.733 


 
POOR yes no 


 219773_at NOX4 2.693 
 


POOR yes no 
 205680_at MMP10 2.664 


 
POOR yes no 


 202912_at ADM 2.656 
 


POOR yes no 
 201108_s_at THBS1 2.654 


 
POOR yes no 


 210387_at HIST1H2BG 2.653 
 


POOR yes no 
 205227_at IL1RAP 2.648 


 
POOR yes no 


 201695_s_at NP 2.645 
 


POOR yes no 
 217073_x_at APOA1 2.595 


 
POOR yes no 


 201109_s_at THBS1 2.595 
 


POOR yes no 
 215446_s_at LOX 2.593 


 
POOR yes no 


 205443_at SNAPC1 2.592 
 


POOR yes no 
 209978_s_at LPA 2.591 


 
POOR yes no 


 201506_at TGFBI 2.571 
 


POOR yes no 
 208577_at HIST1H3C 2.569 


 
POOR yes no 


 219927_at C14orf111 2.552 
 


POOR yes no 
 212210_at DKFZP586J0619 2.539 


 
POOR yes no 


 202134_s_at WWTR1 2.527 
 


POOR yes no 
 211162_x_at SCD 2.526 


 
POOR yes no 


 218073_s_at FLJ10407 2.524 
 


POOR yes no 
 212887_at SEC23A 2.524 


 
POOR yes no 


 206354_at SLCO1B3 2.522 
 


POOR yes no 
 201324_at EMP1 2.520 


 
POOR yes no 


 212902_at SEC24A 2.517 
 


POOR yes no 
 







214978_s_at PPFIA4 2.512 
 


POOR yes no 
 204338_s_at RGS4 2.511 


 
POOR yes no 


 210089_s_at LAMA4 2.502 
 


POOR yes no 
 214580_x_at KRT6A 2.502 


 
POOR yes no 


 39248_at AQP3 2.499 
 


POOR yes no 
 214725_at RPESP 2.496 


 
POOR yes no 


 219104_at RNF141 2.492 
 


POOR yes no 
 211840_s_at PDE4D 2.489 


 
POOR yes no 


 200738_s_at PGK1 2.482 
 


POOR yes no 
 203099_s_at CDYL 2.480 


 
POOR yes no 


 207933_at ZP2 2.477 
 


POOR yes no 
 202604_x_at ADAM10 2.476 


 
POOR yes no 


 221291_at ULBP2 2.472 
 


POOR yes no 
 214455_at H2BFL 2.464 


 
POOR yes no 


 210431_at ALPPL2 2.463 
 


POOR yes no 
 210845_s_at PLAUR 2.454 


 
POOR yes no 


 211160_x_at ACTN1 2.440 
 


POOR yes no 
 208547_at HIST1H2BB 2.425 


 
POOR yes no 


 219837_s_at CYTL1 2.414 
 


POOR yes no 
 201037_at PFKP 2.409 


 
POOR yes no 


 200989_at HIF1A 2.405 
 


POOR yes no 
 208490_x_at HIST1H2BF 2.397 


 
POOR yes no 


 204298_s_at LOX 2.387 
 


POOR yes no 
 201888_s_at IL13RA1 2.387 


 
POOR yes no 


 220768_s_at CSNK1G3 2.386 
 


POOR yes no 
 210405_x_at TNFRSF10B 2.383 


 
POOR yes no 


 206315_at CRLF1 2.382 
 


POOR yes no 
 217911_s_at BAG3 2.378 


 
POOR yes no 


 219886_at LRRIQ2 2.369 
 


POOR yes no 
 202628_s_at SERPINE1 2.369 


 
POOR yes no 


 209305_s_at GADD45B 2.366 
 


POOR yes no 
 210995_s_at TRIM23 2.365 


 
POOR yes no 


 206409_at TIAM1 2.362 
 


POOR yes no 
 201325_s_at EMP1 2.359 


 
POOR yes no 


 219366_at AVEN 2.357 
 


POOR yes no 
 210435_at NBR2 2.355 


 
POOR yes no 


 205199_at CA9 2.350 
 


POOR yes no 
 209803_s_at PHLDA2 2.341 


 
POOR yes no 


 205499_at SRPX2 2.334 
 


POOR yes no 
 214216_s_at KIAA0217 2.330 


 
POOR yes no 


 217834_s_at SYNCRIP 2.321 
 


POOR yes no 
 204883_s_at HUS1 2.311 


 
POOR yes no 


 208527_x_at HIST1H2BE 2.305 
 


POOR yes no 
 208129_x_at RUNX1 2.303 


 
POOR yes no 


 214612_x_at MAGEA6 2.302 
 


POOR yes no 
 215488_at VMD2 2.299 


 
POOR yes no 


 206512_at U2AF1L1 2.298 
 


POOR yes no 
 217428_s_at COL10A1 2.292 


 
POOR yes no 


 216796_s_at - - - 2.290 
 


POOR yes no 
 208427_s_at ELAVL2 2.284 


 
POOR yes no 


 213506_at F2RL1 2.283 
 


POOR yes no 
 208180_s_at H4FH 2.282 


 
POOR yes no 


 215997_s_at CUL4B 2.282 
 


POOR yes no 
 203000_at STMN2 2.282 


 
POOR yes no 


 202388_at RGS2 2.278 
 


POOR yes no 
 205523_at HAPLN1 2.278 


 
POOR yes no 


 217675_at LOC201501 2.273 
 


POOR yes no 
 203393_at HES1 2.271 


 
POOR yes no 


 214702_at FN1 2.268 
 


POOR yes no 
 209601_at ACOX1 2.268 


 
POOR yes no 


 204475_at MMP1 2.266 
 


POOR yes no 
 220623_s_at TSGA10 2.258 


 
POOR yes no 


 







216729_at - - - 2.252 
 


POOR yes no 
 210990_s_at LAMA4 2.251 


 
POOR yes no 


 210257_x_at CUL4B 2.246 
 


POOR yes no 
 220759_at FAM12B 2.242 


 
POOR yes no 


 212543_at AIM1 2.241 
 


POOR yes no 
 219856_at SARG 2.240 


 
POOR yes no 


 207696_at FUT9 2.238 
 


POOR yes no 
 220031_at ZA20D1 2.237 


 
POOR yes no 


 201110_s_at THBS1 2.232 
 


POOR yes no 
 208394_x_at ESM1 2.225 


 
POOR yes no 


 215649_s_at MVK 2.218 
 


POOR yes no 
 206686_at PDK1 2.206 


 
POOR yes no 


 206547_s_at PPEF1 2.203 
 


POOR yes no 
 221679_s_at ABHD6 2.200 


 
POOR yes no 


 204337_at RGS4 2.196 
 


POOR yes no 
 210233_at IL1RAP 2.191 


 
POOR yes no 


 201170_s_at BHLHB2 2.185 
 


POOR yes no 
 211338_at IFNA2 2.185 


 
POOR yes no 


 216650_at LOC442165 2.184 
 


POOR yes no 
 201903_at UQCRC1 2.179 


 
POOR yes no 


 202740_at ACY1 2.179 
 


POOR yes no 
 208523_x_at HIST1H2BI 2.175 


 
POOR yes no 


 208487_at LMX1B 2.173 
 


POOR yes no 
 207370_at IBSP 2.171 


 
POOR yes no 


 206113_s_at RAB5A 2.171 
 


POOR yes no 
 215733_x_at CTAG2 2.169 


 
POOR yes no 


 210805_x_at RUNX1 2.168 
 


POOR yes no 
 205924_at RAB3B 2.163 


 
POOR yes no 


 216672_s_at MYT1L 2.153 
 


POOR yes no 
 206569_at IL24 2.152 


 
POOR yes no 


 211617_at ALDOAP2 2.151 
 


POOR yes no 
 222219_s_at TLE6 2.150 


 
POOR yes no 


 207328_at ALOX15 2.149 
 


POOR yes no 
 202363_at SPOCK 2.147 


 
POOR yes no 


 202543_s_at GMFB 2.147 
 


POOR yes no 
 213563_s_at GCP2 2.145 


 
POOR yes no 


 216268_s_at JAG1 2.142 
 


POOR yes no 
 210874_s_at NAT6 2.139 


 
POOR yes no 


 209101_at CTGF 2.139 
 


POOR yes no 
 211758_x_at TXNDC9 2.139 


 
POOR yes no 


 201559_s_at CLIC4 2.137 
 


POOR yes no 
 213640_s_at LOX 2.133 


 
POOR yes no 


 206788_s_at CBFB 2.133 
 


POOR yes no 
 219232_s_at EGLN3 2.133 


 
POOR yes no 


 219328_at DDX31 2.129 
 


POOR yes no 
 202540_s_at HMGCR 2.128 


 
POOR yes no 


 209398_at HIST1H1C 2.128 
 


POOR yes no 
 215574_at - - - 2.124 


 
POOR yes no 


 218036_x_at NMD3 2.121 
 


POOR yes no 
 210750_s_at DLGAP1 2.118 


 
POOR yes no 


 40524_at PTPN21 2.117 
 


POOR yes no 
 201275_at FDPS 2.113 


 
POOR yes no 


 204614_at SERPINB2 2.112 
 


POOR yes no 
 201043_s_at ANP32A 2.109 


 
POOR yes no 


 201091_s_at CBX3 2.108 
 


POOR yes no 
 37512_at RODH 2.106 


 
POOR yes no 


 203108_at GPCR5A 2.105 
 


POOR yes no 
 219948_x_at FLJ21934 2.105 


 
POOR yes no 


 215646_s_at CSPG2 2.098 
 


POOR yes no 
 213983_s_at SCC-112 2.098 


 
POOR yes no 


 202057_at KPNA1 2.098 
 


POOR yes no 
 208613_s_at FLNB 2.097 


 
POOR yes no 


 







220003_at FLJ11004 2.095 
 


POOR yes no 
 201208_s_at TNFAIP1 2.095 


 
POOR yes no 


 209822_s_at VLDLR 2.095 
 


POOR yes no 
 209909_s_at TGFB2 2.092 


 
POOR yes no 


 210467_x_at MAGEA12 2.088 
 


POOR yes no 
 215432_at BUCS1 2.085 


 
POOR yes no 


 209122_at ADFP 2.084 
 


POOR yes no 
 210196_s_at PSG1 2.083 


 
POOR yes no 


 210876_at ANXA2 2.081 
 


POOR yes no 
 208546_x_at HIST1H2BH 2.079 


 
POOR yes no 


 216414_at - - - 2.079 
 


POOR yes no 
 212812_at - - - 2.078 


 
POOR yes no 


 219733_s_at SLC27A5 2.078 
 


POOR yes no 
 215254_at DSCR1 2.074 


 
POOR yes no 


 207319_s_at CDC2L5 2.070 
 


POOR yes no 
 211668_s_at PLAU 2.068 


 
POOR yes no 


 201792_at AEBP1 2.066 
 


POOR yes no 
 202238_s_at NNMT 2.065 


 
POOR yes no 


 219356_s_at SNF7DC2 2.060 
 


POOR yes no 
 210904_s_at IL13RA1 2.059 


 
POOR yes no 


 221552_at ABHD6 2.059 
 


POOR yes no 
 221009_s_at ANGPTL4 2.058 


 
POOR yes no 


 214968_at DDX51 2.055 
 


POOR yes no 
 201196_s_at AMD1 2.055 


 
POOR yes no 


 212444_at - - - 2.054 
 


POOR yes no 
 204845_s_at ENPEP 2.053 


 
POOR yes no 


 208496_x_at HIST1H3G 2.053 
 


POOR yes no 
 215464_s_at TAX1BP3 2.052 


 
POOR yes no 


 212797_at SORT1 2.051 
 


POOR yes no 
 204596_s_at STC1 2.050 


 
POOR yes no 


 210623_at LOC51035 2.050 
 


POOR yes no 
 216915_s_at PTPN12 2.050 


 
POOR yes no 


 208144_s_at PP1345 2.049 
 


POOR yes no 
 214469_at HIST1H2AE 2.049 


 
POOR yes no 


 205479_s_at PLAU 2.044 
 


POOR yes no 
 217448_s_at C14orf92 2.044 


 
POOR yes no 


 216607_s_at CYP51A1 2.043 
 


POOR yes no 
 210619_s_at HYAL1 2.042 


 
POOR yes no 


 214540_at HIST1H2BO 2.039 
 


POOR yes no 
 216549_s_at TBC1D22B 2.039 


 
POOR yes no 


 219478_at WFDC1 2.037 
 


POOR yes no 
 209624_s_at MCCC2 2.034 


 
POOR yes no 


 212575_at C19orf6 2.034 
 


POOR yes no 
 222379_at KCNE4 2.031 


 
POOR yes no 


 211924_s_at PLAUR 2.030 
 


POOR yes no 
 221933_at NLGN4X 2.030 


 
POOR yes no 


 220414_at CALML5 2.029 
 


POOR yes no 
 215976_at DBC1 2.026 


 
POOR yes no 


 210546_x_at CTAG1B 2.025 
 


POOR yes no 
 216712_at SLC25A30 2.020 


 
POOR yes no 


 220106_at NPC1L1 2.020 
 


POOR yes no 
 212898_at KIAA0406 2.019 


 
POOR yes no 


 202213_s_at CUL4B 2.019 
 


POOR yes no 
 216830_at - - - 2.017 


 
POOR yes no 


 204325_s_at NF1 2.017 
 


POOR yes no 
 215423_at - - - 2.016 


 
POOR yes no 


 205228_at RBMS2 2.013 
 


POOR yes no 
 208083_s_at ITGB6 2.011 


 
POOR yes no 


 218182_s_at CLDN1 2.011 
 


POOR yes no 
 Good prognosis markers 


209591_s_at BMP7 -3.405 
 


GOOD yes no 
 221671_x_at IGKC -3.118 


 
GOOD yes no 


 







211333_s_at FASLG -3.107 
 


GOOD yes no 
 221651_x_at IGKC -3.097 


 
GOOD yes no 


 211259_s_at BMP7 -3.041 
 


GOOD yes no 
 218872_at TSC -3.019 


 
GOOD yes no 


 209460_at ABAT -3.010 
 


GOOD yes no 
 217455_s_at SSTR2 -2.890 


 
GOOD yes no 


 208479_at KCNA1 -2.883 
 


GOOD yes no 
 205890_s_at UBD -2.860 


 
GOOD yes no 


 221087_s_at APOL3 -2.843 
 


GOOD yes no 
 210321_at GZMH -2.820 


 
GOOD yes no 


 214510_at GPR20 -2.777 
 


GOOD yes no 
 211430_s_at IGH@ -2.761 


 
GOOD yes no 


 214567_s_at XCL1 -2.759 
 


GOOD yes no 
 217143_s_at TRA@ -2.722 


 
GOOD yes no 


 207796_x_at KLRD1 -2.690 
 


GOOD yes no 
 214677_x_at IGL@ -2.688 


 
GOOD yes no 


 203915_at CXCL9 -2.681 
 


GOOD yes no 
 208498_s_at AMY2A -2.679 


 
GOOD yes no 


 219605_at ZNF3 -2.677 
 


GOOD yes no 
 209138_x_at IGLC2 -2.661 


 
GOOD yes no 


 209590_at BMP7 -2.654 
 


GOOD yes no 
 204781_s_at FAS -2.653 


 
GOOD yes no 


 217378_x_at LOC391427 -2.641 
 


GOOD yes no 
 218062_x_at CDC42EP4 -2.631 


 
GOOD yes no 


 212272_at LPIN1 -2.624 
 


GOOD yes no 
 203608_at ALDH5A1 -2.621 


 
GOOD yes no 


 207747_s_at DOK4 -2.619 
 


GOOD yes no 
  


 








Supplementary Table S2: 
 
List of 355 Affymetrix probe sets used for 
metagene calculation: 
 
 
 


Metagene 


Affymetrix ProbeSet GeneSymbol 
DatasetBias 
KruskalFindCohort 


IL-8 204470_at CXCL1 14.8 


IL-8 202859_x_at IL8 35.9 


IL-8 211506_s_at IL8 54 


IL-8 209774_x_at CXCL2 18.1 


VEGF 200632_s_at NDRG1 40 


VEGF 210513_s_at VEGF 46.8 


VEGF 211527_x_at VEGF 72.4 


VEGF 210512_s_at VEGF 45.2 


VEGF 212171_x_at VEGF 60.8 


VEGF 202912_at ADM 26.8 


VEGF 221009_s_at ANGPTL4 36.8 


Proliferation 206102_at KIAA0186 50.1 


Proliferation 209172_s_at CENPF 39.5 


Proliferation 203418_at CCNA2 42.7 


Proliferation 204026_s_at ZWINT 42.2 


Proliferation 203213_at CDC2 56.6 


Proliferation 203214_x_at CDC2 47.6 


Proliferation 210559_s_at CDC2 45.6 


Proliferation 204170_s_at CKS2 79.1 


Proliferation 204092_s_at STK6 55 


Proliferation 208079_s_at STK6 38.9 


Proliferation 203362_s_at MAD2L1 43.9 


Proliferation 213226_at CCNA2 59.5 


Proliferation 202095_s_at BIRC5 61.3 


Proliferation 202613_at CTPS 49 


Proliferation 201291_s_at TOP2A 92.1 


Proliferation 201292_at TOP2A 31.5 


Proliferation 222039_at LOC146909 49.7 


Proliferation 204822_at TTK 52.2 


Proliferation 202954_at UBE2C 31.8 


Proliferation 203755_at BUB1B 32.3 


Proliferation 202705_at CCNB2 35.5 


Proliferation 204962_s_at CENPA 65.2 


Proliferation 209642_at BUB1 46.5 


Proliferation 202870_s_at CDC20 44.2 


Proliferation 209408_at KIF2C 46.5 


Proliferation 221520_s_at CDCA8 50.7 


Proliferation 218039_at NUSAP1 24.5 


Proliferation 206364_at KIF14 47.2 


Proliferation 204641_at NEK2 28 


Proliferation 207828_s_at CENPF 43.6 


Proliferation 219918_s_at ASPM 36.8 


Proliferation 204444_at KIF11 45 


Proliferation 218542_at C10orf3 44.5 


Proliferation 213008_at FLJ10719 67.4 


Proliferation 213007_at FLJ10719 43.9 


Proliferation 218009_s_at PRC1 43.3 


Proliferation 210052_s_at TPX2 11.3 


Proliferation 203764_at DLG7 53 


Proliferation 214710_s_at CCNB1 49 


Proliferation 218355_at KIF4A 60 


Proliferation 202580_x_at FOXM1 35.4 


Proliferation 221436_s_at CDCA3 31.2 


Proliferation 218755_at KIF20A 24.8 


Proliferation 218663_at HCAP-G 49.2 


Proliferation 219148_at PBK 51.1 


Proliferation 218585_s_at RAMP 36.8 


Proliferation 218726_at DKFZp762E1312 52.2 


(continued) 


 


 


Metagene Affymetrix ProbeSet GeneSymbol 
DatasetBias 
KruskalFindCohort 


Basal-like 202341_s_at TRIM2 149.9 


Basal-like 202342_s_at TRIM2 46 


Basal-like 215945_s_at TRIM2 65.5 


Basal-like 203074_at ANXA8 26 


Basal-like 202504_at TRIM29 18.4 


Basal-like 211002_s_at TRIM29 19.6 


Basal-like 204268_at S100A2 26.3 


Basal-like 201820_at KRT5 19.5 


Basal-like 204855_at SERPINB5 31.7 


Basal-like 209351_at KRT14 13.2 


Basal-like 205157_s_at KRT17 19 


Basal-like 212236_x_at KRT17 17.1 


Basal-like 209800_at KRT16 42.2 


Basal-like 209126_x_at KRT6B 26.7 


Basal-like 213680_at KRT6B 19.8 


Basal-like 209125_at KRT6A 26.6 


Basal-like 214580_x_at KRT6A 20.1 


Basal-like 1438_at EPHB3 55.6 


Basal-like 204600_at EPHB3 19.3 


Basal-like 218176_at MAGEF1 64.5 


Basal-like 205044_at GABRP 24.8 


Basal-like 202035_s_at SFRP1 70.3 


Basal-like 202036_s_at SFRP1 51.7 


Basal-like 202037_s_at SFRP1 38.2 


Basal-like 209842_at SOX10 33.6 


Basal-like 220425_x_at ROPN1 39.6 


Basal-like 206560_s_at MIA 47.4 


Basal-like 209843_s_at SOX10 64.4 


Basal-like 220624_s_at ELF5 52.1 


Basal-like 220625_s_at ELF5 38.1 


Basal-like 212730_at DMN 33.5 


Basal-like 219615_s_at KCNK5 21.8 


Basal-like 209504_s_at PLEKHB1 25.3 


Basal-like 213260_at FOXC1 26.7 


Basal-like 218963_s_at KRT23 27.2 


Basal-like 205487_s_at VGLL1 25.3 


Basal-like 215729_s_at VGLL1 30.5 


Claudin-CD24 201650_at KRT19 34.3 


Claudin-CD24 201596_x_at KRT18 29.7 


Claudin-CD24 209008_x_at KRT8 20.4 


Claudin-CD24 209016_s_at KRT7 25.7 


Claudin-CD24 205980_s_at ARHGAP8 76 


Claudin-CD24 37117_at ARHGAP8 52.6 


Claudin-CD24 203953_s_at CLDN3 54 


Claudin-CD24 203954_x_at CLDN3 30.8 


Claudin-CD24 201428_at CLDN4 44.2 


Claudin-CD24 201839_s_at TACSTD1 45.1 


Claudin-CD24 218186_at RAB25 16.1 


Claudin-CD24 201510_at ELF3 13.8 


Claudin-CD24 210827_s_at ELF3 46.7 


Claudin-CD24 208650_s_at CD24 48.9 


Claudin-CD24 209772_s_at CD24 47.8 


Claudin-CD24 208651_x_at CD24 40.9 


Claudin-CD24 209771_x_at CD24 71 


Claudin-CD24 216379_x_at CD24 70.1 


Claudin-CD24 266_s_at CD24 48.5 


Apocrine 204941_s_at ALDH3B2 76.4 


Apocrine 204942_s_at ALDH3B2 36.4 


Apocrine 211110_s_at AR 48.6 


Apocrine 211621_at AR 90.5 


Apocrine 209173_at AGR2 39 


Apocrine 207131_x_at GGT1 49.5 


Apocrine 208284_x_at GGT1 46.6 


Apocrine 209919_x_at GGT1 40.9 


Apocrine 211417_x_at GGT1 57.1 


Apocrine 215603_x_at GGT1 73.9 


Apocrine 211416_x_at GGTLA4 81.7 


Apocrine 206463_s_at DHRS2 57.4 


Apocrine 214079_at DHRS2 65.9 


Apocrine 211682_x_at UGT2B28 20.4 


Apocrine 206714_at ALOX15B 69.3 


Apocrine 206509_at PIP 47.3 


Apocrine 204667_at FOXA1 70.6 


Apocrine 218211_s_at MLPH 74.2 


Apocrine 214451_at TFAP2B 42.3 


Apocrine 204607_at HMGCS2 65.2 


Apocrine 214243_s_at SERHL 32.5 


Apocrine 217276_x_at dJ222E13.1 38.5 


Apocrine 217284_x_at dJ222E13.1 53.1 


Apocrine 213441_x_at SPDEF 48.2 


Apocrine 214404_x_at SPDEF 31.9 


Apocrine 220192_x_at SPDEF 22.8 


Apocrine 215686_x_at TFAP2B 30.1 


(continued) 







 


Metagene Affymetrix ProbeSet GeneSymbol 
DatasetBias 
KruskalFindCohort 


Histone 208583_x_at HIST1H2AJ 55.5 


Histone 208523_x_at HIST1H2BI 44.7 


Histone 209398_at HIST1H1C 26.8 


Histone 208180_s_at H4FH 25.2 


Histone 202708_s_at HIST2H2BE 31.4 


Histone 208546_x_at HIST1H2BH 28.2 


Histone 208490_x_at HIST1H2BF 15.8 


Histone 208527_x_at HIST1H2BE 33.1 


Histone 208579_x_at H2BFS 54.9 


Histone 209806_at HIST1H2BK 20.3 


Histone 209911_x_at HIST1H2BD 46.3 


Histone 222067_x_at HIST1H2BD 17.1 


Histone 214290_s_at HIST2H2AA 17.1 


Histone 218280_x_at HIST2H2AA 18.1 


Histone 215071_s_at HIST1H2AC 18 


Histone 210387_at HIST1H2BG 66.7 


Histone 215779_s_at HIST1H2BG 56.5 


Histone 214469_at HIST1H2AE 21.1 


Histone 214455_at H2BFL 25.6 


Adipocyte 203980_at FABP4 21 


Adipocyte 205913_at PLIN 19.2 


Adipocyte 207175_at ADIPOQ 21.9 


Adipocyte 209612_s_at ADH1B 43.5 


Adipocyte 209613_s_at ADH1B 42.6 


Adipocyte 206488_s_at CD36 36.1 


Adipocyte 209555_s_at CD36 24.6 


Adipocyte 209763_at CHRDL1 55.8 


Stroma 202766_s_at FBN1 114.7 


Stroma 207172_s_at CDH11 127.4 


Stroma 207173_x_at CDH11 139.1 


Stroma 200665_s_at SPARC 115.1 


Stroma 202465_at PCOLCE 151.3 


Stroma 201185_at PRSS11 119.3 


Stroma 201069_at MMP2 130.7 


Stroma 202273_at PDGFRB 170.7 


Stroma 204114_at NID2 136 


Stroma 201792_at AEBP1 136.4 


Stroma 201744_s_at LUM 76.5 


Stroma 201438_at COL6A3 153.1 


Stroma 202310_s_at COL1A1 135.5 


Stroma 202403_s_at COL1A2 107.9 


Stroma 202404_s_at COL1A2 100.2 


Stroma 201852_x_at COL3A1 153.7 


Stroma 215076_s_at COL3A1 115.2 


Stroma 211161_s_at COL3A1 106.2 


Stroma 221729_at COL5A2 118.8 


Stroma 221730_at COL5A2 131.2 


Stroma 202311_s_at COL1A1 129.1 


Stroma 203325_s_at COL5A1 109.9 


Stroma 212488_at COL5A1 127.5 


Stroma 212489_at COL5A1 140 


Stroma 210809_s_at POSTN 86.2 


Stroma 212667_at SPARC 106.6 


Stroma 209596_at DKFZp564I1922 99.6 


Stroma 209955_s_at FAP 100 


Stroma 201893_x_at DCN 113.2 


Stroma 211896_s_at DCN 113.1 


Stroma 211813_x_at DCN 133.7 


Stroma 209335_at DCN 90 


Stroma 213001_at ANGPTL2 144.6 


Stroma 213004_at ANGPTL2 133.1 


Stroma 208851_s_at THY1 108.4 


Stroma 213869_x_at THY1 94.2 


Stroma 213909_at LRRC15 84.9 


Stroma 204619_s_at CSPG2 101.6 


Stroma 204620_s_at CSPG2 125.8 


Stroma 221731_x_at CSPG2 97.8 


Stroma 221541_at LCRISP2 111 


Stroma 211571_s_at CSPG2 185 


Stroma 215646_s_at CSPG2 173.6 


Stroma 211719_x_at FN1 113.2 


Stroma 210495_x_at FN1 121.8 


Stroma 216442_x_at FN1 113 


Stroma 212464_s_at FN1 107.1 


IFN 202411_at IFI27 22.2 


IFN 202086_at MX1 27 


IFN 205483_s_at G1P2 27.1 


IFN 203153_at IFIT1 29.8 


IFN 204747_at IFIT3 32.2 


IFN 213797_at RSAD2 44.9 


IFN 204439_at IFI44L 30.8 


IFN 214453_s_at IFI44 26 


IFN 205552_s_at OAS1 62 


IFN 204972_at OAS2 68.8 


IFN 218400_at OAS3 48.7 


IFN 219352_at HERC6 28.3 


IFN 205660_at OASL 28.5 


IFN 210797_s_at OASL 46.5 


 


Metagene Affymetrix ProbeSet GeneSymbol 
DatasetBias 
KruskalFindCohort 


MHC-1 200905_x_at HLA-E 49.9 


MHC-1 217456_x_at HLA-E 66.5 


MHC-1 210514_x_at HLA-G 20.6 


MHC-1 209140_x_at HLA-B 87.1 


MHC-1 208812_x_at HLA-B 79.9 


MHC-1 216526_x_at HLA-C 67.2 


MHC-1 214459_x_at HLA-C 53.7 


MHC-1 211529_x_at HLA-G 19.4 


MHC-1 211528_x_at HLA-G 43 


MHC-1 208729_x_at HLA-B 40.9 


MHC-1 211911_x_at HLA-B 43.3 


MHC-1 217436_x_at HLA-J 42 


MHC-1 204806_x_at HLA-F 21.7 


MHC-1 221875_x_at HLA-F 26.9 


MHC-1 211799_x_at HLA-A 35.8 


MHC-1 213932_x_at HLA-A 60.9 


MHC-1 215313_x_at HLA-A 63.9 


T-Cell 209083_at CORO1A 65.3 


T-Cell 204891_s_at LCK 44.9 


T-Cell 206666_at GZMK 36.2 


T-Cell 201720_s_at LAPTM5 102 


T-Cell 201721_s_at LAPTM5 46 


T-Cell 204912_at IL10RA 24.1 


T-Cell 206150_at TNFRSF7 49.1 


T-Cell 204563_at SELL 63.7 


T-Cell 209670_at TRA@ 41.6 


T-Cell 204118_at CD48 40.3 


T-Cell 205831_at CD2 36.8 


T-Cell 210915_x_at TRBC1 36.9 


T-Cell 213193_x_at TRBC1 39.6 


T-Cell 213539_at CD3D 50.5 


T-Cell 211796_s_at TRBC1 46.9 


T-Cell 211339_s_at ITK 27.4 


T-Cell 203416_at CD53 30.6 


T-Cell 211742_s_at EVI2B 29.4 


T-Cell 212588_at PTPRC 31.2 


T-Cell 209671_x_at TRA@ 72 


T-Cell 210972_x_at TRA@ 71.2 


T-Cell 211902_x_at TRA@ 87.3 


T-Cell 220330_s_at SAMSN1 32.7 


T-Cell 38149_at KIAA0053 42.6 


T-Cell 219014_at PLAC8 27.7 


T-Cell 204661_at CD52 54.7 


T-Cell 34210_at CD52 37.8 


MHC-2 201137_s_at HLA-DPB1 22.2 


MHC-2 203932_at HLA-DMB 38.9 


MHC-2 209619_at CD74 50.4 


MHC-2 204670_x_at HLA-DRB1 27.2 


MHC-2 208306_x_at HLA-DRB1 31.8 


MHC-2 209312_x_at HLA-DRB1 27.1 


MHC-2 215193_x_at HLA-DRB1 29.8 


MHC-2 208894_at HLA-DRA 35.5 


MHC-2 210982_s_at HLA-DRA 48.6 


MHC-2 211991_s_at HLA-DPA1 50.7 


MHC-2 212671_s_at HLA-DQA1 42 


MHC-2 217478_s_at HLA-DMA 35 


MHC-2 212998_x_at HLA-DQB1 48.1 


MHC-2 211654_x_at HLA-DQB1 29.1 


(continued) 


 


  







Metagene Affymetrix ProbeSet GeneSymbol 
DatasetBias 
KruskalFindCohort 


B-Cell 211639_x_at IGHM 48.5 


B-Cell 211633_x_at IGHG1 65.6 


B-Cell 211641_x_at IGHG1 52.2 


B-Cell 211634_x_at IGHM 45.8 


B-Cell 211635_x_at IGHG3 44.1 


B-Cell 211640_x_at IGHG1 41.1 


B-Cell 211798_x_at IGLJ3 57.6 


B-Cell 211881_x_at IGLJ3 51.5 


B-Cell 211637_x_at LOC388078 51.2 


B-Cell 216491_x_at IGHM 54 


B-Cell 211908_x_at IGHG1 58.8 


B-Cell 211650_x_at IGHG1 46.4 


B-Cell 216510_x_at IGHG1 60.5 


B-Cell 217281_x_at IGHG1 60.3 


B-Cell 211643_x_at IGKC 32.5 


B-Cell 213502_x_at LOC91316 25.6 


B-Cell 211430_s_at IGH@ 21.9 


B-Cell 209138_x_at IGLC2 18.1 


B-Cell 214677_x_at IGL@ 18.1 


B-Cell 215121_x_at IGL@ 21.3 


B-Cell 215379_x_at IGL@ 15 


B-Cell 221651_x_at IGKC 28.2 


B-Cell 221671_x_at IGKC 27 


B-Cell 211644_x_at IGKC 36.9 


B-Cell 214669_x_at LOC440871 19.4 


B-Cell 211645_x_at IGKC 29.4 


B-Cell 215176_x_at IGKC 31.4 


B-Cell 217378_x_at LOC391427 35.1 


B-Cell 217157_x_at IGKC 35.3 


B-Cell 214836_x_at IGKC 20 


B-Cell 216207_x_at IGKV1D-13 27.8 


B-Cell 217480_x_at LOC339562 30.3 


B-Cell 216576_x_at - - - 32.6 


B-Cell 216401_x_at - - - 35.9 


B-Cell 215946_x_at IGLL1 30.5 


B-Cell 214916_x_at IGH@ 46.3 


B-Cell 216557_x_at IGHG1 62.6 


B-Cell 211868_x_at IGHG1 46.5 


B-Cell 216984_x_at IGLJ3 46 


B-Cell 217148_x_at IGLC2 41 


B-Cell 216542_x_at MGC27165 68.6 


B-Cell 214768_x_at IGKC 27.7 


B-Cell 214973_x_at IGHD 54.8 


B-Cell 217235_x_at IGLJ3 44.3 


B-Cell 215949_x_at IGHM 69.1 


B-Cell 214777_at IGKC 39 


B-Cell 217179_x_at IGL@ 26 


Hemoglobin 204419_x_at HBG2 133.7 


Hemoglobin 204848_x_at HBG1 115.9 


Hemoglobin 209116_x_at HBB 164.4 


Hemoglobin 204018_x_at HBA1 158.4 


Hemoglobin 209458_x_at HBA1 154.7 


Hemoglobin 211745_x_at HBA1 150.8 


Hemoglobin 214414_x_at HBA2 152 


Hemoglobin 211696_x_at HBB 155.4 


Hemoglobin 217232_x_at HBB 155.2 


Hemoglobin 217414_x_at HBA2 153.7 


Hemoglobin 211699_x_at HBA1 147.7 


Hemoglobin 213515_x_at HBG2 158.6 


HOXA 206289_at HOXA4 27.4 


HOXA 206847_s_at HOXA7 43.9 


HOXA 209905_at HOXA9 41.1 


HOXA 214651_s_at HOXA9 27.8 


HOXA 213844_at HOXA5 38.2 


HOXA 213147_at HOXA10 30.1 


HOXA 213150_at HOXA10 20.9 


HOXA 213823_at HOXA11 43 


 












 


 


 


 


Supplementary Figure S4: Correlation of the prognostic signatures with metagenes for molecular 


phenotypes in triple negative breast cancer. 


A) The continous score of the 264-probeset signature was correlated with the expression of 16 metagenes 


for molecular phenotypes in the 394 TNBC samples from the finding cohort. Shown is the result from 


hierarchical average linkage clustering based on absolute Pearson correlation. The signature score 


clustered together with VEGF, Histone, and IL-8 metagenes. 


B) The same analysis as in (A) was performed in the validation cohort of 261 independent TNBC samples. In 


this analysis the signature score clustered together with Stroma, Hemoglobin, VEGF, and IL-8 metagenes. 


Of note, however, Stroma and Hemoglobin metagenes are associated with a high dataset bias (see 


Supplementary Figure S5).  


C) The same analysis as in (A) was performed with the 26-probeset signature in the 394 TNBC samples from 


the finding cohort. The 26-probeset signature which was obtained by higher stringency in SAM analysis 


clustered together with IL-8, VEGF, and Histone metagenes. 


D) The same analysis as in (C) was performed with the 26-probest signature in the validation cohort of 261 


samples. Similar as in (C) the 26-probeset signature clustered together with VEGF, IL-8, Proliferation, and 


Histone metagenes. 
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#  R-Version:    R 2.12.1  (2010-12-16)

#  Required input files:
#
# Two files contain the dataset used in the analysis and can
#  be obtained from GEO:
#
#    GSE31519_complete_dataset.txt 
#    GSE31519_TNBC_SampleInfo_BCR.txt 
#   
# How to obtain:
#
# GSE31519_TNBC_SampleInfo_BCR.txt  is available from
# ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE31519/GSE31519%5FTNBC%5FSampleInfo%5FBCR%2Etxt%2Egz
#
# GSE31519_complete_dataset.txt  is available from
# ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE31519/GSE31519%5Fcomplete%5Fdataset%2Etxt%2Egz
#
# This last file from the GEO database has a rather complicated structure with a gap of 23 columns 
#   since it also contains samples from the ArrayExpress database which they have moved to the end.
#   The file is used to rebuild the complete dataset of 579 samples here:
#   

samples <- read.delim("GSE31519_complete_dataset.txt", colClasses= "character", skip=1, nrows=1, header=FALSE)   # read the sample names from row-2
data <- read.delim("GSE31519_complete_dataset.txt", skip=4,header=FALSE)  # read data starting row-5
colnames(data)=t(samples)       # add sample names from row-2 as column names
data=data[,!samples==""]        # remove blank gap-columns with no sample-title in row-2 from expr data
rm(samples)   # delete used variable
rownames(data)=data[,1]     # use first column with Affy IDs as rownames
cd.compl.579=data[,-1]    # remove first column with Affy IDs
rm(data)  # delete used variable
cd.compl.579=cd.compl.579[,sort(colnames(cd.compl.579))]   # sort columns by sample name

header.579 <- read.delim("GSE31519_TNBC_SampleInfo_BCR.txt",colClasses = "character", row.names="SampleNames",h=T)   # all sample information

#
# The following 11 data objects are included in 
#   the R workspace "R_analysis.RData" and referred to 
#   in the respective sections of the analyses:
#
# metagenes.probelists --> probesets of TNBC metagenes from 
#                          Rody et al. 2011, Breast Cancer Res, 
# SAM.delta.table  --> delta table from SAM analysis
# SAMgenes.0p3  -->  264 probesets from delta-0.3-SAM
# SAMgenes.0p5  -->   26 probesets from delta-0.5-SAM
# n235.SAMpoor.probes -->  probeset list of 235 up genes from SAM
#                        with delta 0.3  (poor prognosis markers) 
# n29.SAMgood.probes  -->  probeset list of 29 lo genes from SAM
#                        with delta 0.3  (good prognosis markers)
# sabatier.gl --> gene list of Sabatier et al.
#       source:  Sabatier et al. 2010 DOI 10.1007/s10549-010-0897-9
#                supplementary file 10549_2010_897_MOESM3_ESM.xls
# sdpp.gl   --> gene list of strom derived prognostic predictor
#       source: GeneSigDB Data Release 3 
#               http://compbio.dfci.harvard.edu/genesigdb/
#               signature "18438415-Table2.1" of Finak Nature Med 2008
#               24 EntrezGeneIDs corresp to 35 AffyProbes
# Tesch7.gl  --> gene list of Teschendorff-2008_7_immune-gene-signature
#       source:  Breast Cancer Research 2008, 10:R73
# wound.gl   --> gene list of wound response signature
#       source: GeneSigDB Data Release 3 
#               http://compbio.dfci.harvard.edu/genesigdb/
#               signature "14737219-CSRgenes" of Chang 2005 PNAS
#               592 EnsemblIDs corresp to 847 AffyProbes
# U133A.Affy.Entrez  --> link of Affymetrix probeset and Entrez IDs
#




# Supplementary Figure S1:  Selection of the TNBC finding cohort from multiple datasets based on dataset comparibility

#  Select the n=394 comparable TNBC samples from n=579 TNBC with normalized Affymetrix MAS5 data

#  Variables used:
#  cd.compl.579 ==> chip-data complete (data.frame, 579 samples in columns, 22283 probesets in rows)
#  header.579  ==> sample infos including dataset allocation (data.frame, 579 samples in columns)
#  n.probes ==> number of ProbeSets (rows in cd.compl.579)
#  n.col.cd ==> number of columns/samples in cd.compl.579
#  tcdm.579  ==> transposed chip data matrix
#  t.header.579 ==> transposed sample infos (data.frame)
#  tdsn.579  ==> transposed dataset allocation (numeric vector)
#

n.col.cd=ncol(cd.compl.579)
n.probes=nrow(cd.compl.579)
tdsn.579=as.numeric(t(header.579["datas_new09",]))   # transposed dataset vector
tcdm.579=t(cd.compl.579)   # transposed chip data matrix
t.header.579=as.data.frame(t(header.579))  # transposed sample info header as data.frame
ds.mean=by(tcdm.579, tdsn.579, mean)  # means within individual datasets, 
                                     #  List is sorted by numeric dataset tdsn.579
tcdm.mean=apply(tcdm.579,2,mean)
        #   generates named list of 22283 means, which can be indexed by tcdm.mean[probes]
tcdm.stdev=apply(tcdm.579,2, sd)   # the same for the StdDev


# Calculate comparability metrics for the datasets:
# (calculate sum of squared differences of dataset-mean from total-mean for all probesets)
# Define variables
n.datas=length(ds.mean)   # number of datasets
diff.to.mean= matrix(0,nrow=n.probes,ncol=n.datas) # matrix of differences from mean
nrm.diff.to.mean= matrix(0,nrow=n.probes,ncol=n.datas) # matrix of NORMALIZED diff from mean

for (probes in 1:n.probes)   # loop for all probesets
{

for (i in 1:n.datas)
# calculate for each dataset diff from global-mean of all datasets
# and save in matrix "diff.to.mean"
{
diff.to.mean[probes,i]=ds.mean[[i]][probes]- tcdm.mean[probes]
# again the same but normalize by dividing through StdDev
nrm.diff.to.mean[probes,i]=(ds.mean[[i]][probes]- tcdm.mean[probes]) / tcdm.stdev[probes]
}
}
# calculate squares of differences
squ.diff=diff.to.mean^2
squ.nrm.diff= nrm.diff.to.mean^2
# sum of squared differences by column
sum.squ.diff=apply(na.omit(squ.diff),2,sum)
sum.squ.nrm.diff=apply(na.omit(squ.nrm.diff),2,sum)
#  important: these vectors are still sorted by numeric dataset tdsn.579 !

# summarize results
comparab=data.frame(sort(unique(tdsn.579)),sum.squ.diff,sum.squ.nrm.diff)
names(comparab)=c("dataset","sum.squ.diff","sum.squ.nrm.diff")
sort.comparab=comparab[order(comparab$sum.squ.nrm.diff),]

# integrate normalized comparab data in sample info in t.header.579
for (i in 1:n.col.cd) 
    {t.header.579$comparab_nrm[i]= comparab$sum.squ.nrm.diff[comparab$dataset==tdsn.579[i]]}
# remove temporary variables:
rm(diff.to.mean, nrm.diff.to.mean, ds.mean,tcdm.mean, tcdm.stdev, squ.diff, squ.nrm.diff, sum.squ.diff, sum.squ.nrm.diff)

plot(sort(t.header.579$comparab_nrm),type="l")
abline(8000,0,col="red")


###################################################################################################





#  Select a subset of datasets with lowest comparability metric
# Select a subset of comparab by defining criteria:
compar.subset= subset(comparab, subset= sum.squ.nrm.diff < 8000)
# vector of corresponding datasets:
datas.subset=compar.subset$dataset
# generate logical vector FALSE/TRUE for the complete dataset of 579 TNBC:
subset.index.vector=(tdsn.579 %in% datas.subset)
# query selected samples from transposed chipdata matrix:
tcdm.394=tcdm.579[subset.index.vector , ]
# query  corresponding transposed dataset vector:
tdsn.394=tdsn.579[subset.index.vector]
# query selcted samples from NOT-transposed dataset (and corresponding header and t.header):
cd.compl.394= cd.compl.579[,subset.index.vector]
header.394= header.579[,subset.index.vector]
t.header.394= t.header.579[subset.index.vector,]
  


# Supplementary Figure S2: Analysis of a potential dataset bias among probesets

# Calculate Kruskal-Wallis statistics for all probesets according to their association with the dataset vector among the 394 TNBC samples:

# Variables used:    tcdm.394, tdsn.394, n.probes, cd.compl.394
# Newly generated variables:    kruskal.param

kruskal.result=kruskal.test(tcdm.394[,1],tdsn.394)  # Define variable as "list" by performing test once
kruskal.stat= matrix(0,nrow=n.probes)  # matrix for chi-statistics
kruskal.p=matrix(0,nrow=n.probes)  # matrix for p-values

# loop perfoming kruskal-test for each probeset (chip-data vs. dataset-vector)
# the results of each test are variables of type LIST, which are combined by indexing with [[i]]
for (i in 1:n.probes)
{
kruskal.result[[i]]=kruskal.test(tcdm.394[,i], tdsn.394)   # results as LIST
kruskal.stat[i]=kruskal.result[[i]]$statistic  # read statistics from LIST in matrix
kruskal.p[i]=kruskal.result[[i]]$p.value   # read p-values from LIST in matrix
}
# summarize statistics and p-values and probeset names in one dataframe:
kruskal.param= data.frame(row.names=rownames(cd.compl.394),kruskal.stat,kruskal.p)  # dataframe with results
# remove temporary variables:
rm(kruskal.result, kruskal.stat, kruskal.p)
  
hist(kruskal.param$kruskal.stat,breaks=30,col="dark blue") # histogram for all probesets



###################################################################################################


# Calculation of metagene-values for all 394 samples:
# Variable used from above:    cd.compl.394 , metagenes.probelists 
#
# New variables:
# metagenes.probelists ==>  lists of probesets representing the different metagenes
# n.metagenes ==> number of different metagenes
# metag.means ==> matrix for metagene means of all samples
# cd.probes.c ==> probeset-names as character from  rownames of cd.compl.394


n.metagenes= ncol(metagenes.probelists)
metag.means=matrix(0,ncol= ncol(cd.compl.394),nrow=n.metagenes) # define matrix for results
cd.probes.c =rownames(cd.compl.394)  # probeset-names as character

for (i in 1: n.metagenes)   # loop for metagen calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
# generate logical vector of selected probesets 
metag.subset.index.vector=(cd.probes.c %in% probes.of.metag) 
# calculate metagene-mean using logical vector (for all samples)
metag.mean.TF=by(as.matrix(cd.compl.394),metag.subset.index.vector,mean) 
    # provides mean values for TRUE (metagene probesets) and FALSE (not used)
metag.means[i,]= metag.mean.TF$'TRUE'
}
# Summarize results:
rownames(metag.means)=colnames(metagenes.probelists)
colnames(metag.means)=colnames(cd.compl.394)
metag.df=as.data.frame(t(metag.means))  # transposed as dataframe (to query metagenes by name)
# remove temporary variables:
rm(n.metagenes, metag.means, cd.probes.c, probes.of.metag, metag.subset.index.vector, metag.mean.TF)

# Kruskal-Wallis-stats of metagene-probesets:

metagene.kruskal.stats=vector(mode="list",length=ncol(metagenes.probelists))
names(metagene.kruskal.stats)=colnames(metagenes.probelists)
median.metagene.kruskal.stats=vector(mode = "numeric", length = ncol(metagenes.probelists))
names(median.metagene.kruskal.stats)=colnames(metagenes.probelists)

for (i in 1: ncol(metagenes.probelists))   # loop for kruskal-statistic of metagenes calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
metagene.kruskal.stats[[i]]=kruskal.param$kruskal.stat[rownames(kruskal.param[,]) %in% probes.of.metag]
median.metagene.kruskal.stats[i]=median(metagene.kruskal.stats[[i]])
}

metagene.kruskal =cbind(metagene.kruskal.stats,median.metagene.kruskal.stats)[order(median.metagene.kruskal.stats),]
# remove temporary variables:
rm(metagene.kruskal.stats, median.metagene.kruskal.stats, probes.of.metag, i)
boxplot(metagene.kruskal[,1])

 

#  SAM-Analysis
#
#  Variables used:    tcdm.394,  t.header.394
#
#  to free memory some variables might be temporarily removed for this section:
#     rm(cd.compl.394, cd.compl.579)
#  these variable can be regenerated for later analyses by:
#     cd.compl.394=as.data.frame(t(tcdm.394))
#     cd.compl.579=as.data.frame(t(tcdm.579))


#  extract sample set with FollUp (required for SAM):
follup.index.vector= !(t.header.394$ev120=="")  # indexvector TRUE for 297 with follUp of 394 
tcdm.394.follup=subset(tcdm.394, subset=follup.index.vector)  # extract 297 samples with follup
cdm.follup=t(tcdm.394.follup)          # chipdata of 297 follUp samples re-transposed

patdata.follup=subset(t.header.394, subset=follup.index.vector)  # sample info of 297 with follup
probenames=rownames(cdm.follup)  # All Affy_IDs 
# SAM analysis:
library(samr)
set.seed(84048)
samdata=list(x=cdm.follup, y=as.numeric(as.character(patdata.follup$fu_120)), censoring.status=as.numeric(as.character(patdata.follup$ev120)), geneid=probenames, genenames=probenames)

samr.obj=samr(samdata, resp.type="Survival", nperms=5)   # 10 min for 20 permutations

delta.table<- samr.compute.delta.table(samr.obj)

samr.plot(samr.obj, del=.3)
samr.plot(samr.obj, del=.5)

samr.compute.siggenes.table(samr.obj, 0.3, samdata, delta.table)
samr.compute.siggenes.table(samr.obj, 0.5, samdata, delta.table)

# The results of these analyses are included in the following variables:
#
#  SAM.delta.table --> delta table for SAM using the 297 samples with follUp
#  SAMgenes.0p5  -->  results for delta 0.5:  26 up genes#
#  SAMgenes.0p3  --> results for delta 0.3:  235 up and 29 down genes
# n235.SAMpoor.probes -->  probeset list of 235 up genes from SAM
#                        with delta 0.3  (poor prognosis markers) 
# n29.SAMgood.probes  -->  probeset list of 29 lo genes from SAM
#                        with delta 0.3  (good prognosis markers)


# remove variables:
rm(tcdm.394.follup, cdm.follup, patdata.follup, probenames, follup.index.vector, samdata, delta.table) 
# Suppl.Fig S5:   Analysis of dataset bias of metagenes and the prognostic signatures


#  New variable used: metagenes.probelists 
#  probe set lists of metagenes and prognostic signatures

# Variables used:    metagenes.probelists   kruskal.param
# New generated variables:    metagene.kruskal

metagene.kruskal.stats=vector(mode="list",length=ncol(metagenes.probelists))
names(metagene.kruskal.stats)=colnames(metagenes.probelists)
median.metagene.kruskal.stats=vector(mode = "numeric", length = ncol(metagenes.probelists))
names(median.metagene.kruskal.stats)=colnames(metagenes.probelists)

for (i in 1: ncol(metagenes.probelists))   # loop for kruskal-statistic of metagenes calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
metagene.kruskal.stats[[i]]=kruskal.param$kruskal.stat[rownames(kruskal.param[,]) %in% probes.of.metag]
median.metagene.kruskal.stats[i]=median(metagene.kruskal.stats[[i]])
}

metagene.kruskal =cbind(metagene.kruskal.stats,median.metagene.kruskal.stats)[order(median.metagene.kruskal.stats),]
# remove temporary variables:
rm(metagene.kruskal.stats, median.metagene.kruskal.stats, probes.of.metag, i)

# generate box plot of kruskal-stats of probesets of metagenes:

select.index=!names(metagene.kruskal[,1]) %in% c("SAM_264","SAM_26")
par(mar=c(7,4,4,2))
boxplot(metagene.kruskal[select.index,1], las=2)   # labels perpendicular to axis
 
# generate box plot of kruskal-stats of probesets of prognostic signatures
#    SAM_264 (delta 0.3) and SAM_26 (delta 0.5):

select.index=names(metagene.kruskal[,1]) %in% c("SAM_264","SAM_26")
par(mar=c(7,4,4,2))
boxplot(metagene.kruskal[select.index,1], las=2)   # labels perpendicular to axis
  
 
#  Supplementary Figure S6: Correlation of individual markers from the prognostic signatures with known metagenes in triple negative breast cancer 

# Variables used:
#  cd.compl.394 , n235.SAMpoor.probes , n29.SAMgood.probes

#  Supplementary Figure S6-C:   235 up genes, correlation-cutoff 0.3

n235.SAMpoor.probes_data=cd.compl.394[rownames(cd.compl.394) %in% n235.SAMpoor.probes[,],]
#calculate correlation of probesets to metagenes:
chipdata=n235.SAMpoor.probes_data 
length_chipdata=length(chipdata)
#  transpose chipdata
t.chipdata=as.data.frame(t(chipdata))
Cor.metagenes=matrix(data=NA, nrow=length(t.chipdata), ncol=0)  # define variable Cor.metagenes

# loop for selection of metagene
for (SelMetag  in c("IL8", "VEGF", "Prolif", "Basal", "CLDN3", "Apocrine", "Histone", "Adipocyte", "Stroma", "IFN", "MHC1", "T.Cell", "MHC2", "B.Cell", "Hemoglobin", "HOX"))
 {
  #  retrieve data of selected metagene 
  SelectedMetag.data= metag.df[SelMetag]
  #  Pearson-Korrelation of selected metagene and all probesets from list
  temp.cor=cor(SelectedMetag.data,t.chipdata,use="pairwise.complete.obs")
  Cor.metagenes=cbind(Cor.metagenes,t(temp.cor))
    # End of loop, use next metagene with already transposed chipdata
  }
 n235.SAMpoor.probes_Cor=Cor.metagenes

#  assign each probeset to metagene with highest correlation:
CorrMatrix= n235.SAMpoor.probes_Cor
# determin maximal absolute correlation for each probeset:
MaxAbsCorr= as.numeric(by(abs(CorrMatrix),c(1:nrow(CorrMatrix)),max))
# variablen definieren
indexvect=vector(mode='logical',length=ncol(CorrMatrix))
names=colnames(CorrMatrix)
namelist=vector(mode='character',length=nrow(CorrMatrix))
MaxCorr=vector(mode='numeric', length=nrow(CorrMatrix))

for (i in c(1:nrow(CorrMatrix))) 
   { indexvect= abs(CorrMatrix[i,])==MaxAbsCorr[i]
     namelist[i]=names[indexvect]
     MaxCorr[i]=CorrMatrix[i,indexvect]
   }

# additional number-coded-metagene-list for sorting
namelist.coded=namelist
metag.sort=c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")
for (i in c(1:16))
{ namelist.coded[grep(metag.sort[i], namelist)]=i
}
    # replace each metagene as ordered by number
n235.SAMpoor.probes_Cor = data.frame(n235.SAMpoor.probes_Cor, namelist, namelist.coded, MaxCorr, MaxAbsCorr, stringsAsFactors = FALSE)

# Generate probeset output table:

corr.cutoff=0.3   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n235.SAMpoor.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n235.SAMpoor.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 1))

 
#  Supplementary Figure S6-A:   235 up genes, correlation-cutoff 0.3
# Generate probeset output table:

corr.cutoff=0.2   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n235.SAMpoor.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n235.SAMpoor.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 4))
 

#  Supplementary Figure S6-D:   29 lo genes, correlation-cutoff 0.3

n29.SAMgood.probes_data=cd.compl.394[rownames(cd.compl.394) %in% n29.SAMgood.probes[,],]
#calculate correlation of probesets to metagenes (for 3 different lists of bimodal probesets):
chipdata=n29.SAMgood.probes_data 
length_chipdata=length(chipdata)
#  transpose chipdata
t.chipdata=as.data.frame(t(chipdata))
Cor.metagenes=matrix(data=NA, nrow=length(t.chipdata), ncol=0)  # define variable Cor.metagenes

# loop for selection of metagene
for (SelMetag  in c("IL8", "VEGF", "Prolif", "Basal", "CLDN3", "Apocrine", "Histone", "Adipocyte", "Stroma", "IFN", "MHC1", "T.Cell", "MHC2", "B.Cell", "Hemoglobin", "HOX"))
 {
  #  retrieve data of selected metagene 
  SelectedMetag.data= metag.df[SelMetag]
  #  Pearson-Korrelation of selected metagene and all probesets from list
  temp.cor=cor(SelectedMetag.data,t.chipdata,use="pairwise.complete.obs")
  Cor.metagenes=cbind(Cor.metagenes,t(temp.cor))
    # End of loop, use next metagene with already transposed chipdata
  }
 n29.SAMgood.probes_Cor=Cor.metagenes

#  assign each probeset to metagene with highest correlation:
CorrMatrix= n29.SAMgood.probes_Cor
# determin maximal absolute correlation for each probeset:
MaxAbsCorr= as.numeric(by(abs(CorrMatrix),c(1:nrow(CorrMatrix)),max))
# variablen definieren
indexvect=vector(mode='logical',length=ncol(CorrMatrix))
names=colnames(CorrMatrix)
namelist=vector(mode='character',length=nrow(CorrMatrix))
MaxCorr=vector(mode='numeric', length=nrow(CorrMatrix))

for (i in c(1:nrow(CorrMatrix))) 
   { indexvect= abs(CorrMatrix[i,])==MaxAbsCorr[i]
     namelist[i]=names[indexvect]
     MaxCorr[i]=CorrMatrix[i,indexvect]
   }

# additional number-coded-metagene-list for sorting
namelist.coded=namelist
metag.sort=c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")
for (i in c(1:16))
{ namelist.coded[grep(metag.sort[i], namelist)]=i
}
    # replace each metagene as ordered by number
n29.SAMgood.probes_Cor = data.frame(n29.SAMgood.probes_Cor, namelist, namelist.coded, MaxCorr, MaxAbsCorr, stringsAsFactors = FALSE)

# Generate probeset output table:

corr.cutoff=0.3   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n29.SAMgood.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n29.SAMgood.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 1))

 
#  Supplementary Figure S6-B:   29 lo genes, correlation-cutoff 0.2
# Generate probeset output table:

corr.cutoff=0.2   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n29.SAMgood.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n29.SAMgood.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 4))
 


 
# Figure 3: Relationship of the 264 probeset signature to the 16 metagenes and seven known prognostic signatures in TNBC
#
# Variables used:
# tcdm.394
# SAMgenes.0p3  ,  SAMgenes.0p5 , 
# n297TNBC_n26SAM_siggenes_0p5_up.txt , U133A.Affy.Entrez 
# sabatier.gl , sdpp.gl , Tesch7.gl , wound.gl
#

library(genefu)
library(simpleaffy)  # for pearson-corr based clustering

#  calculate several signature scores from tcdm.394

sabatier.score <- sig.score(x= sabatier.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

Tesch7.score <- sig.score(x= Tesch7.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

sdpp.score <- sig.score(x= sdpp.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

wound.score <- sig.score(x= wound.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

## make of ggi signature a gene list
ggi.gl <- cbind(sig.ggi[ ,c("probe", "EntrezGene.ID")], "coefficient"=ifelse(sig.ggi[ ,"grade"] == 1, -1, 1))
ggi.score <- sig.score(x= ggi.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

gene70.score <- gene70(data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=TRUE, verbose = TRUE)

rs.394 <- oncotypedx(data= tcdm.394, annot= U133A.Affy.Entrez, do.mapping=FALSE, verbose=TRUE)

#  calculate SAM-prognostic-signature scores from tcdm.394 (Delta 0.3)

SAMchipdata= cd.compl.394 [rownames(cd.compl.394)%in%rownames(SAMgenes.0p3), ] [order(rownames(SAMgenes.0p3)),]   #  select the expression data of genes from the SAM-list

SAMscore= SAMchipdata [order(rownames(SAMchipdata)), ] *SAMgenes.0p3[order(rownames(SAMgenes.0p3)), ]$Score.d.   # product of expression values and SAM-Score as weighted score
SAMmean.264=mean(SAMscore)  # generates a named list of means of weighted SAM-scores for each sample
SAM_394.264=as.data.frame(SAMmean.264)

#  plot a cluster dendrogram of SAM-score and gene signatures in n394 sample cohort:

plot(standard.pearson(cbind(metag.df,sabatier.score$score, Tesch7.score$score, sdpp.score$score, wound.score$score, ggi.score$score, gene70.score$score, rs.394$score, SAM_394.264)))
 


#  Supplementary Figure S7: Relationship of the 26 probeset signature to the 16 metagenes and seven known prognostic signatures in TNBC

#   use alternative list of 26 stringent SAM-genes from delta 0.5
#    in analysis similar as above:
SAMscore= SAMchipdata[order(rownames(SAMchipdata)), ]* SAMgenes.0p5 [order (rownames (SAMgenes.0p5)), ]$Score.d.
SAMmean.26=mean(SAMscore)
SAM_394.26=as.data.frame(SAMmean.26)


#  plot a cluster dendrogram of SAM-score and gene signatures in n394 sample cohort:

plot(standard.pearson(cbind(metag.df,sabatier.score$score, Tesch7.score$score, sdpp.score$score, wound.score$score, ggi.score$score, gene70.score$score, rs.394$score, SAM_394.26)))
 





 


 


 
 
 
 


 


 


Supplementary Figure S5:  Analysis of dataset bias of metagenes and the prognostic signatures 


A) The dependence of earch probeset  from  the U133A array on  the dataset vector was 
analyzed  using  the  standard  Kruskal‐Wallis  rank  test  in  the  finding  cohort  of  394 
samples (see Suppl. Fig. S2). Box plots are shown for the Kruskal‐Wallis statistics of the 
probesets of each metagene on the  left and for the two prognostic signatures on the 
right. The highest dataset bias was observed  for Stroma and Hemoglobin metagenes 
which  is  related  to different applied biopsy methods  (fine needle biopsy  vs.  surgical 
resection). 


B) The 261 samples from the validation cohort were used to calculate the Kruskal‐Wallis 
rank  sum  statistics  for  all  probesets.  Again  box  plots  are  shown  as  in  (A),  but  the 
Kruskal‐Wallis  statistics  from  the  validation  cohort were  applied.  Several metagenes 
are characterized by higher bias in the validation cohort. 
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Poor_Progn

		Suppl. Table S3a: SAM-Result Poor Prognosis Marker

		Affy_ID		GeneSymbol		Numerator(r)		Score(d)		Denominator(s+s0)		q-value(%)		264probe_Signature_FDR_25%		26probe_Signature_FDR_3.5%		Kruskal-Wallis rank sum statistics		Max. correlation to metagene		Assigned to metagene (corr. cutoff 0.2)

		211506_s_at		IL8		0.224		3.754		0.060		0.000		included		included		54		0.818		IL8

		211708_s_at		SCD		0.210		3.377		0.062		0.000		included		included		102.6		0.342		Apocrine

		39249_at		AQP3		0.164		3.308		0.050		0.000		included		included		23.1		0.372		Apocrine

		202859_x_at		IL8		0.184		3.299		0.056		0.000		included		included		35.9		0.874		IL8

		202627_s_at		SERPINE1		0.132		3.136		0.042		0.000		included		included		143.2		0.679		Stroma

		212909_at		LYPDC1		0.141		3.118		0.045		0.000		included		included		28.9		0.248		Prolif

		200737_at		PGK1		0.091		3.090		0.029		0.000		included		included		59.7		0.435		VEGF

		204344_s_at		SEC23A		0.148		3.075		0.048		0.000		included		included		155.3		0.303		Stroma

		205810_s_at		WASL		0.138		3.071		0.045		0.000		included		included		112.6		-0.243		HOX

		217356_s_at		PGK1		0.109		3.031		0.036		0.000		included		included		95		0.357		VEGF

		215779_s_at		HIST1H2BG		0.160		3.017		0.053		0.000		included		included		56.5		0.807		Histone

		212344_at		SULF1		0.119		3.008		0.039		0.000		included		included		128.7		0.732		Stroma

		209875_s_at		SPP1		0.141		3.002		0.047		0.000		included		included		37.1		0.407		VEGF

		219434_at		TREM1		0.128		2.982		0.043		0.000		included		included		33.1		0.457		IL8

		219508_at		GCNT3		0.118		2.966		0.040		0.000		included		included		32.2		0.094		unclassified

		208881_x_at		IDI1		0.095		2.959		0.032		0.000		included		included		67.9		0.390		Histone

		215427_s_at		ZCCHC14		0.106		2.958		0.036		0.000		included		included		58.4		0.170		unclassified

		214603_at		MAGEA2		0.218		2.956		0.074		0.000		included		included		22.5		0.083		unclassified

		219875_s_at		PNAS-4		0.143		2.951		0.048		0.000		included		included		156.6		0.215		Histone

		204083_s_at		TPM2		0.120		2.948		0.041		0.000		included		included		81.1		0.520		Stroma

		218468_s_at		GREM1		0.131		2.937		0.045		0.000		included		included		73.2		0.671		Stroma

		204615_x_at		IDI1		0.096		2.902		0.033		0.000		included		included		64.9		0.391		Histone

		212354_at		SULF1		0.108		2.858		0.038		3.454		included		included		96.1		0.770		Stroma

		218469_at		GREM1		0.106		2.836		0.037		3.454		included		included		66.2		0.688		Stroma

		212353_at		SULF1		0.104		2.809		0.037		3.454		included		included		86.4		0.782		Stroma

		202497_x_at		SLC2A3		0.128		2.797		0.046		3.454		included		included		68.1		0.344		IL8

		202539_s_at		HMGCR		0.068		2.745		0.025		7.741		included		no		37		0.373		Apocrine

		214522_x_at		HIST1H3D		0.149		2.745		0.054		7.741		included		no		50.5		0.704		Histone

		212942_s_at		KIAA1199		0.117		2.733		0.043		7.741		included		no		52.2		0.532		Stroma

		219773_at		NOX4		0.090		2.693		0.033		7.741		included		no		73.9		0.686		Stroma

		205680_at		MMP10		0.126		2.664		0.047		11.225		included		no		20.9		0.260		Stroma

		202912_at		ADM		0.106		2.656		0.040		11.225		included		no		26.8		0.741		VEGF

		201108_s_at		THBS1		0.098		2.654		0.037		11.225		included		no		101.1		0.598		Stroma

		210387_at		HIST1H2BG		0.146		2.653		0.055		11.225		included		no		66.7		0.756		Histone

		205227_at		IL1RAP		0.111		2.648		0.042		11.225		included		no		26.7		0.283		IL8

		201695_s_at		NP		0.065		2.645		0.025		11.225		included		no		52.1		0.253		Prolif

		217073_x_at		APOA1		0.089		2.595		0.034		11.225		included		no		60.4		-0.158		unclassified

		201109_s_at		THBS1		0.107		2.595		0.041		11.225		included		no		76.1		0.591		Stroma

		215446_s_at		LOX		0.099		2.593		0.038		11.225		included		no		66.1		0.756		Stroma

		205443_at		SNAPC1		0.067		2.592		0.026		11.225		included		no		58.5		0.231		VEGF

		209978_s_at		LPA		0.101		2.591		0.039		11.225		included		no		54.3		-0.128		unclassified

		201506_at		TGFBI		0.091		2.571		0.035		11.225		included		no		64.3		0.596		Stroma

		208577_at		HIST1H3C		0.086		2.569		0.034		11.225		included		no		39.2		-0.265		B.Cell

		219927_at		C14orf111		0.130		2.552		0.051		13.815		included		no		150.7		0.166		unclassified

		212210_at		DKFZP586J0619		0.107		2.539		0.042		13.815		included		no		77.6		0.170		unclassified

		202134_s_at		WWTR1		0.107		2.527		0.043		13.815		included		no		45.3		0.396		Basal

		211162_x_at		SCD		0.140		2.526		0.055		13.815		included		no		108.2		0.339		Apocrine

		218073_s_at		FLJ10407		0.073		2.524		0.029		13.815		included		no		51.7		0.538		Prolif

		212887_at		SEC23A		0.068		2.524		0.027		13.815		included		no		79.5		0.516		Stroma

		206354_at		SLCO1B3		0.106		2.522		0.042		13.815		included		no		48.1		0.111		unclassified

		201324_at		EMP1		0.089		2.520		0.035		13.815		included		no		19.7		0.357		Stroma

		212902_at		SEC24A		0.064		2.517		0.026		13.815		included		no		83.9		0.305		Histone

		214978_s_at		PPFIA4		0.112		2.512		0.045		13.815		included		no		30.2		0.497		VEGF

		204338_s_at		RGS4		0.137		2.511		0.055		13.815		included		no		129.2		0.291		Stroma

		210089_s_at		LAMA4		0.117		2.502		0.047		13.815		included		no		90		0.338		Stroma

		214580_x_at		KRT6A		0.180		2.502		0.072		13.815		included		no		20.1		0.307		IL8

		39248_at		AQP3		0.131		2.499		0.052		13.815		included		no		14.3		0.387		Apocrine

		214725_at		RPESP		0.119		2.496		0.048		13.815		included		no		19.7		-0.205		B.Cell

		219104_at		RNF141		0.077		2.492		0.031		13.815		included		no		50		0.226		Apocrine

		211840_s_at		PDE4D		0.098		2.489		0.039		13.815		included		no		37.9		0.095		unclassified

		200738_s_at		PGK1		0.061		2.482		0.024		13.815		included		no		88.1		0.464		VEGF

		203099_s_at		CDYL		0.138		2.480		0.056		13.815		included		no		121.5		0.247		Prolif

		207933_at		ZP2		0.082		2.477		0.033		13.815		included		no		56.6		0.249		Apocrine

		202604_x_at		ADAM10		0.059		2.476		0.024		13.815		included		no		80.5		0.218		IL8

		221291_at		ULBP2		0.118		2.472		0.048		13.815		included		no		102.1		0.253		IL8

		214455_at		H2BFL		0.148		2.464		0.060		13.815		included		no		25.6		0.777		Histone

		210431_at		ALPPL2		0.078		2.463		0.031		13.815		included		no		78.3		0.127		unclassified

		210845_s_at		PLAUR		0.066		2.454		0.027		14.967		included		no		36		0.442		IL8

		211160_x_at		ACTN1		0.072		2.440		0.030		14.967		included		no		85.6		0.495		Stroma

		208547_at		HIST1H2BB		0.099		2.425		0.041		14.967		included		no		61.1		0.539		Histone

		219837_s_at		CYTL1		0.112		2.414		0.047		14.967		included		no		42		-0.384		CLDN3

		201037_at		PFKP		0.092		2.409		0.038		14.967		included		no		38.6		0.402		Prolif

		200989_at		HIF1A		0.054		2.405		0.022		14.967		included		no		60.8		0.365		Stroma

		208490_x_at		HIST1H2BF		0.084		2.397		0.035		14.967		included		no		15.8		0.906		Histone

		204298_s_at		LOX		0.098		2.387		0.041		16.648		included		no		87.5		0.557		Stroma

		201888_s_at		IL13RA1		0.069		2.387		0.029		16.648		included		no		55.8		0.345		Apocrine

		220768_s_at		CSNK1G3		0.050		2.386		0.021		16.648		included		no		111.3		0.157		unclassified

		210405_x_at		TNFRSF10B		0.095		2.383		0.040		16.648		included		no		71.3		-0.183		unclassified

		206315_at		CRLF1		0.163		2.382		0.069		16.648		included		no		54		0.268		Basal

		217911_s_at		BAG3		0.055		2.378		0.023		16.648		included		no		81.3		-0.347		MHC1

		219886_at		LRRIQ2		0.087		2.369		0.037		16.648		included		no		51.8		0.208		Prolif

		202628_s_at		SERPINE1		0.106		2.369		0.045		16.648		included		no		138.4		0.694		Stroma

		209305_s_at		GADD45B		0.069		2.366		0.029		16.648		included		no		80.1		-0.308		Prolif

		210995_s_at		TRIM23		0.085		2.365		0.036		16.648		included		no		72.9		0.129		unclassified

		206409_at		TIAM1		0.086		2.362		0.036		16.648		included		no		49.3		-0.171		unclassified

		201325_s_at		EMP1		0.085		2.359		0.036		16.648		included		no		30.9		0.342		Stroma

		219366_at		AVEN		0.055		2.357		0.023		16.648		included		no		70.5		-0.232		Hemoglobin

		210435_at		NBR2		0.118		2.355		0.050		16.648		included		no		59.3		-0.140		unclassified

		205199_at		CA9		0.097		2.350		0.041		16.648		included		no		26.4		0.492		VEGF

		209803_s_at		PHLDA2		0.097		2.341		0.042		16.648		included		no		27.2		0.281		IL8

		205499_at		SRPX2		0.077		2.334		0.033		16.648		included		no		62		0.718		Stroma

		214216_s_at		KIAA0217		0.135		2.330		0.058		16.648		included		no		151.5		-0.301		HOX

		217834_s_at		SYNCRIP		0.067		2.321		0.029		16.648		included		no		67.9		0.583		Prolif

		204883_s_at		HUS1		0.083		2.311		0.036		16.648		included		no		87.7		0.255		Prolif

		208527_x_at		HIST1H2BE		0.073		2.305		0.032		19.072		included		no		33.1		0.920		Histone

		208129_x_at		RUNX1		0.063		2.303		0.027		19.072		included		no		68.3		0.260		VEGF

		214612_x_at		MAGEA6		0.196		2.302		0.085		19.072		included		no		19.8		-0.131		unclassified

		215488_at		VMD2		0.076		2.299		0.033		19.072		included		no		75.4		-0.158		unclassified

		206512_at		U2AF1L1		0.086		2.298		0.038		19.072		included		no		103.9		-0.081		unclassified

		217428_s_at		COL10A1		0.130		2.292		0.057		19.072		included		no		72		0.740		Stroma

		216796_s_at		- - -		0.066		2.290		0.029		19.072		included		no		102.2		-0.119		unclassified

		208427_s_at		ELAVL2		0.115		2.284		0.051		19.072		included		no		41.3		0.274		Prolif

		213506_at		F2RL1		0.097		2.283		0.043		19.072		included		no		13		0.313		Apocrine

		208180_s_at		H4FH		0.099		2.282		0.043		19.072		included		no		25.2		0.822		Histone

		215997_s_at		CUL4B		0.057		2.282		0.025		19.072		included		no		105.2		0.196		unclassified

		203000_at		STMN2		0.121		2.282		0.053		19.072		included		no		72.8		0.293		Stroma

		202388_at		RGS2		0.099		2.278		0.044		19.072		included		no		21.7		-0.210		IFN

		205523_at		HAPLN1		0.157		2.278		0.069		19.072		included		no		42.4		0.285		VEGF

		217675_at		LOC201501		0.084		2.273		0.037		19.072		included		no		114.2		0.215		VEGF

		203393_at		HES1		0.072		2.271		0.032		19.072		included		no		65.5		-0.136		unclassified

		214702_at		FN1		0.101		2.268		0.045		19.072		included		no		90.7		0.451		Stroma

		209601_at		ACOX1		0.063		2.268		0.028		19.072		included		no		22.1		-0.116		unclassified

		204475_at		MMP1		0.187		2.266		0.083		19.072		included		no		51.8		0.370		Stroma

		220623_s_at		TSGA10		0.089		2.258		0.040		19.072		included		no		23.5		0.197		unclassified

		216729_at		- - -		0.097		2.252		0.043		19.072		included		no		77.9		-0.123		unclassified

		210990_s_at		LAMA4		0.084		2.251		0.037		19.072		included		no		77		-0.328		Prolif

		210257_x_at		CUL4B		0.054		2.246		0.024		19.072		included		no		116.2		0.144		unclassified

		220759_at		FAM12B		0.088		2.242		0.039		21.089		included		no		38.1		0.417		Apocrine

		212543_at		AIM1		0.066		2.241		0.030		21.089		included		no		13.8		0.308		Apocrine

		219856_at		SARG		0.148		2.240		0.066		21.089		included		no		41.4		0.332		CLDN3

		207696_at		FUT9		0.089		2.238		0.040		21.089		included		no		38.1		-0.172		unclassified

		220031_at		ZA20D1		0.068		2.237		0.030		21.089		included		no		48.7		-0.122		unclassified

		201110_s_at		THBS1		0.088		2.232		0.040		21.089		included		no		68.4		0.593		Stroma

		208394_x_at		ESM1		0.065		2.225		0.029		21.089		included		no		65.4		0.406		VEGF

		215649_s_at		MVK		0.084		2.218		0.038		21.089		included		no		89.1		0.230		Histone

		206686_at		PDK1		0.117		2.206		0.053		21.089		included		no		137.4		0.295		VEGF

		206547_s_at		PPEF1		0.083		2.203		0.038		21.089		included		no		61.5		0.382		Stroma

		221679_s_at		ABHD6		0.085		2.200		0.039		21.089		included		no		125		-0.190		unclassified

		204337_at		RGS4		0.076		2.196		0.035		21.089		included		no		62.7		0.559		Stroma

		210233_at		IL1RAP		0.113		2.191		0.051		21.089		included		no		20.1		0.206		IL8

		201170_s_at		BHLHB2		0.062		2.185		0.028		22.601		included		no		63.9		0.387		Stroma

		211338_at		IFNA2		0.095		2.185		0.044		22.601		included		no		26.8		-0.228		MHC2

		216650_at		LOC442165		0.101		2.184		0.046		22.601		included		no		104.1		-0.260		Stroma

		201903_at		UQCRC1		0.051		2.179		0.023		22.601		included		no		66.4		0.241		Histone

		202740_at		ACY1		0.058		2.179		0.027		22.601		included		no		36.8		0.401		Apocrine

		208523_x_at		HIST1H2BI		0.080		2.175		0.037		22.601		included		no		44.7		0.776		Histone

		208487_at		LMX1B		0.062		2.173		0.029		22.601		included		no		84.3		-0.099		unclassified

		207370_at		IBSP		0.098		2.171		0.045		22.601		included		no		95.1		0.237		VEGF

		206113_s_at		RAB5A		0.065		2.171		0.030		22.601		included		no		179		0.211		Histone

		215733_x_at		CTAG2		0.160		2.169		0.074		22.601		included		no		66.7		0.199		unclassified

		210805_x_at		RUNX1		0.073		2.168		0.034		22.601		included		no		76.6		0.251		VEGF

		205924_at		RAB3B		0.091		2.163		0.042		22.601		included		no		33		0.457		Apocrine

		216672_s_at		MYT1L		0.075		2.153		0.035		22.601		included		no		19.1		-0.127		unclassified

		206569_at		IL24		0.090		2.152		0.042		22.601		included		no		85.1		0.197		unclassified

		211617_at		ALDOAP2		0.088		2.151		0.041		22.601		included		no		59.9		-0.089		unclassified

		222219_s_at		TLE6		0.067		2.150		0.031		22.601		included		no		33.9		0.173		unclassified

		207328_at		ALOX15		0.084		2.149		0.039		22.601		included		no		41.8		0.250		Apocrine

		202363_at		SPOCK		0.082		2.147		0.038		22.601		included		no		75.9		0.751		Stroma

		202543_s_at		GMFB		0.057		2.147		0.027		22.601		included		no		70.3		0.265		Prolif

		213563_s_at		GCP2		0.069		2.145		0.032		22.601		included		no		55.6		-0.195		unclassified

		216268_s_at		JAG1		0.069		2.142		0.032		22.601		included		no		66		0.486		Stroma

		210874_s_at		NAT6		0.074		2.139		0.035		22.601		included		no		42.8		-0.121		unclassified

		209101_at		CTGF		0.098		2.139		0.046		22.601		included		no		71.6		0.681		Stroma

		211758_x_at		TXNDC9		0.047		2.139		0.022		22.601		included		no		46.6		0.244		Prolif

		201559_s_at		CLIC4		0.079		2.137		0.037		22.601		included		no		170.8		0.226		B.Cell

		213640_s_at		LOX		0.119		2.133		0.056		22.601		included		no		120.1		0.343		Stroma

		206788_s_at		CBFB		0.076		2.133		0.035		22.601		included		no		110		-0.220		HOX

		219232_s_at		EGLN3		0.075		2.133		0.035		22.601		included		no		35.7		0.388		Apocrine

		219328_at		DDX31		0.094		2.129		0.044		22.601		included		no		106		-0.204		Apocrine

		202540_s_at		HMGCR		0.053		2.128		0.025		22.601		included		no		53.6		-0.354		MHC1

		209398_at		HIST1H1C		0.092		2.128		0.043		22.601		included		no		26.8		0.813		Histone

		215574_at		- - -		0.080		2.124		0.038		22.601		included		no		61.4		-0.180		unclassified

		218036_x_at		NMD3		0.067		2.121		0.031		22.601		included		no		111.7		0.201		Histone

		210750_s_at		DLGAP1		0.084		2.118		0.040		22.601		included		no		31.2		0.117		unclassified

		40524_at		PTPN21		0.075		2.117		0.035		22.601		included		no		36.5		-0.312		T.Cell

		201275_at		FDPS		0.058		2.113		0.027		22.601		included		no		116.8		0.478		Prolif

		204614_at		SERPINB2		0.116		2.112		0.055		22.601		included		no		15.6		0.258		Basal

		201043_s_at		ANP32A		0.095		2.109		0.045		22.601		included		no		178.1		-0.143		unclassified

		201091_s_at		CBX3		0.057		2.108		0.027		22.601		included		no		107.7		0.389		Prolif

		37512_at		RODH		0.084		2.106		0.040		22.601		included		no		50.6		0.354		Stroma

		203108_at		GPCR5A		0.149		2.105		0.071		22.601		included		no		19.2		0.459		CLDN3

		219948_x_at		FLJ21934		0.123		2.105		0.059		22.601		included		no		38.8		0.147		unclassified

		215646_s_at		CSPG2		0.115		2.098		0.055		22.601		included		no		173.6		0.752		Stroma

		213983_s_at		SCC-112		0.092		2.098		0.044		22.601		included		no		60.9		0.184		unclassified

		202057_at		KPNA1		0.069		2.098		0.033		22.601		included		no		88.5		-0.236		MHC1

		208613_s_at		FLNB		0.073		2.097		0.035		22.601		included		no		25.3		0.432		VEGF

		220003_at		FLJ11004		0.086		2.095		0.041		22.601		included		no		41.7		-0.102		unclassified

		201208_s_at		TNFAIP1		0.079		2.095		0.037		22.601		included		no		98.3		0.211		IL8

		209822_s_at		VLDLR		0.062		2.095		0.029		22.601		included		no		26.9		0.298		VEGF

		209909_s_at		TGFB2		0.105		2.092		0.050		22.601		included		no		32.5		0.187		unclassified

		210467_x_at		MAGEA12		0.114		2.088		0.055		22.601		included		no		64.2		-0.119		unclassified

		215432_at		BUCS1		0.100		2.085		0.048		22.601		included		no		22.5		0.540		Apocrine

		209122_at		ADFP		0.073		2.084		0.035		22.601		included		no		66.6		0.251		VEGF

		210196_s_at		PSG1		0.103		2.083		0.049		22.601		included		no		41.8		-0.236		Stroma

		210876_at		ANXA2		0.063		2.081		0.030		22.601		included		no		54.3		0.189		unclassified

		208546_x_at		HIST1H2BH		0.099		2.079		0.048		22.601		included		no		28.2		0.847		Histone

		216414_at		- - -		0.068		2.079		0.033		22.601		included		no		69.1		-0.106		unclassified

		212812_at		- - -		0.059		2.078		0.029		22.601		included		no		41.8		-0.336		MHC1

		219733_s_at		SLC27A5		0.087		2.078		0.042		22.601		included		no		28.7		0.284		Prolif

		215254_at		DSCR1		0.091		2.074		0.044		22.601		included		no		84.6		-0.226		T.Cell

		207319_s_at		CDC2L5		0.060		2.070		0.029		22.601		included		no		170.7		0.173		unclassified

		211668_s_at		PLAU		0.078		2.068		0.038		22.601		included		no		111.6		0.585		Stroma

		201792_at		AEBP1		0.081		2.066		0.039		22.601		included		no		136.4		0.896		Stroma

		202238_s_at		NNMT		0.083		2.065		0.040		26.367		included		no		110.7		0.716		Stroma

		219356_s_at		SNF7DC2		0.060		2.060		0.029		26.367		included		no		62.9		0.454		IFN

		210904_s_at		IL13RA1		0.076		2.059		0.037		26.367		included		no		143		0.344		Apocrine

		221552_at		ABHD6		0.074		2.059		0.036		26.367		included		no		53.8		0.307		Apocrine

		221009_s_at		ANGPTL4		0.094		2.058		0.046		26.367		included		no		36.8		0.628		VEGF

		214968_at		DDX51		0.083		2.055		0.041		26.367		included		no		136.2		-0.132		unclassified

		201196_s_at		AMD1		0.063		2.055		0.031		26.367		included		no		51.8		0.475		Prolif

		212444_at		- - -		0.134		2.054		0.065		26.367		included		no		27		0.375		CLDN3

		204845_s_at		ENPEP		0.077		2.053		0.038		26.367		included		no		64.7		0.372		Stroma

		208496_x_at		HIST1H3G		0.108		2.053		0.053		26.367		included		no		44.5		0.657		Histone

		215464_s_at		TAX1BP3		0.050		2.052		0.024		26.367		included		no		74.6		0.383		Stroma

		212797_at		SORT1		0.099		2.051		0.048		26.367		included		no		107.9		-0.166		unclassified

		204596_s_at		STC1		0.054		2.050		0.026		26.367		included		no		26.8		0.392		VEGF

		210623_at		LOC51035		0.081		2.050		0.039		26.367		included		no		28.2		-0.126		unclassified

		216915_s_at		PTPN12		0.093		2.050		0.045		26.367		included		no		201.2		0.195		unclassified

		208144_s_at		PP1345		0.067		2.049		0.033		26.367		included		no		43.6		-0.162		unclassified

		214469_at		HIST1H2AE		0.128		2.049		0.062		26.367		included		no		21.1		0.830		Histone

		205479_s_at		PLAU		0.065		2.044		0.032		26.367		included		no		74.5		0.645		Stroma

		217448_s_at		C14orf92		0.070		2.044		0.034		26.367		included		no		158.5		0.194		unclassified

		216607_s_at		CYP51A1		0.061		2.043		0.030		26.367		included		no		109.3		0.283		Histone

		210619_s_at		HYAL1		0.089		2.042		0.044		26.367		included		no		52.8		0.140		unclassified

		214540_at		HIST1H2BO		0.099		2.039		0.048		26.367		included		no		41.6		0.619		Histone

		216549_s_at		TBC1D22B		0.096		2.039		0.047		26.367		included		no		102.9		-0.253		HOX

		219478_at		WFDC1		0.111		2.037		0.054		26.367		included		no		46.8		0.384		Stroma

		209624_s_at		MCCC2		0.078		2.034		0.038		26.367		included		no		73.7		0.448		Apocrine

		212575_at		C19orf6		0.102		2.034		0.050		26.367		included		no		177.2		-0.218		HOX

		222379_at		KCNE4		0.082		2.031		0.040		26.367		included		no		31.2		0.481		Stroma

		211924_s_at		PLAUR		0.070		2.030		0.034		26.367		included		no		47.8		0.394		IL8

		221933_at		NLGN4X		0.114		2.030		0.056		26.367		included		no		31		0.269		Stroma

		220414_at		CALML5		0.161		2.029		0.079		26.367		included		no		24.1		0.423		CLDN3

		215976_at		DBC1		0.087		2.026		0.043		26.367		included		no		42.2		-0.167		unclassified

		210546_x_at		CTAG1B		0.183		2.025		0.090		26.367		included		no		47.8		0.193		unclassified

		216712_at		SLC25A30		0.086		2.020		0.042		26.367		included		no		65.8		-0.197		unclassified

		220106_at		NPC1L1		0.074		2.020		0.037		26.367		included		no		47		0.136		unclassified

		212898_at		KIAA0406		0.051		2.019		0.025		26.367		included		no		55.8		-0.315		MHC2

		202213_s_at		CUL4B		0.054		2.019		0.027		26.367		included		no		118.2		-0.234		MHC1

		216830_at		- - -		0.078		2.017		0.039		26.367		included		no		35.2		-0.169		unclassified

		204325_s_at		NF1		0.050		2.017		0.025		26.367		included		no		73.8		-0.139		unclassified

		215423_at		- - -		0.067		2.016		0.033		26.367		included		no		48.5		-0.228		IFN

		205228_at		RBMS2		0.077		2.013		0.038		26.367		included		no		82.8		0.244		Stroma

		208083_s_at		ITGB6		0.107		2.011		0.053		26.367		included		no		40.7		0.311		Apocrine

		218182_s_at		CLDN1		0.102		2.011		0.051		26.367		included		no		37.6		0.331		CLDN3





Good_Progn

		Suppl. Table S3b: SAM-Result Good Prognosis Marker

		Affy_ID		GeneSymbol		Numerator(r)		Score(d)		Denominator(s+s0)		q-value(%)		264probe_Signature_FDR_25%		26probe_Signature_FDR_3.5%		Kruskal-Wallis rank sum statistics		Max. correlation to metagene		Assigned to metagene (corr. cutoff 0.2)

		209591_s_at		BMP7		-0.154		-3.405		0.045		21.089		included		no		41.1		0.173		unclassified

		221671_x_at		IGKC		-0.144		-3.118		0.046		21.089		included		no		27.0		0.790		B.Cell

		211333_s_at		FASLG		-0.074		-3.107		0.024		21.089		included		no		54.1		0.328		MHC1

		221651_x_at		IGKC		-0.136		-3.097		0.044		21.089		included		no		28.2		0.795		B.Cell

		211259_s_at		BMP7		-0.135		-3.041		0.044		21.089		included		no		131.4		0.240		Prolif

		218872_at		TSC		-0.142		-3.019		0.047		21.089		included		no		75.1		0.371		T.Cell

		209460_at		ABAT		-0.122		-3.010		0.041		21.089		included		no		40.5		0.326		Apocrine

		217455_s_at		SSTR2		-0.082		-2.890		0.028		21.089		included		no		56.3		0.168		unclassified

		208479_at		KCNA1		-0.100		-2.883		0.035		21.089		included		no		94.3		0.136		unclassified

		205890_s_at		UBD		-0.188		-2.860		0.066		21.089		included		no		34.4		0.634		MHC1

		221087_s_at		APOL3		-0.076		-2.843		0.027		21.089		included		no		41.7		0.636		MHC2

		210321_at		GZMH		-0.150		-2.820		0.053		21.089		included		no		44.6		0.584		T.Cell

		214510_at		GPR20		-0.124		-2.777		0.045		26.367		included		no		115.0		-0.178		unclassified

		211430_s_at		IGH@		-0.155		-2.761		0.056		26.367		included		no		21.9		0.828		B.Cell

		214567_s_at		XCL1		-0.171		-2.759		0.062		26.367		included		no		75.9		0.705		T.Cell

		217143_s_at		TRA@		-0.129		-2.722		0.048		26.367		included		no		61.8		0.655		T.Cell

		207796_x_at		KLRD1		-0.086		-2.690		0.032		26.367		included		no		49.4		0.378		T.Cell

		214677_x_at		IGL@		-0.146		-2.688		0.054		26.367		included		no		18.1		0.832		B.Cell

		203915_at		CXCL9		-0.152		-2.681		0.057		26.367		included		no		44.3		0.694		T.Cell

		208498_s_at		AMY2A		-0.141		-2.679		0.052		26.367		included		no		32.4		-0.198		unclassified

		219605_at		ZNF3		-0.086		-2.677		0.032		26.367		included		no		56.6		-0.128		unclassified

		209138_x_at		IGLC2		-0.149		-2.661		0.056		26.367		included		no		18.1		0.869		B.Cell

		209590_at		BMP7		-0.101		-2.654		0.038		26.367		included		no		29.8		0.168		unclassified

		204781_s_at		FAS		-0.077		-2.653		0.029		26.367		included		no		36.2		0.463		T.Cell

		217378_x_at		LOC391427		-0.212		-2.641		0.080		26.367		included		no		35.1		0.955		B.Cell

		218062_x_at		CDC42EP4		-0.083		-2.631		0.032		26.367		included		no		28.3		0.266		IFN

		212272_at		LPIN1		-0.101		-2.624		0.038		26.367		included		no		82.4		-0.337		Stroma

		203608_at		ALDH5A1		-0.108		-2.621		0.041		26.367		included		no		33.1		-0.227		Hemoglobin

		207747_s_at		DOK4		-0.086		-2.619		0.033		26.367		included		no		19.0		-0.114		unclassified








R_analysis.RData

R_analysis.RData










 
 
 
 
 


 
 
 
 


 
 


 
 
 


 
 


Supplementary Figure S6: Correlation of individual markers from the prognostic signatures with known 


metagenes in triple negative breast cancer  


From the 264 Affymetrix probsets of the supervised prognostic signature, 235 probesets were associated with poor 
prognosis (analyzed in panels A and C) and 29 with good prognosis (analyzed in panels B and D).  


A) The 235 individual probesets associated with poor prognosis (horizontically) were analyzed for their correlation 
with the expression of 16 metagenes (vertically) for molecular phenotypes in the 394 TNBC samples from the 
finding cohort. 116 probesets displaying a Pearson correlation above a cutoff 0.2 are sorted (horizontically) on the 
left according to the assigned metagene while 60 probesets remained unclassified. 


B) The 29 individual probesets associated with good  prognosis were analyzed as in (A) and 21 assigned to metagenes 
(cutoff 0.2) are sorted horizontically on the left while 8 remained unclassified. 


C) The same analysis as in (A) was performed using the more stringent cutoff 0.3 for assignment to a metagene 
resulting in 118 probesets correlated to metagenes from the list of 235 probesets associated with poor prognosis. 


D) The same analysis as in (B) was perfomed using the more stringent cutoff 0.3 resulting in 18 of the 29 good 
prognosis probesets assigned to metagenes. 


All individual correlation values are given in Supplementary Table S3. 
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Supplementary Table S4A: Multivariate Cox regression of continous 264-probeset signature and 


standard parameters for event free survival in the finding cohort 


Metagene B SE Wald statistic P-Value* 


264-probeset signature  
   (as continous variable) 


387.8 46.32 70.1 <0.0001 


lymph node status -0.34 0.332 1.04 0.31 
age (>50 vs ≤50) -0.43 0.237 3.33 0.068 
tumor size (≤1cm vs >1cm) -0.042 0.258 0.027 0.87 
Histol. grade (G3 vs G1&G2) 0.14 0.260 0.27 0.60 
 * significant P-Values are given in bold 


 


Supplementary Table S4B: Multivariate Cox regression of continous 26-probeset signature and 


standard parameters for event free survival in the finding cohort 


Metagene B SE Wald statistic P-Value* 


26-probeset signature  
   (as continous variable) 


156.0 23.07 45.7 <0.0001 


lymph node status -0.400 0.332 1.46 0.23 
age (>50 vs ≤50) -0.429 0.235 3.34 0.068 
tumor size (≤1cm vs >1cm) -0.130 0.255 0.26 0.61 
Histol. grade (G3 vs G1&G2) -0.034 0.257 0.018 0.90 
 * significant P-Values are given in bold 


 










#  R-Version:    R 2.12.1  (2010-12-16)

#  Required input files:
#
# Two files contain the dataset used in the analysis and can
#  be obtained from GEO:
#
#    GSE31519_complete_dataset.txt 
#    GSE31519_TNBC_SampleInfo_BCR.txt 
#   
# How to obtain:
#
# GSE31519_TNBC_SampleInfo_BCR.txt  is available from
# ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE31519/GSE31519%5FTNBC%5FSampleInfo%5FBCR%2Etxt%2Egz
#
# GSE31519_complete_dataset.txt  is available from
# ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE31519/GSE31519%5Fcomplete%5Fdataset%2Etxt%2Egz
#
# This last file from the GEO database has a rather complicated structure with a gap of 23 columns 
#   since it also contains samples from the ArrayExpress database which they have moved to the end.
#   The file is used to rebuild the complete dataset of 579 samples here:
#   

samples <- read.delim("GSE31519_complete_dataset.txt", colClasses= "character", skip=1, nrows=1, header=FALSE)   # read the sample names from row-2
data <- read.delim("GSE31519_complete_dataset.txt", skip=4,header=FALSE)  # read data starting row-5
colnames(data)=t(samples)       # add sample names from row-2 as column names
data=data[,!samples==""]        # remove blank gap-columns with no sample-title in row-2 from expr data
rm(samples)   # delete used variable
rownames(data)=data[,1]     # use first column with Affy IDs as rownames
cd.compl.579=data[,-1]    # remove first column with Affy IDs
rm(data)  # delete used variable
cd.compl.579=cd.compl.579[,sort(colnames(cd.compl.579))]   # sort columns by sample name

header.579 <- read.delim("GSE31519_TNBC_SampleInfo_BCR.txt",colClasses = "character", row.names="SampleNames",h=T)   # all sample information

#
# The following 11 data objects are included in 
#   the R workspace "R_analysis.RData" and referred to 
#   in the respective sections of the analyses:
#
# metagenes.probelists --> probesets of TNBC metagenes from 
#                          Rody et al. 2011, Breast Cancer Res, 
# SAM.delta.table  --> delta table from SAM analysis
# SAMgenes.0p3  -->  264 probesets from delta-0.3-SAM
# SAMgenes.0p5  -->   26 probesets from delta-0.5-SAM
# n235.SAMpoor.probes -->  probeset list of 235 up genes from SAM
#                        with delta 0.3  (poor prognosis markers) 
# n29.SAMgood.probes  -->  probeset list of 29 lo genes from SAM
#                        with delta 0.3  (good prognosis markers)
# sabatier.gl --> gene list of Sabatier et al.
#       source:  Sabatier et al. 2010 DOI 10.1007/s10549-010-0897-9
#                supplementary file 10549_2010_897_MOESM3_ESM.xls
# sdpp.gl   --> gene list of strom derived prognostic predictor
#       source: GeneSigDB Data Release 3 
#               http://compbio.dfci.harvard.edu/genesigdb/
#               signature "18438415-Table2.1" of Finak Nature Med 2008
#               24 EntrezGeneIDs corresp to 35 AffyProbes
# Tesch7.gl  --> gene list of Teschendorff-2008_7_immune-gene-signature
#       source:  Breast Cancer Research 2008, 10:R73
# wound.gl   --> gene list of wound response signature
#       source: GeneSigDB Data Release 3 
#               http://compbio.dfci.harvard.edu/genesigdb/
#               signature "14737219-CSRgenes" of Chang 2005 PNAS
#               592 EnsemblIDs corresp to 847 AffyProbes
# U133A.Affy.Entrez  --> link of Affymetrix probeset and Entrez IDs
#




# Supplementary Figure S1:  Selection of the TNBC finding cohort from multiple datasets based on dataset comparibility

#  Select the n=394 comparable TNBC samples from n=579 TNBC with normalized Affymetrix MAS5 data

#  Variables used:
#  cd.compl.579 ==> chip-data complete (data.frame, 579 samples in columns, 22283 probesets in rows)
#  header.579  ==> sample infos including dataset allocation (data.frame, 579 samples in columns)
#  n.probes ==> number of ProbeSets (rows in cd.compl.579)
#  n.col.cd ==> number of columns/samples in cd.compl.579
#  tcdm.579  ==> transposed chip data matrix
#  t.header.579 ==> transposed sample infos (data.frame)
#  tdsn.579  ==> transposed dataset allocation (numeric vector)
#

n.col.cd=ncol(cd.compl.579)
n.probes=nrow(cd.compl.579)
tdsn.579=as.numeric(t(header.579["datas_new09",]))   # transposed dataset vector
tcdm.579=t(cd.compl.579)   # transposed chip data matrix
t.header.579=as.data.frame(t(header.579))  # transposed sample info header as data.frame
ds.mean=by(tcdm.579, tdsn.579, mean)  # means within individual datasets, 
                                     #  List is sorted by numeric dataset tdsn.579
tcdm.mean=apply(tcdm.579,2,mean)
        #   generates named list of 22283 means, which can be indexed by tcdm.mean[probes]
tcdm.stdev=apply(tcdm.579,2, sd)   # the same for the StdDev


# Calculate comparability metrics for the datasets:
# (calculate sum of squared differences of dataset-mean from total-mean for all probesets)
# Define variables
n.datas=length(ds.mean)   # number of datasets
diff.to.mean= matrix(0,nrow=n.probes,ncol=n.datas) # matrix of differences from mean
nrm.diff.to.mean= matrix(0,nrow=n.probes,ncol=n.datas) # matrix of NORMALIZED diff from mean

for (probes in 1:n.probes)   # loop for all probesets
{

for (i in 1:n.datas)
# calculate for each dataset diff from global-mean of all datasets
# and save in matrix "diff.to.mean"
{
diff.to.mean[probes,i]=ds.mean[[i]][probes]- tcdm.mean[probes]
# again the same but normalize by dividing through StdDev
nrm.diff.to.mean[probes,i]=(ds.mean[[i]][probes]- tcdm.mean[probes]) / tcdm.stdev[probes]
}
}
# calculate squares of differences
squ.diff=diff.to.mean^2
squ.nrm.diff= nrm.diff.to.mean^2
# sum of squared differences by column
sum.squ.diff=apply(na.omit(squ.diff),2,sum)
sum.squ.nrm.diff=apply(na.omit(squ.nrm.diff),2,sum)
#  important: these vectors are still sorted by numeric dataset tdsn.579 !

# summarize results
comparab=data.frame(sort(unique(tdsn.579)),sum.squ.diff,sum.squ.nrm.diff)
names(comparab)=c("dataset","sum.squ.diff","sum.squ.nrm.diff")
sort.comparab=comparab[order(comparab$sum.squ.nrm.diff),]

# integrate normalized comparab data in sample info in t.header.579
for (i in 1:n.col.cd) 
    {t.header.579$comparab_nrm[i]= comparab$sum.squ.nrm.diff[comparab$dataset==tdsn.579[i]]}
# remove temporary variables:
rm(diff.to.mean, nrm.diff.to.mean, ds.mean,tcdm.mean, tcdm.stdev, squ.diff, squ.nrm.diff, sum.squ.diff, sum.squ.nrm.diff)

plot(sort(t.header.579$comparab_nrm),type="l")
abline(8000,0,col="red")


###################################################################################################





#  Select a subset of datasets with lowest comparability metric
# Select a subset of comparab by defining criteria:
compar.subset= subset(comparab, subset= sum.squ.nrm.diff < 8000)
# vector of corresponding datasets:
datas.subset=compar.subset$dataset
# generate logical vector FALSE/TRUE for the complete dataset of 579 TNBC:
subset.index.vector=(tdsn.579 %in% datas.subset)
# query selected samples from transposed chipdata matrix:
tcdm.394=tcdm.579[subset.index.vector , ]
# query  corresponding transposed dataset vector:
tdsn.394=tdsn.579[subset.index.vector]
# query selcted samples from NOT-transposed dataset (and corresponding header and t.header):
cd.compl.394= cd.compl.579[,subset.index.vector]
header.394= header.579[,subset.index.vector]
t.header.394= t.header.579[subset.index.vector,]
  


# Supplementary Figure S2: Analysis of a potential dataset bias among probesets

# Calculate Kruskal-Wallis statistics for all probesets according to their association with the dataset vector among the 394 TNBC samples:

# Variables used:    tcdm.394, tdsn.394, n.probes, cd.compl.394
# Newly generated variables:    kruskal.param

kruskal.result=kruskal.test(tcdm.394[,1],tdsn.394)  # Define variable as "list" by performing test once
kruskal.stat= matrix(0,nrow=n.probes)  # matrix for chi-statistics
kruskal.p=matrix(0,nrow=n.probes)  # matrix for p-values

# loop perfoming kruskal-test for each probeset (chip-data vs. dataset-vector)
# the results of each test are variables of type LIST, which are combined by indexing with [[i]]
for (i in 1:n.probes)
{
kruskal.result[[i]]=kruskal.test(tcdm.394[,i], tdsn.394)   # results as LIST
kruskal.stat[i]=kruskal.result[[i]]$statistic  # read statistics from LIST in matrix
kruskal.p[i]=kruskal.result[[i]]$p.value   # read p-values from LIST in matrix
}
# summarize statistics and p-values and probeset names in one dataframe:
kruskal.param= data.frame(row.names=rownames(cd.compl.394),kruskal.stat,kruskal.p)  # dataframe with results
# remove temporary variables:
rm(kruskal.result, kruskal.stat, kruskal.p)
  
hist(kruskal.param$kruskal.stat,breaks=30,col="dark blue") # histogram for all probesets



###################################################################################################


# Calculation of metagene-values for all 394 samples:
# Variable used from above:    cd.compl.394 , metagenes.probelists 
#
# New variables:
# metagenes.probelists ==>  lists of probesets representing the different metagenes
# n.metagenes ==> number of different metagenes
# metag.means ==> matrix for metagene means of all samples
# cd.probes.c ==> probeset-names as character from  rownames of cd.compl.394


n.metagenes= ncol(metagenes.probelists)
metag.means=matrix(0,ncol= ncol(cd.compl.394),nrow=n.metagenes) # define matrix for results
cd.probes.c =rownames(cd.compl.394)  # probeset-names as character

for (i in 1: n.metagenes)   # loop for metagen calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
# generate logical vector of selected probesets 
metag.subset.index.vector=(cd.probes.c %in% probes.of.metag) 
# calculate metagene-mean using logical vector (for all samples)
metag.mean.TF=by(as.matrix(cd.compl.394),metag.subset.index.vector,mean) 
    # provides mean values for TRUE (metagene probesets) and FALSE (not used)
metag.means[i,]= metag.mean.TF$'TRUE'
}
# Summarize results:
rownames(metag.means)=colnames(metagenes.probelists)
colnames(metag.means)=colnames(cd.compl.394)
metag.df=as.data.frame(t(metag.means))  # transposed as dataframe (to query metagenes by name)
# remove temporary variables:
rm(n.metagenes, metag.means, cd.probes.c, probes.of.metag, metag.subset.index.vector, metag.mean.TF)

# Kruskal-Wallis-stats of metagene-probesets:

metagene.kruskal.stats=vector(mode="list",length=ncol(metagenes.probelists))
names(metagene.kruskal.stats)=colnames(metagenes.probelists)
median.metagene.kruskal.stats=vector(mode = "numeric", length = ncol(metagenes.probelists))
names(median.metagene.kruskal.stats)=colnames(metagenes.probelists)

for (i in 1: ncol(metagenes.probelists))   # loop for kruskal-statistic of metagenes calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
metagene.kruskal.stats[[i]]=kruskal.param$kruskal.stat[rownames(kruskal.param[,]) %in% probes.of.metag]
median.metagene.kruskal.stats[i]=median(metagene.kruskal.stats[[i]])
}

metagene.kruskal =cbind(metagene.kruskal.stats,median.metagene.kruskal.stats)[order(median.metagene.kruskal.stats),]
# remove temporary variables:
rm(metagene.kruskal.stats, median.metagene.kruskal.stats, probes.of.metag, i)
boxplot(metagene.kruskal[,1])

 

#  SAM-Analysis
#
#  Variables used:    tcdm.394,  t.header.394
#
#  to free memory some variables might be temporarily removed for this section:
#     rm(cd.compl.394, cd.compl.579)
#  these variable can be regenerated for later analyses by:
#     cd.compl.394=as.data.frame(t(tcdm.394))
#     cd.compl.579=as.data.frame(t(tcdm.579))


#  extract sample set with FollUp (required for SAM):
follup.index.vector= !(t.header.394$ev120=="")  # indexvector TRUE for 297 with follUp of 394 
tcdm.394.follup=subset(tcdm.394, subset=follup.index.vector)  # extract 297 samples with follup
cdm.follup=t(tcdm.394.follup)          # chipdata of 297 follUp samples re-transposed

patdata.follup=subset(t.header.394, subset=follup.index.vector)  # sample info of 297 with follup
probenames=rownames(cdm.follup)  # All Affy_IDs 
# SAM analysis:
library(samr)
set.seed(84048)
samdata=list(x=cdm.follup, y=as.numeric(as.character(patdata.follup$fu_120)), censoring.status=as.numeric(as.character(patdata.follup$ev120)), geneid=probenames, genenames=probenames)

samr.obj=samr(samdata, resp.type="Survival", nperms=5)   # 10 min for 20 permutations

delta.table<- samr.compute.delta.table(samr.obj)

samr.plot(samr.obj, del=.3)
samr.plot(samr.obj, del=.5)

samr.compute.siggenes.table(samr.obj, 0.3, samdata, delta.table)
samr.compute.siggenes.table(samr.obj, 0.5, samdata, delta.table)

# The results of these analyses are included in the following variables:
#
#  SAM.delta.table --> delta table for SAM using the 297 samples with follUp
#  SAMgenes.0p5  -->  results for delta 0.5:  26 up genes#
#  SAMgenes.0p3  --> results for delta 0.3:  235 up and 29 down genes
# n235.SAMpoor.probes -->  probeset list of 235 up genes from SAM
#                        with delta 0.3  (poor prognosis markers) 
# n29.SAMgood.probes  -->  probeset list of 29 lo genes from SAM
#                        with delta 0.3  (good prognosis markers)


# remove variables:
rm(tcdm.394.follup, cdm.follup, patdata.follup, probenames, follup.index.vector, samdata, delta.table) 
# Suppl.Fig S5:   Analysis of dataset bias of metagenes and the prognostic signatures


#  New variable used: metagenes.probelists 
#  probe set lists of metagenes and prognostic signatures

# Variables used:    metagenes.probelists   kruskal.param
# New generated variables:    metagene.kruskal

metagene.kruskal.stats=vector(mode="list",length=ncol(metagenes.probelists))
names(metagene.kruskal.stats)=colnames(metagenes.probelists)
median.metagene.kruskal.stats=vector(mode = "numeric", length = ncol(metagenes.probelists))
names(median.metagene.kruskal.stats)=colnames(metagenes.probelists)

for (i in 1: ncol(metagenes.probelists))   # loop for kruskal-statistic of metagenes calculation
{
probes.of.metag=as.character(metagenes.probelists[,i])  # retrieve probes as character
metagene.kruskal.stats[[i]]=kruskal.param$kruskal.stat[rownames(kruskal.param[,]) %in% probes.of.metag]
median.metagene.kruskal.stats[i]=median(metagene.kruskal.stats[[i]])
}

metagene.kruskal =cbind(metagene.kruskal.stats,median.metagene.kruskal.stats)[order(median.metagene.kruskal.stats),]
# remove temporary variables:
rm(metagene.kruskal.stats, median.metagene.kruskal.stats, probes.of.metag, i)

# generate box plot of kruskal-stats of probesets of metagenes:

select.index=!names(metagene.kruskal[,1]) %in% c("SAM_264","SAM_26")
par(mar=c(7,4,4,2))
boxplot(metagene.kruskal[select.index,1], las=2)   # labels perpendicular to axis
 
# generate box plot of kruskal-stats of probesets of prognostic signatures
#    SAM_264 (delta 0.3) and SAM_26 (delta 0.5):

select.index=names(metagene.kruskal[,1]) %in% c("SAM_264","SAM_26")
par(mar=c(7,4,4,2))
boxplot(metagene.kruskal[select.index,1], las=2)   # labels perpendicular to axis
  
 
#  Supplementary Figure S6: Correlation of individual markers from the prognostic signatures with known metagenes in triple negative breast cancer 

# Variables used:
#  cd.compl.394 , n235.SAMpoor.probes , n29.SAMgood.probes

#  Supplementary Figure S6-C:   235 up genes, correlation-cutoff 0.3

n235.SAMpoor.probes_data=cd.compl.394[rownames(cd.compl.394) %in% n235.SAMpoor.probes[,],]
#calculate correlation of probesets to metagenes:
chipdata=n235.SAMpoor.probes_data 
length_chipdata=length(chipdata)
#  transpose chipdata
t.chipdata=as.data.frame(t(chipdata))
Cor.metagenes=matrix(data=NA, nrow=length(t.chipdata), ncol=0)  # define variable Cor.metagenes

# loop for selection of metagene
for (SelMetag  in c("IL8", "VEGF", "Prolif", "Basal", "CLDN3", "Apocrine", "Histone", "Adipocyte", "Stroma", "IFN", "MHC1", "T.Cell", "MHC2", "B.Cell", "Hemoglobin", "HOX"))
 {
  #  retrieve data of selected metagene 
  SelectedMetag.data= metag.df[SelMetag]
  #  Pearson-Korrelation of selected metagene and all probesets from list
  temp.cor=cor(SelectedMetag.data,t.chipdata,use="pairwise.complete.obs")
  Cor.metagenes=cbind(Cor.metagenes,t(temp.cor))
    # End of loop, use next metagene with already transposed chipdata
  }
 n235.SAMpoor.probes_Cor=Cor.metagenes

#  assign each probeset to metagene with highest correlation:
CorrMatrix= n235.SAMpoor.probes_Cor
# determin maximal absolute correlation for each probeset:
MaxAbsCorr= as.numeric(by(abs(CorrMatrix),c(1:nrow(CorrMatrix)),max))
# variablen definieren
indexvect=vector(mode='logical',length=ncol(CorrMatrix))
names=colnames(CorrMatrix)
namelist=vector(mode='character',length=nrow(CorrMatrix))
MaxCorr=vector(mode='numeric', length=nrow(CorrMatrix))

for (i in c(1:nrow(CorrMatrix))) 
   { indexvect= abs(CorrMatrix[i,])==MaxAbsCorr[i]
     namelist[i]=names[indexvect]
     MaxCorr[i]=CorrMatrix[i,indexvect]
   }

# additional number-coded-metagene-list for sorting
namelist.coded=namelist
metag.sort=c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")
for (i in c(1:16))
{ namelist.coded[grep(metag.sort[i], namelist)]=i
}
    # replace each metagene as ordered by number
n235.SAMpoor.probes_Cor = data.frame(n235.SAMpoor.probes_Cor, namelist, namelist.coded, MaxCorr, MaxAbsCorr, stringsAsFactors = FALSE)

# Generate probeset output table:

corr.cutoff=0.3   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n235.SAMpoor.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n235.SAMpoor.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 1))

 
#  Supplementary Figure S6-A:   235 up genes, correlation-cutoff 0.3
# Generate probeset output table:

corr.cutoff=0.2   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n235.SAMpoor.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n235.SAMpoor.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 4))
 

#  Supplementary Figure S6-D:   29 lo genes, correlation-cutoff 0.3

n29.SAMgood.probes_data=cd.compl.394[rownames(cd.compl.394) %in% n29.SAMgood.probes[,],]
#calculate correlation of probesets to metagenes (for 3 different lists of bimodal probesets):
chipdata=n29.SAMgood.probes_data 
length_chipdata=length(chipdata)
#  transpose chipdata
t.chipdata=as.data.frame(t(chipdata))
Cor.metagenes=matrix(data=NA, nrow=length(t.chipdata), ncol=0)  # define variable Cor.metagenes

# loop for selection of metagene
for (SelMetag  in c("IL8", "VEGF", "Prolif", "Basal", "CLDN3", "Apocrine", "Histone", "Adipocyte", "Stroma", "IFN", "MHC1", "T.Cell", "MHC2", "B.Cell", "Hemoglobin", "HOX"))
 {
  #  retrieve data of selected metagene 
  SelectedMetag.data= metag.df[SelMetag]
  #  Pearson-Korrelation of selected metagene and all probesets from list
  temp.cor=cor(SelectedMetag.data,t.chipdata,use="pairwise.complete.obs")
  Cor.metagenes=cbind(Cor.metagenes,t(temp.cor))
    # End of loop, use next metagene with already transposed chipdata
  }
 n29.SAMgood.probes_Cor=Cor.metagenes

#  assign each probeset to metagene with highest correlation:
CorrMatrix= n29.SAMgood.probes_Cor
# determin maximal absolute correlation for each probeset:
MaxAbsCorr= as.numeric(by(abs(CorrMatrix),c(1:nrow(CorrMatrix)),max))
# variablen definieren
indexvect=vector(mode='logical',length=ncol(CorrMatrix))
names=colnames(CorrMatrix)
namelist=vector(mode='character',length=nrow(CorrMatrix))
MaxCorr=vector(mode='numeric', length=nrow(CorrMatrix))

for (i in c(1:nrow(CorrMatrix))) 
   { indexvect= abs(CorrMatrix[i,])==MaxAbsCorr[i]
     namelist[i]=names[indexvect]
     MaxCorr[i]=CorrMatrix[i,indexvect]
   }

# additional number-coded-metagene-list for sorting
namelist.coded=namelist
metag.sort=c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")
for (i in c(1:16))
{ namelist.coded[grep(metag.sort[i], namelist)]=i
}
    # replace each metagene as ordered by number
n29.SAMgood.probes_Cor = data.frame(n29.SAMgood.probes_Cor, namelist, namelist.coded, MaxCorr, MaxAbsCorr, stringsAsFactors = FALSE)

# Generate probeset output table:

corr.cutoff=0.3   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n29.SAMgood.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n29.SAMgood.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 1))

 
#  Supplementary Figure S6-B:   29 lo genes, correlation-cutoff 0.2
# Generate probeset output table:

corr.cutoff=0.2   # cutoff for unclassified probesets with respect to metagene correlation

corr.heatmap=  n29.SAMgood.probes_Cor
# replace metagene in namelist column with "unclassified" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist"]="unclassified"
# replace also metagene-code in namelist.coded column with "0" if MaxAbsCorr < corr.cutoff:
corr.heatmap[corr.heatmap[,"MaxAbsCorr"]<corr.cutoff,][,"namelist.coded"]=0
# sort corr.heatmap first by metagene and second by MaxAbsCorr
corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"]),,]   
# generate output table of selected columns:
out.table= corr.heatmap[, c("namelist",   "namelist.coded", "MaxCorr", "MaxAbsCorr")]
# export output table:
write.table(out.table, file="n29.SAMgood.probes_Cor-table.txt", row.names=TRUE, col.names = NA, quote=FALSE, sep="\t")

# Generate correlation heatmap in R:
# sort probesets ASCENDING according metagenes namelist.coded for heatmap
sort.corr.heatmap = corr.heatmap[order(as.numeric(corr.heatmap[,"namelist.coded"]), corr.heatmap[,"MaxAbsCorr"],decreasing = TRUE),]   
# resort metagenes (columns) for heatmap and transpose for figure
sort.corr.heatmap=t(as.matrix(sort.corr.heatmap[,c("IL8", "Histone", "CLDN3", "HOX", "Stroma", "Adipocyte", "Hemoglobin", "Prolif", "Basal", "Apocrine", "VEGF", "MHC1", "IFN", "MHC2", "T.Cell", "B.Cell")]))
# generate heatmap-figure
heatmap(sort.corr.heatmap, Rowv = NA, Colv = NA, scale="none", main = "Correlation matrix",revC=TRUE,col= terrain.colors(100), margins = c(6, 4))
 


 
# Figure 3: Relationship of the 264 probeset signature to the 16 metagenes and seven known prognostic signatures in TNBC
#
# Variables used:
# tcdm.394
# SAMgenes.0p3  ,  SAMgenes.0p5 , 
# n297TNBC_n26SAM_siggenes_0p5_up.txt , U133A.Affy.Entrez 
# sabatier.gl , sdpp.gl , Tesch7.gl , wound.gl
#

library(genefu)
library(simpleaffy)  # for pearson-corr based clustering

#  calculate several signature scores from tcdm.394

sabatier.score <- sig.score(x= sabatier.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

Tesch7.score <- sig.score(x= Tesch7.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

sdpp.score <- sig.score(x= sdpp.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

wound.score <- sig.score(x= wound.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

## make of ggi signature a gene list
ggi.gl <- cbind(sig.ggi[ ,c("probe", "EntrezGene.ID")], "coefficient"=ifelse(sig.ggi[ ,"grade"] == 1, -1, 1))
ggi.score <- sig.score(x= ggi.gl, data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=FALSE, signed=TRUE, verbose=TRUE)

gene70.score <- gene70(data=tcdm.394, annot=U133A.Affy.Entrez, do.mapping=TRUE, verbose = TRUE)

rs.394 <- oncotypedx(data= tcdm.394, annot= U133A.Affy.Entrez, do.mapping=FALSE, verbose=TRUE)

#  calculate SAM-prognostic-signature scores from tcdm.394 (Delta 0.3)

SAMchipdata= cd.compl.394 [rownames(cd.compl.394)%in%rownames(SAMgenes.0p3), ] [order(rownames(SAMgenes.0p3)),]   #  select the expression data of genes from the SAM-list

SAMscore= SAMchipdata [order(rownames(SAMchipdata)), ] *SAMgenes.0p3[order(rownames(SAMgenes.0p3)), ]$Score.d.   # product of expression values and SAM-Score as weighted score
SAMmean.264=mean(SAMscore)  # generates a named list of means of weighted SAM-scores for each sample
SAM_394.264=as.data.frame(SAMmean.264)

#  plot a cluster dendrogram of SAM-score and gene signatures in n394 sample cohort:

plot(standard.pearson(cbind(metag.df,sabatier.score$score, Tesch7.score$score, sdpp.score$score, wound.score$score, ggi.score$score, gene70.score$score, rs.394$score, SAM_394.264)))
 


#  Supplementary Figure S7: Relationship of the 26 probeset signature to the 16 metagenes and seven known prognostic signatures in TNBC

#   use alternative list of 26 stringent SAM-genes from delta 0.5
#    in analysis similar as above:
SAMscore= SAMchipdata[order(rownames(SAMchipdata)), ]* SAMgenes.0p5 [order (rownames (SAMgenes.0p5)), ]$Score.d.
SAMmean.26=mean(SAMscore)
SAM_394.26=as.data.frame(SAMmean.26)


#  plot a cluster dendrogram of SAM-score and gene signatures in n394 sample cohort:

plot(standard.pearson(cbind(metag.df,sabatier.score$score, Tesch7.score$score, sdpp.score$score, wound.score$score, ggi.score$score, gene70.score$score, rs.394$score, SAM_394.26)))
 





 


 


 


 


 


Supplementary Figure S7: Relationship of the 26 probeset signature to the 16 metagenes and seven known 


prognostic signatures in TNBC 


The 394 TNBC samples were analyzed for the expression of 16 metagenes and 


seven previously published prognostic signatures as described in Figure 3 and 


hierachical clustered using Pearson correlation as distance metric. 


Abbreviations: 


SAMmean = 26 probeset signature 


wound.score$score = Wound response signature 


rs.394$score = recurrence score 


ggi.score$score = genomic grade index 


gene70.score$score = 70-gene signature 


sabatier.score$score = medullary like signature 


Tesch7.score$score = 7-gene immune response module 


sdpp.sore$score = stroma derived prognostic predictor  
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Supplementary Table S5: Pre-therapeutic samples from neoadjuvant treated TNBC 


Dataset Institution Chemotherapy TNBC pCR (%) 


MDA133 MDACC, Houston, TX TFAC 36 18 (50.0) 


Frankfurt-3 University of Frankfurt TAC or TAC-NX 19 4 (21.1) 


GSE18728 University of 
Washington/Seattle Cancer 
Care Alliance 


Docetaxel/Capecitabine 8 3 (37.5) 


GSE19697 Washington University 
School of Medicine St. Louis 


E-Doc 24 5 (20.8) 


GSE20194 MDACC, Houston, TX paclitaxel, 5-fluorouracil, cyclo-


phosphamide, doxorubicin 


50 11 (22.0) 


GSE20271 MDACC, Houston, TX paclitaxel, 5-fluorouracil, cyclo-


phosphamide, doxorubicin 


54 11 (20.4) 


Total   191 52 (27.2) 


Validation:     


GSE16446 TOP-Trial;  Institut Jules 
Bordet, Brussels 


Epirubicin Mono 95 52 (27.2) 


 










R_analysis.RData






 
 


 


Supplementary Table S6: Clinical parameters of TNBC according to expression of the 264-probeset signature 


  Finding cohort (n=394)  Validation cohort (n=261) 


Parameter  Total Low expression* High expression P-Value  Total Low expression High expression P-Value
#
 


Lymph node status node negative 240 181 59   80 67 13  


 node positive 68 48 20 0.43  92 81 11 0.51 


Age > 50 158 114 44   123 93 30  


 ≤ 50 151 117 34 0.30  93 70 23 1.00 


Tumor size ≤ 2 cm 85 71 15   40 26 14  


 > 2 cm 224 160 63 0.058  184 152 32 0.017 


Histological grading G3 227 172 55   172 136 36  


 G1 & G2 82 63 19 0.88  60 48 12 1.00 


* samples were stratified according to the highest quartile as in Kaplan-Meier and Cox regression analyses in Figure 2 and Table 2, respectively. 
#


 significant P-Values are given in bold 


 












Panel: A B C D 


Number of probesets: 252 24 181 16 


Correlation to 264-
probeset  signature: 


    


Kaplan-Meier analysis of 
highest quartile in 
validation cohort: 


    
 


  Filtering criteria  Survival analysis in validation cohort 


Figure 
panel 


 Dataset  bias 
cutoff 


(Kruskal-stat) 


Stringency / FDR (%) Number of 
resulting 


probesets 


  Kaplan-Meier analysis 
of highest quartile 


Continous score in 
multivariate Cox 


regression 


 


(Fig. 2B)  none Low / 25 % 264   P=0.009 P=0.001  
(Fig. 2D)  none High / <3.5 % 26   P=0.001 P=0.001  


A  <150 Low / 25 % 252   P=0.002 P=0.002  
B  <150 High / <3.5 % 24   P=0.005 P=0.011  
C  <75 Low / 25 % 181   P=0.049 P=0.004  
D  <75 High / <3.5 % 16   P=0.001 P=0.024  


 
Supplementary Figure S8: Stability analysis of the prognostic signatures from the supervised analysis 


The 264 Affymetrix probsets of the supervised prognostic signature were filtered according to their dataset bias measured through Kruskal-Wallis statistic and different 
stringency from SAM analysis as given in the Table below the graphs. The resulting probeset lists of 252, 24, 181, and 16 probesets were used for prognostic signature 
generation as the original 264 probeset list. In upper panels A, B, C, and D the correlation of the four alternative signatures to the 264-probeset signature is shown by 
scatter plot analysis. The lower panels display the results from the Kaplan-Meier analyses of the validation cohort of 261 TNBC (105 samples with follow up 
information). In addition P-Values of multivariate Cox regression analysis of the validation cohort using continous signature scores are given in the table below. 


P=0.001 P=0.049 
P=0.005 


P=0.049 
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P=0.002 












 


Supplementary Figure S1: Selection of the TNBC finding cohort from multiple datasets based 


on dataset comparibility 


Triple negative breast cancers (TNBC, n=579) from 28 datasets were sorted by dataset according to a 


dataset comparability metric (horizontally). Shown are the full array data of normalized Affymetrix 


U133A microarrays. The 15 most comparable datasets encompassing n=394 TNBC samples were 


subsequently used as a finding cohort and the remaining 13 datasets (n=185 TNBC samples) withhold 


as validation cohort. 
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Supplementary Table S7: Distribution of histological grade in finding and validation cohort 


 


Histological grade finding cohort validation cohort total 


G1 27 (8.7%) 25 (10.8%) 52 (9.6%) 


G2 55 (17.8%) 35 (15.1%) 90 (16.6%) 


G3 227 (73.5%) 172 (74.1%) 399 (73.8%) 


Total 309 (85 missing) 232 (29 missing) 541 (114 missing) 


 









