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Background: Different endogenous and exogenous mutational processes act over the evolutionary history of a
malignant tumor, driven by abnormal DNA editing, mutagens or age-related DNA alterations, among others, to
generate the specific mutational landscape of each individual tumor. The signatures of these mutational processes
can be identified in large genomic datasets. We investigated the hypothesis that genomic patterns of mutational
signatures are associated with the clinical behavior of breast cancer, in particular chemotherapy response and
survival, with a particular focus on therapy-resistant disease.
Patients and methods: Whole exome sequencing was carried out in 405 pretherapeutic samples from the prospective
neoadjuvant multicenter GeparSepto study. We analyzed 11 mutational signatures including biological processes such
as APOBEC-mutagenesis, homologous recombination deficiency (HRD), mismatch repair deficiency and also age-related
or tobacco-induced alterations.
Results: Different subgroups of breast carcinomas were defined mainly by differences in HRD-related and
APOBEC-related mutational signatures and significant differences between hormone-receptor (HR)-negative
and HR-positive tumors as well as correlations with age, Ki-67 and immunological parameters were
observed. We could identify mutational processes that were linked to increased pathological complete
response rates to neoadjuvant chemotherapy with high significance. In univariate analyses for HR-positive
tumors signatures, S3 (HRD, P < 0.001) and S13 (APOBEC, P ¼ 0.001) as well as exonic mutation rate
(P ¼ 0.002) were significantly correlated with increased pathological complete response rates. The signatures
S3 (HRD, P ¼ 0.006) and S4 (tobacco, P ¼ 0.011) were prognostic for reduced disease-free survival of
patients with chemotherapy-resistant tumors.
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Conclusion: The results of this investigation suggest that the clinical behavior of a tumor, in particular, response to
neoadjuvant chemotherapy and disease-free survival of therapy-resistant tumors, could be predicted by the
composition of mutational signatures as an indicator of the individual genomic history of a tumor. After additional
validations, mutational signatures might be used to identify tumors with an increased response rate to neoadjuvant
chemotherapy and to define therapy-resistant subgroups for future therapeutic interventions.
Key words: breast cancer, mutational signatures, neoadjuvant therapy, whole exome sequencing, response, prognosis
INTRODUCTION

Signatures of mutational processes have been described in
several comprehensive analyses based on whole exome or
whole genome sequencing.1-3 These signatures are the
consequence of the activity of endogenous and exogenous
mutational processes acting in combination over long pe-
riods of time to generate the specific mutational landscape
of each individual tumor.4

The molecular basis for identification of these mutational
signatures is the observation that different mutational
processes do not act completely randomly, but that each
mutational process generates a specific pattern that can be
identified by sequencing analysis. For example, specific
patterns of mutations caused by UV light5 (with strong
prevalence in melanoma) or by tobacco carcinogens6 (with
strong prevalence in tumors of patients with a smoking
history) have been identified.

The main challenge in identification of mutational sig-
natures is that many different processes act over time to
generate an individual pattern in each tumor. The theoret-
ical model and computational framework to separate these
different mutational signatures has been established by
Alexandrov et al.1,2 More than 30 different types of muta-
tional signatures have been identified.7-9 Based on these
results, it is now possible to identify the contribution of
different mutational processes to the genomic landscape
and to reconstruct the history of each individual tumor.

For breast cancer, the predominant mutational processes
include mutations induced by pathological activation of
APOBEC enzymes,10 mutations caused by alterations of
BRCA-related11 or mismatch repair (MMR)-related12 DNA
repair pathways and age-related mutational processes.13

The concept of mutational signatures provides a mech-
anistic biological framework explaining the complex inter-
action of different endogenous and exogenous carcinogenic
pathways. The most important next step is the translation of
this biological concept into clinical applications. Despite the
progress in identifying oncogenic pathways and individual
targetable mutations, the prediction of therapy response in
solid tumors is still a major challenge. These tumors develop
over a very long time by a combination of parallel muta-
tional processes; therefore, there is a very strong hypothesis
that the specific pattern of mutational signatures might also
be relevant for the response of a tumor to a given therapy.
Furthermore, these mutational processes do not act only on
the cells of the clinically relevant tumor; they act on all cells
in the patient’s body. The majority of neoplastic cells or
lume 32 - Issue 4 - 2021
premalignant lesions are eliminated by cellular control
processes or immunological processes, and progression into
a clinically relevant tumor is a comparably rare event. We
and others have provided evidence that immunological
parameters are highly relevant for patient prognosis and
success of therapy in breast cancer and other types of
tumors.14,15

This elimination of premalignant lesions could be seen as
a continuous training situation for the immune system, and
this training may be different based on the different
mutagenic processes that act over the lifetime of each
human being. The mutational pattern observed in a clini-
cally manifest tumor, therefore, may also allow us to look
back into the history of all other premalignant lesions that
have been successfully eliminated.

In this project, we have evaluated the hypothesis that
signatures of mutational processes that have contributed to
the training of the immune system and other antineoplastic
processes are relevant for response to neoadjuvant
chemotherapy and prognosis in breast cancer. To evaluate
this hypothesis, we have carried out whole exome
sequencing of a cohort of 405 pretherapeutic formalin-
fixed, paraffin-embedded (FFPE) core biopsies from pa-
tients included in the neoadjuvant GeparSepto trial.

We investigated the prevalence of the different muta-
tional signatures in different breast cancer subgroups as
well as the role of the most predominant signatures for
response to neoadjuvant chemotherapy.

PATIENTS AND METHODS

Patients and treatment

In the GeparSepto study (NCT01583426)16,17 women with
previously untreated, primary invasive breast cancer were
included after written informed consent for study partici-
pation and biomaterial collection. This translational project
was restricted to patients with human epidermal growth
factor receptor 2 (HER2)-negative tumors (n ¼ 810). Details
on the clinical trial parameters are given in the
Supplementary material, Methods section, available at
https://doi.org/10.1016/j.annonc.2020.12.016.

Objectives and endpoints of the analysis

The current analysis is an exploratory retrospective analysis
of a cohort from a prospective clinical trial. The primary
objective was to investigate mutational signatures and
mutational load in the tumor to predict response and
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resistance to neoadjuvant therapy. The secondary objectives
were to correlate mutational signatures with clinicopatho-
logical parameters. Predefined endpoints were pathological
complete response (pCR) defined as ypT0ypN0 and disease-
free survival (DFS). Predefined covariables for multivariate
regression models were age (continuous), tumor stage (T1-2
versus T3-4), nodal stage (N0 versus Nþ), Ki-67 (contin-
uous), hormone receptor (HR) status (negative versus pos-
itive) and treatment (nab-P versus P).
DNA isolation, whole exome sequencing and statistical
analysis

A total of 703 FFPE core biopsies were selected based on
the availability of sufficient tumor tissue after histopatho-
logical quality control and paired blood samples to control
for germline alterations and single-nucleotide poly-
morphisms (SNPs). A total of 703 samples were shipped to
NantOmics (Culver City, CA). Automated DNA extraction
was carried out using QIAsymphony DSP DNA Kit (Qiagen,
Germantown, MD) on the QIAsymphony. Quantification was
done using the Invitrogen� Quant-iT� dsDNA Assay Kit,
Broad Range (Thermofisher, Waltham, MA) and the BioTek
Synergy HTX Multi-Mode Reader (BioTek, Winooski, VT).
Samples were sequenced on an Illumina HiSeq sequencer
(Illumina, San Diego, CA) according to standard NantOmics
protocols. Two hundred and eight samples were not suc-
cessfully sequenced due to failures during DNA extraction
(<50 ng of extracted DNA) or failures during library prep-
aration for sequencing which were established by analysis
of electropherograms and yield post-library preparation. Of
the 495 samples that were sequenced, 15 had to be
included due to provenance fail (mismatch) and 75 due to
contamination fail. Therefore, a total of 298 samples were
excluded and successful whole exome sequencing was
carried out for 405 samples after filtering for contamination
and tumor/normal mismatches.

Mutational signatures were determined by the bio-
informatical team at NantOmics LLC, using the method
described by Alexandrov et al.,1 which was reimplemented
in Python via NMF in scikit learn, using the package versions
scikit-learn ¼ 0.14.1, scipy ¼ 0.13.3 and numpy ¼ 1.9.2
(https://scikit-learn.org/stable/). The matrix weights were
used from the mutational signature website18 using version
v2 of mutational signatures. In addition, the exonic muta-
tion rate (EMR) per Mb was calculated. Using the published
algorithm for detection of mutational signatures, we iden-
tified the absolute integer number of mutations assigned to
each signature in each tumor. In addition, we determined
the presence of each mutational signature (with at least one
mutation assigned to this signature) as a binary variable.

For a detailed evaluation, we selected only those 11
mutational signatures that were relevant for this dataset.
The strategy for selection of mutational signature and the
details of the statistical analysis are described in
Supplementary methods, available at https://doi.org/10.
1016/j.annonc.2020.12.016.
502 https://doi.org/10.1016/j.annonc.2020.12.016
RESULTS

Baseline clinical data

The set of successfully sequenced patients (n ¼ 405;
Supplementary Figure S1, available at https://doi.org/10.
1016/j.annonc.2020.12.016, consort diagram) did not
significantly differ from the HER2-negative GeparSepto pa-
tients not sequenced with respect to tumor size, nodal
status, grading, treatment arm and pCR rate
(Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2020.12.016). In the sequenced cohort,
there were fewer HR-negative tumors and fewer invasive-
ductal tumors. The patients in the whole exome
sequencing group were also slightly younger (mean age 49
years versus 50 years in the non-analyzed cohort; P ¼
0.027) and had slightly higher levels of stromal tumor-
infiltrating lymphocytes (TILs) (mean 26% versus 23% in
non-analyzed cohort; P ¼ 0.006).
Frequency of mutational signatures in HR-positive and
-negative tumors

In the complete dataset of 405 tumors, the median number
of mutations was 153 [minimum: 26, maximum: 13 072;
interquartile range (IQR) 159]. In the subset of 284 HR-
positive/HER2-negative tumors, the median number of
mutations was 142 (minimum: 27, maximum: 13 072; IQR
135). In the subset of 121 triple-negative tumors, the me-
dian number of mutations was 220 (minimum: 26,
maximum: 1059; IQR 168).

We evaluated the number of mutations of each signature
and the EMR in HR-positive and HR-negative tumors
(Figure 1). Significant differences with higher numbers of
mutations in HR-negative tumors are observed for S3 (ho-
mologous recombination deficiency, HRD; P < 0.001), S13
(APOBEC; P < 0.001), S6 (MMR; P ¼ 0.015), S21 (MMR; P ¼
0.015), S4 (tobacco; P < 0.001) and in total (EMR; P <
0.001). Significantly higher mutation numbers in HR-positive
tumors are observed for S16 (unknown process; P < 0.001)
and S28 (unknown process; P ¼ 0.002). One single tumor
had a particularly high value for the MMR-related signa-
tures S15, S21, S26 and a high EMR, which was validated by
a reduced immunohistochemical expression of MSH2 and
MSH6 indicating microsatellite-instability (MSI; Figure 1B).
Patterns of mutational signaturesdHRD and APOBEC

To give an overview on the patterns of mutational signa-
tures, an unsupervised cluster analysis in HR-positive and
HR-negative tumors was carried out. In HR-positive tumors,
two main clusters and four smaller clusters were observed
(Figure 2A and B). One main cluster (C1) was characterized
by the presence of signature S3 (HRD); the other main
cluster (C4) showed an absence of S3 and a mixture of other
signatures with comparably high levels of signatures with
unknown role (S16, S28). The cluster C2 contained mainly
APOBEC-related signatures, while the cluster C3 consisted
of age-related mutations (S1) with low mutation numbers in
most patients. A very small cluster (C5) included tumors
Volume 32 - Issue 4 - 2021
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Figure 1. Comparison of mutational signatures in HR-positive and HR-negative breast carcinomas.
(A) Absolute number of mutations of each signature for HR-negative and HR-positive tumors. In addition, EMR is shown (right part, separate y-axis). P values were
calculated using a two-sample Wilcoxon test. (B) Immunohistochemistry for microsatellite-instability (MSI) of one tumor with high EMR and high rates of MMR-related
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with high levels of the tobacco-related signature S4. The
cluster C6 consisted of a small group of tumors with a
higher contribution of other signatures. In HR-negative tu-
mors (Figure 3A and B) the clusters C1-C5 were observed as
well, and the majority of tumors showed S3 (HRD)-related
mutations (C1).

Mutational signatures, therapy response and prognosis

As expected in breast cancer, the overall pCR rate of pa-
tients with HR-negative [triple-negative breast cancer
(TNBC)] tumors was significantly higher than the pCR rate of
patients with HR-positive tumors (38.8% versus 12.7%; P <
0.001).

Differences in pCR rate for different mutational signa-
tures were observed in HR-positive tumors. For HR-positive
tumors, the two main mutational signatures S3 (HRD, P <
0.001) and S13 (APOBEC, P ¼ 0.001), evaluated as contin-
uous variables, were significantly correlated with an
increased pCR rate in univariable analysis (Figure 2C). In
multivariable analysis, the correlation was highly significant
for S13 (APOBEC, P ¼ 0.008) and borderline significant for
S3 (HRD, P ¼ 0.059, Figure 4A). Tumors with S3 levels above
the median had a pCR rate of 18%, compared with 8% for
tumors with S3 below the median (P ¼ 0.012, Figure 4B).
Similarly, tumors with S13 above the median had a pCR rate
of 22%, compared with 4% for tumors with low S13 levels
(P < 0.001, Figure 4C).
Volume 32 - Issue 4 - 2021
For survival analysis, we focused on the clinically most
relevant subgroup of therapy-resistant tumors not
responding to the neoadjuvant therapy (non-pCR). In HR-
positive tumors without a pCR, the signatures S3 (HRD,
P ¼ 0.006) and S4 (tobacco, P ¼ 0.011) were linked to
reduced DFS (Figure 2D) in univariable analysis, but not in
multivariable analysis including the covariables age, cT, cN,
Ki-67 and treatment (Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2020.12.016). Signature
S6 (MMR) was significant for reduced DFS only in multi-
variate analysis (P ¼ 0.038). In KaplaneMeier analysis using
the median as an exploratory cut point (Figure 2E and F), a
significant difference for S3 (HRD, P ¼ 0.034) and a
borderline significant difference for S4 (tobacco, P ¼ 0.053)
was observed.

In contrast, in HR-negative tumors there was no muta-
tional signature that significantly predicted pCR (uni-
variable: Figure 3C; multivariable: Supplementary Figure S3,
available at https://doi.org/10.1016/j.annonc.2020.12.016).
In therapy-resistant HR-negative tumors, S6 (MMR) had a
borderline significance for reduced DFS (univariate: P ¼
0.071, Figure 3D; multivariate: P ¼ 0.044, Supplementary
Figure S4, available at https://doi.org/10.1016/j.annonc.
2020.12.016), which was borderline significant in Kaplane
Meier analysis using the median as a cut point (P ¼
0.083, Figure 3E). The univariable and multivariable analysis
for DFS in the complete cohort (including pCR- and non-pCR
https://doi.org/10.1016/j.annonc.2020.12.016 503
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tumors) is shown in Supplementary Figure S5, available
at https://doi.org/10.1016/j.annonc.2020.12.016 for HR-
positive tumors and Supplementary Figure S6, available
at https://doi.org/10.1016/j.annonc.2020.12.016. for HR-
negative tumors.
EMR, therapy response and prognosis

In addition to the individual signatures, we also investi-
gated the EMR as a measurement of total mutational
burden. EMR correlated highly with increased pCR in HR-
positive tumors (univariable P ¼ 0.002, Figure 2C; multi-
variable P ¼ 0.005, Figure 4A). HR-positive tumors with
EMR levels above the median had a pCR rate of 20%,
compared with 6% for tumors with EMR below the median
(P < 0.001, Figure 4D). EMR did not predict DFS in the HR-
positive subcohort (Figure 2D; Supplementary Figures S2
504 https://doi.org/10.1016/j.annonc.2020.12.016
and S5, available at https://doi.org/10.1016/j.annonc.2020.
12.016).

In HR-negative tumors, EMR was not significantly asso-
ciated with pCR (Figure 3C and Supplementary Figure S3,
available at https://doi.org/10.1016/j.annonc.2020.12.016)
or DFS (Figure 3D; Supplementary Figures S4 and S6,
available at https://doi.org/10.1016/j.annonc.2020.12.016).
Correlation with biological parametersdpatient age,
Ki-67, TILs

We evaluated the correlation between the number of mu-
tations assigned to the different signatures and patient age,
proliferation rate (Ki-67) and stromal TILs in HR-positive and
HR-negative tumors (Figure 5). In HR-positive tumors,
signature S1 had a highly significant correlation with
increased patient age (P < 0.001, Figure 5A), which
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validates S1 as an age-related signature, as described before
in other studies.13

In highly proliferating HR-positive tumors, significantly
more mutations were found for signatures S3 (HRD, P <
0.001), S13 (APOBEC, P < 0.001) and S4 (tobacco, P <
0.001; Figure 5B). In immunologically active HR-positive
tumors with high numbers of TILs, more mutations were
found for S3 (HRD, P < 0.001) and S13 (APOBEC, P < 0.001;
Figure 5C).

For HR-negative (TNBC) tumors (Figure 5A and B) there
were no significant correlations of the mutational signa-
tures with patient age and proliferation rate; for TILs, there
were significant negative associations with S6 and S21 (both
MMR, P ¼ 0.003 and P ¼ 0.031; Figure 5C).

In Figure 5, we have also evaluated the EMR as a
parameter of tumor mutational burden in correlation with
age, Ki-67 and TILs. All three correlations were positive and
significant for HR-positive tumors (Figure 5). In this subtype,
significantly higher mutation rates were observed in tumors
Volume 32 - Issue 4 - 2021
with high TILs (P < 0.001), high proliferation (P < 0.001)
and in tumors from older patients (P ¼ 0.046). In HR-
negative tumors, in contrast, EMR is significantly nega-
tively correlated with high TILs (P ¼ 0.005, Figure 5C). For
HR-negative tumors there was also a significant positive
correlation of EMR with age (P ¼ 0.042).

In addition, we have also evaluated the correlation of
mutational signatures and the categorical clinicopatholog-
ical parameters grade, tumor size, nodal status as well as
the therapy arm. The results are shown in Supplementary
Tables S2 and S3, available at https://doi.org/10.1016/j.
annonc.2020.12.016.

DISCUSSION

Signatures of mutational processes are indicators of multi-
ple genetic events that act over years on all cells in the
human body. Their biological relevance has been investi-
gated in large institutional cohorts as well as tissue re-
positories of large international consortia. As a next step for
https://doi.org/10.1016/j.annonc.2020.12.016 505
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translation of these findings into the clinical setting, a
detailed investigation of the clinical effects of different
mutational signatures on therapy response and survival is
necessary. In this study, we have used a large well-defined
clinical trial cohort from a neoadjuvant clinical multicenter
trial with known therapy response data and survival data,
including HR-positive and HR-negative tumors.

The main result was that defined signatures could predict
the clinical behavior of HR-positive tumors, in particular
response to neoadjuvant chemotherapy and DFS of non-
pCR patients. We could identify mutational signatures S3
(HRD) and S13 (APOBEC) that were linked to increased pCR
rates to neoadjuvant chemotherapy with high significance
in the HR-positive subcohort. The signatures S3 (HRD) and
S4 (tobacco) were also associated with a reduced DFS in
therapy-resistant (non-pCR) HR-positive tumors.

In addition, we investigated the association of S3 and S13
with tumor proliferation and tumor immune infiltrate. Both
signatures were positively correlated with increased Ki-67
and also with increased levels of TILs, which might sug-
gest involvement in the development of more aggressive
subtypes of luminal tumors which also have a higher
immunogenicity. These highly proliferating tumors respond
better to chemotherapy, but may have a reduced prognosis
506 https://doi.org/10.1016/j.annonc.2020.12.016
overall, which is in line with the results of our investigation.
The correlation with Ki-67 might also partly explain the non-
significance in multivariable analysis.

A multitude of translational investigations have described
TILs as one of the most relevant factors for chemotherapy
response and prognosis. In our investigation, we have
observed a possible explanation why some tumors have an
accumulation of TILs. These tumors have been induced by
mutational processes involving HRD-like alterations and the
action of APOBEC signatures. Interestingly, there are
comprehensive data from preclinical investigations that
HRD and APOBEC might induce major immunological al-
terations. A molecular link between inhibition of PARP in
BRCA-mutated tumor and immune activation via STING-
pathway activation, which is triggered by cytosolic DNA,
has been described for ovarian cancer and TNBC.19,20

APOBEC enzymes are up-regulated by viral infections and
physiologically inhibit retrovirus and transposon replica-
tion.21 They also play an important role in mutagenesis in
different cancer types, including breast cancer.22

In a previous investigation, we have shown that TILs
are predictive for increased neoadjuvant response in HR-
positive and HR-negative breast cancer, while for survival,
TILs are a positive survival factor in TNBC and a negative
Volume 32 - Issue 4 - 2021
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survival factor in luminal/HER2-negative breast cancer.14

The differences observed in the present comparison of
mutational signatures between HR-positive and HR-
negative tumors might at least partially explain this
different prognostic effect of TILs. In luminal tumors,
there is a high diversity of mutational processes and TILs
are associated with those processes that are observed in
more aggressive tumors, in particular S3 (HRD). Therefore,
TILs are also linked to worse prognosis.

In TNBC, the repertoire of mutational signatures is more
homogeneous, and there is no association with TILs or Ki-
67. Therefore, in this subtype, tumors with different TIL
levels are not distinguished by different mutational signa-
tures. The higher homogeneity of the HR-negative tumors
might be explained by the faster growth rate of these
tumors and the shorter history of development for each
individual tumor. For a fast growing tumor, immune escape
Volume 32 - Issue 4 - 2021
might be more relevant compared with a slowly growing
tumor, and only those fast growing tumor clones that sur-
vive are able to accumulate non-immunogenic mutations.
This could explain the observation that high EMR is linked
to reduced TILs in HR-negative (TNBC) tumors, which has
also been observed in other studies.23

In our study, EMR and TILs, as an indicator of immuno-
genicity of a tumor, are positively correlated in HR-positive
tumors, but negatively correlated in HR-negative tumors,
which is in line with previous studies of TCGA data.24

In HR-positive breast cancer, this correlation is driven by
two signatures, S3 and S13, which are the predominant
signatures in HR-positive breast cancer with considerable
intertumoral heterogeneity, resulting in a positive correla-
tion of TILs and EMR and a highly significant association of
EMR and chemotherapy response. In contrast, in HR-
negative tumors, EMR is not related to chemotherapy
https://doi.org/10.1016/j.annonc.2020.12.016 507
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response, and there is an inverse correlation of EMR and
TILs. In contrast, in the GeparNuevo trial we observed an
association between treatment response and TMB.25

For some of the signatures with a known biological
function, we have been able to perform a validation in our
dataset. We have validated signature S1 by its correlation
with patient age and identified one tumor with MSI by the
high EMR and the high levels of MMR-related signatures
S15, S21 and S26.

It should be noted that there are relevant limitations of
this project. As recently discussed,26 the bioinformatical
detection of mutational signatures is not always straight-
forward, and results vary depending on the methods used.
In our analysis, some unknown signatures have been
detected, particularly S16 and S28, which are not typical for
breast cancer. This limits the interpretation of this finding,
and we cannot exclude that the unexpected high prevalence
of these unknown signatures might be related to artifacts
included by the algorithms or the biomaterials used. In
particular, we used small FFPE core biopsies for our study,
which might limit the detection of some signatures and
might induce some changes due to paraffin artifacts. We
have carried out and published a previous analysis within
our own laboratory indicating that limited bias is introduced
from the FFPE process.27

In our study, we have decided to use a predefined stan-
dard algorithm for detection of signatures, to test its rele-
vance in clinical trial cohorts. A further optimization of the
bioinformatical methods was not the aim of our study.
Nevertheless, a further standardization of the detection
algorithms for clinical applications, as well as validation in
other cohorts, is essential for further translation into clinical
practice.

We would also like to emphasize that mutational signa-
tures are quasi-continuous variables and therefore will not
result in distinct, defined tumors types. From Figures 2 and
3 it is evident that some patterns can be delineated by
clustering algorithms, but these should not be interpreted
as new subtypes of breast cancer. For most tumors, the
mutational signatures are heterogenous, suggesting that
more than one mutational process is relevant for the
development and progression of each individual tumor.

We would also like to emphasize that while mutational
signatures in general provide a promising model for the
development of malignant tumors, we cannot show cau-
sality in our present investigation. This analysis is based on a
sample cohort from a clinical trial; therefore, it provides just
correlative data of different markers, and no mechanistic
and causal information. Many of the alterations are signif-
icant only in univariate, but not in multivariate analysis,
which might be partly explained by the correlation with
known biological parameters, in particular Ki-67. Therefore,
these approaches will not replace classical diagnostic ap-
proaches that can be conducted without advanced
sequencing technology. However, for validation of the
mutational signatures, it is reassuring that they correlate
with central parameters of tumor biology. Of course, in this
study, we cannot draw conclusions of causality, but our
508 https://doi.org/10.1016/j.annonc.2020.12.016
results provide a strong hypothesis for further validation of
genomic alterations, for example of HRD-related alterations,
which have a high prevalence.

In this project, we aimed to look back into the individual
history of breast carcinomas to identify the processes that
lead to the accumulation of mutations in the development
of the tumor. The setup of the GeparSepto cohort allowed
us to study differences between fast growing triple-negative
tumors and luminal/Her2-negative tumors. Our study un-
derlines the fact that major differences exist between these
different tumor types. In TNBC, the different mutational
signatures are not associated with outcome parameters
such as pCR and DFS, and most mutational signatures are
comparably high in this tumor type. This might be explained
by the fact that TNBC is a rapidly developing disease, and
the rapid onset of the disease leaves not much time in
which differences between individual tumors could
develop. These tumors simply might not have a long history
that could lead to differences in composition of mutational
signatures.

In contrast, luminal tumors typically develop over several
years, and it was possible to identify differences between
individual tumors that suggest different roles for mutational
processes in the development of individual tumors. The two
main signatures involved are S3 (HRD) and S13 (APOBEC).
The high number of HRD-associated mutations in subgroups
of luminal tumors, as well as its association with therapy
response, could be a basis for additional validations, which
might open new therapeutic options for the HR-deficient
subgroup of luminal tumors.
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Appendix A 


Supplementary material – methods section 


 


Patients and Treatment 


In the GeparSepto study (NCT01583426)1,2 women with previously untreated, primary invasive 


breast cancer were included after written informed consent for study participation and 


biomaterial collection. The relevant authorities and ethics committees approved the studies. 


The clinical trial including the informed consent for biomarker analysis was approved by the 


Ethics committee of the state of Berlin (dated 02.05.2012). The translational research was 


approved by the Ethics committee of the Charité University Hospital Berlin (EA1/139/05; 


Amendment 01.03.2018, Approval 29.03.2018). The REMARK criteria were followed.3 Patients 


were randomized to either weekly nab-paclitaxel (nab-P) (Celgene, Germany) or solvent-


based paclitaxel (P) for 12 weeks followed by 4 cycles of conventionally-dosed 


epirubicine/cyclophosphamide (EC). Patient inclusion criteria and treatment information have 


been published.2 Pretherapeutic FFPE core biopsies were prospectively collected in the GBG 


biobank. HER2 status (positive if IHC3+ or SISH ratio >2.0) and HR status (ER/PR positive if 


³1% stained cells) were centrally assessed prior to randomization. To reduce the number of 


different tumor subtypes, this translational project was restricted to patients with HER2-


negative tumors (n=810). Ki-67 as well as PMS2, MLH1, MSH2 and MSH6 were evaluated by 


standard immunohistochemistry, stromal TILs were evaluated as previously described.4 


DNA isolation and whole exome/whole genome sequencing  


A total of 703 FFPE core biopsies were selected based on the availability of sufficient tumor 


tissue after histopathological quality control and paired blood samples to control for germline-


alterations and SNPs. A total of 703 samples were shipped to Nantomics (Culver City, CA, 


USA). Automated DNA extraction was performed using QIAsymphony DSP DNA Kit on the 


QIAsymphony (Qiagen, Germantown, MD, USA).  Quantification was done using the 


Invitrogen™ Quant-iT™ dsDNA Assay Kit, Broad Range (Thermofisher, Waltham, MA, USA) 


and the BioTek Synergy HTX Multi-Mode Reader (BioTek, Winooski, VT, USA). Samples were 


sequenced on an Illumina HiSeq sequencer according to standard NantOmics protocols.  


The following quality checks and quality criteria were used:  After DNA isolation post extraction 


yield had to exceed 50ng. Post-library preparation yields and electropherogram analysis were 


performed to assure libraries were of sufficient quality. Sequencing flowcell yields, error rates, 


alignment rates and overall Q30 were evaluated to assure sequencing was of sufficient quality. 


Post-duplicate marking coverage of both tumor and normal were quantified, as well as the 


coverage of 75%, 90% and 99% of known cancer-associated genes. Contamination detection 







 2 


from external samples, a calculation of homozygosity of chromosome X, as well as a 


provenance match of tumor and normal samples were performed to assure samples were 


appropriately matched prior to downstream analysis. 


208 samples were not successfully sequenced due to failures during DNA extraction (< 50ng 


of extracted DNA) or failures during library preparation for sequencing which were established 


by analysis of electropherogram and yield post-library preparation. Of the 495 samples that 


were sequenced, 15 had to be included due to provenance fail (mismatch) and 75 due to 


contamination fail. Therefore, a total of 298 samples were excluded and successful whole-


exome sequencing was performed for 405 samples after filtering for contamination and 


tumor/normal mismatches.  


From this clinical trial cohort, fresh frozen samples were unavailable for the patients in this 


study for direct comparisons. However, we have performed and published previous analysis 


within our own laboratory that indicate that limited bias is introduced from the FFPE process.5 


Additionally, informatic techniques during the somatic calling exercise were performed to 


identify potential errors that may be introduced into individual fragments and reduce false 


positive variant calls. 


Mutational signatures were determined by the bioinformatical team at NantOmics LLC, using 


the method described by AlexandrovFehler! Textmarke nicht definiert., which was reimplemented in 


Python via NMF in scikit learn6, using the package versions scikit-learn==0.14.1, 


scipy==0.13.3 and numpy==1.9.2. The matrix weights were used from the mutational signature 


website7 using version v2 of mutational signatures. In addition, the exonic mutation rate per 


Mb was calculated (EMR). Using the published algorithm for detection of mutational 


signatures, we identified the absolute integer number of mutations assigned to each signature 


in each tumor. In addition, we determined the presence of each mutational signature (with at 


least one mutation assigned to this signature) as a binary variable. For a detailed evaluation, 


we selected only those mutational signatures that were relevant for this dataset.  


Statistical analysis – predefined parameters and additional posthoc analyses 


The project is based on a predefined statistical analysis plan. Predefined endpoints were 


pathological complete response (pCR) defined as ypT0ypN0 and disease-free survival (DFS). 


Predefined covariables for multivariate regression models were age (continuous), tumor stage 


(T1-2 vs. T3-4), nodal stage (N0 vs. N+), Ki-67 (continuous), hormone receptor status 


(negative vs. positive), and treatment (nab-P vs P). Mutational signatures were evaluated as 


continuous variables and as binary variables. Associations between mutational signatures, 


clinico-pathological characteristics and pathological complete response (pCR) rate were 


investigated with Fisher´s exact tests (binary variables), χ2 tests (non-binary categorical 


variables), Wilcoxon tests (binary vs continuous variable), and Spearman correlations 
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(continuous variables). The endpoint pCR was analyzed based on logistic regression models: 


Odds ratios (ORs) with confidence intervals (CIs) and Wald p-values are presented. For the 


endpoint DFS Cox regression models were constructed and hazard ratios (HRs) with CIs and 


Wald p-values are reported. For regression models signature variables were transformed as 


log	(. +1) and variable EMR was transformed as log	(. ); ORs and HRs refer to these 


transformed variables. Interaction tests were reported as p-values from respective regression 


models. All p-values are two-sided, with a p-value<5% considered to be statistically significant. 


No correction for multiple testing was applied. All CIs correspond to 95%. Statistical analysis 


was performed using R 3.3.2 (R Core Team, 2016). While the majority of endpoints and 


clinicopathological covariables were predefined, it was necessary to adapt the analysis of the 


individual mutational signatures to exclude signatures that were present only in small 


subgroups or at very low levels (Supplemental table A.1). It was not possible to predefine these 


analyses, since the distribution of the signatures was not known before the analysis.  


 


Strategy for selection of mutational signatures for detailed analysis 


The known causes of biological processes that generate the specific patterns of mutational 


signatures were derived from the Sanger Center website,7 additional information on mutational 


signatures relevant for breast cancer were derived from previous publications.Fehler! Textmarke nicht 


definiert.,Fehler! Textmarke nicht definiert. During the course of the statistical analysis, an updated and 


revised list of mutational signatures was published on the Sanger Center website; for this 


project we used the previous signature list v2, which was predefined in our statistical analysis 


plan.  


Signatures for detailed analysis were selected based on prevalence, median and biological 


function. An overview on the parameter used for selection of signatures is given in 


Supplemental table A.1.  


As main focus, we included signatures with known biological background in breast cancer: 


age-related signatures (S1 and S5), APOBEC-related signatures (S2 and S13), a BRCA/HRD 


related signature (S3), mismatch-repair related (MMR) signatures (S6, S15, S20, S21, and 


S26), and a tobacco carcinogen-related signature (S4). From these signatures, we excluded 


S5 (present in only 5.2% of tumors) and S20 (present in 15.1%, but very low absolute levels). 


As a result of this selection process, we identified a set of 11 signatures for detailed evaluation 


and correlation with the predefined clinical endpoints and clinicopathological parameters.  


In this analysis of the prevalence of different signatures, it became evident that major 


differences exist between HR-negative and HR-positive tumors which was not clear at the time 


the statistical analysis plan was finalized. Therefore, for this manuscript, we made the post-
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hoc decision to present the main statistical analyses including the correlation with clinical 


factors as well as pCR and survival was performed separately for these two tumor subtypes.  


 


 
 


 
Table A.1: Exploratory analysis and overview on distribution and prevalence of the 


different mutational signatures in the complete cohort – selection for statistical 
analysis 


   
Biological 
process 


Mutatio
nal 


Signatur
e 


Prevale
nce (% 


of 
tumors) 


Median absolute levels of 
tumors with at least one 


mutation present* 
(interquartile range Q1-


Q3; maximum) 


Include in 
statistical 
analysis 


Justification 


Defective HR S3 61.5 44 (15-102;406) include High levels 
APOBEC-rel. S2 44.4 6 (2-13;525) include High prevalence 
APOBEC-rel. S13 87.7 12 (5-26;392) include High prevalence 


Clock-like S1 94.8 26 (15-41;258) include High prevalence 
Clock-like S5 5.2 8 (2-12;50) exclude Low prevalence 
MMR def. S6 69.9 16 (9-28;1299) include High prevalence 
MMR def. S15 45.7 10 (5-23;1263)  include High prevalence 
MMR def. S20 15.1 5 (2-9;74) exclude low levels and prev. 
MMR def. S21 27.9 5 (3-9;7013) include High prevalence 
MMR def. S26 19.0 6 (4-11;2676) include High levels 
unknown S16 60.2 29 (14-64;1084) include High prevalence 


Tobacco carc. S4 36.5 14 (5-26;120) include High prevalence 
UV-light S7 56.3 6 (3-11;143) exclude Low levels 
Aflatoxin S24 27.7 7 (3-12;66) exclude low levels 


Tobacco chew. S29 14.3 4 (2-8;26) exclude low levels 
Polymerase n S9 6.4 4 (2-9;13) exclude low levels 
POLE polym. S10 26.2 3 (2-8;85) exclude low levels 
Alkyl. agents S11 22.5 4 (2-8;23) exclude low levels 


Aristochol. acid S22 32.6 2 (1-5;16) exclude low levels 
unknown S8 1.5 4 (1-5;13) exclude Low prevalence 
unknown S12 14.8 6 (3-9;1187) exclude low levels and prev. 
unknown S14 2.5 3 (2-5;12) exclude low levels and prev. 
unknown S17 21.2 3 (2-6;1198) exclude low levels and prev. 
unknown S18 10.4 4 (2-7;20) exclude low levels 
unknown S19 14.1 6 (3-12;49) exclude low levels 
unknown S23 17.8 4 (2-6;17) exclude low levels 
unknown S25 2.7 6 (4-8;11) exclude low levels and prev. 
unknown S27 10.1 1 (1-3;27) exclude low levels 
unknown S28 60.7 8 (3-17;555) include  High prev. / range 
unknown S30 8.4 9 (4-15;27) exclude low levels and prev. 


* In this exploratory analysis, tumors without any mutation for a given signature were excluded from 
the calculation of median, interquartile range and maximum. These values are representing only those 
tumors in which the signature is present. As a result, the median values are higher than in figure 1, 
where all tumors are included. 
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Appendix B -Supplementary tables 
 


Supplementary table S1  – Clinicopathological characteristics of the cohort analyzed by 
WES – comparison with the complete cohort of patients with HER2-negative tumors treated 


in the GeparSepto trial 
 


Variable Category not analyzed analyzed Overall p 
 


all 405 (100.0%) 405 (100.0%) 810 (100.0%) 
 


T T1 132 (33.0%) 134 (33.3%) 266 (33.1%) 0.2958 
 


T2 210 (52.5%) 217 (53.8%) 427 (53.2%) 
 


 
T3 28 (7.0%) 34 (8.4%) 62 (7.7%) 


 


 
T4 30 (7.5%) 18 (4.5%) 48 (6.0%) 


 


 
missing 5 2 7 


 


N N0 253 (63.4%) 261 (66.1%) 514 (64.7%) 0.4579 
 


N+ 146 (36.6%) 134 (33.9%) 280 (35.3%) 
 


 
missing 6 10 16 


 


ER negative 175 (43.2%) 142 (35.1%) 317 (39.1%) 0.0212 
 


positive 230 (56.8%) 263 (64.9%) 493 (60.9%) 
 


PR negative 213 (52.6%) 181 (44.7%) 394 (48.6%) 0.0292 
 


positive 192 (47.4%) 224 (55.3%) 416 (51.4%) 
 


HR negative 155 (38.3%) 121 (29.9%) 276 (34.1%) 0.0144 
 


positive 250 (61.7%) 284 (70.1%) 534 (65.9%) 
 


HER2 negative 405 (100.0%) 405 (100.0%) 810 (100.0%) 
 


 
positive 0 (0.0%) 0 (0.0%) 0 (0.0%) 


 


subtype TNBC 155 (38.3%) 121 (29.9%) 276 (34.1%) 0.0144 
 


luminal 250 (61.7%) 284 (70.1%) 534 (65.9%) 
 


HistoType Ductal invasive (NST) 354 (87.4%) 324 (80.0%) 678 (83.7%) 0.0020 
 


Lobular invasive 23 (5.7%) 22 (5.4%) 45 (5.6%) 
 


 
other 28 (6.9%) 59 (14.6%) 87 (10.7%) 


 


G G1-2 178 (44.0%) 174 (43.0%) 352 (43.5%) 0.8316 
 


G3 227 (56.0%) 231 (57.0%) 458 (56.5%) 
 


treatment pac 199 (49.1%) 204 (50.4%) 403 (49.8%) 0.7787 
 


nab-pac 206 (50.9%) 201 (49.6%) 407 (50.2%) 
 


ypT0_ypN0 no pCR 310 (76.5%) 322 (79.5%) 632 (78.0%) 0.3506 
 


pCR 95 (23.5%) 83 (20.5%) 178 (22.0%) 
 


 
  







Supplementary Table S2 – Luminal/Her2-negative tumors - Correlation of mutational signatures and clinicopathological parameters.  
Each clinicopathological variable defines two subgroups. The distribution of each (absolute) mutational signature and EMR is compared between 


these subgroups: The median value for each subgroup and the p-value from a two-sample Wilcoxon test are shown. Row “n” contains the number 
of patients in each subgroup. Results are presented for HR-positive and HR-negative subtypes separately. 


 
 Grade  Tumor stage  Nodal status  Histology Therapy 


category G1-2 G3  cT1-2 cT3-4  cN0 cN+  
Ductal 


(NST) 
lobular/other  paclitaxel 


nab-


paclitaxel 
 


n 144 140  238 44  170 106  228 56  138 146  


 median median p-value median median p-value median median p-value median median p-value median median p-value 


S3(HRD) 0 20 <.0001 2 5 0.8951 2 4 0.8909 2 6 0.6029 6 1 0.3095 


S2(APOBEC) 0 0 0.9309 0 2 0.1867 0 0 0.2539 0 2 0.0220 0 0 0.5551 


S13(APOBEC) 5 11 0.0004 8 9 0.5200 7 9 0.4408 8 7 0.5106 9 7 0.1486 


S1(age) 24 24 0.3210 24 25 0.9952 24 26 0.3239 24 27 0.2313 22 25 0.2985 


S6(MMR) 6 12 0.0024 7 9 0.2898 10 3 0.0343 9 6 0.0757 6 10 0.1422 


S15(MMR) 2 0 0.5345 0 3 0.2952 0 0 0.8833 1 0 0.1355 0 0 0.9430 


S21(MMR) 0 0 0.6465 0 0 0.1854 0 0 0.1516 0 0 0.0723 0 0 0.2337 


S26(MMR) 0 0 0.7551 0 0 0.3322 0 0 0.6695 0 0 0.5662 0 0 0.0841 


S4(tobacco) 0 0 0.0595 0 0 0.0405 0 0 0.2952 0 0 0.7169 0 0 0.2124 


S16(unknown) 16 14 0.6928 14 18 0.9664 16 12 0.4722 18 5 0.0378 14 16 0.6982 


S28(unknown) 4 3 0.3365 3 6 0.1107 4 3 0.8872 4 1 0.0144 3 4 0.8108 


EMR 1.3 2.2 <.0001 1.7 1.9 0.1950 1.7 1.6 0.9505 1.7 1.7 0.9580 1.8 1.7 0.4738 


 
 
 
 







Supplementary table S3 – TNBC tumors - Correlation of mutational signatures and clinicopathological parameters  
Each clinicopathological variable defines two subgroups. The distribution of each (absolute) mutational signature and EMR is compared between 


these subgroups: The median value for each subgroup and the p-value from a two-sample Wilcoxon test are shown. Row “n” contains the number 
of patients in each subgroup. Results are presented for HR-positive and HR-negative subtypes separately. 


 
 Grade  Tumor stage  Nodal status  Histology Therapy 


category G1-2 G3  cT1-2 cT3-4  cN0 cN+  
Ductal 


(NST) 
other*  paclitaxel 


nab-


paclitaxel 
 


n 144 140  238 44  170 106  228 56  138 146  


 median median p-value median median p-value median median p-value median median p-value median median p-value 


S3(HRD) 65 54 0.7588 56 103 0.7816 54 96 0.5654 54 69 0.6097 58 33 0.5156 


S2(APOBEC) 0 0 0.6484 0 2 0.7626 0 0 0.6195 0 1 0.6442 0 0 0.5967 


S13(APOBEC) 12 16 0.5683 14 32 0.0194 15 16 0.8484 16 14 0.8552 15 15 0.6674 


S1(age) 25 30 0.8382 29 34 0.3585 29 28 0.9775 28 30 0.5345 28 31 0.9233 


S6(MMR) 14 14 0.3793 14 12 0.9122 14 14 0.7814 14 10 0.6427 14 13 0.7216 


S15(MMR) 0 0 0.6692 0 8 0.2396 0 0 0.1743 0 0 0.8240 0 0 0.3723 


S21(MMR) 1 0 0.0326 0 0 0.1519 0 0 0.1450 0 0 0.9225 0 0 0.4690 


S26(MMR) 0 0 0.7222 0 0 0.4838 0 0 0.7495 0 0 1.0000 0 0 0.4372 


S4(tobacco) 0 1 0.7342 1 1 0.8238 0 0 0.9732 0 1 0.7455 0 1 0.9225 


S16(unknown) 0 2 0.0173 0 6 0.5068 0 4 0.8326 0 7 0.2462 0 0 0.7298 


S28(unknown) 0 1 0.1049 0 2 0.6360 0 0 0.9839 1 0 0.7351 1 0 0.8197 


EMR 2.8 2.8 0.9808 2.7 4.1 0.0753 2.7 2.9 0.8657 2.7 3.2 0.4052 2.8 2.8 0.7528 


 
*: There are no lobular HR-negative tumors in the analysis set. 


 
 








GeparSepto breast cancer clinical trial cohort (n=810, HER2 neg. patients*)


Induction of mutations by different processes over months/years


HRD   APOBEC    aging MSI     tobacco other


HER2neg tumors (ERpos or ERneg) (n=703) for NGS analysis


Successfull whole exome sequencing (n=405)
HRneg (=TNBC): n=121; HRpos (=lum/HER2neg): n=284


30 mutational signatures
11 signatures selected based on prevalence and level


Correlation with biological parameters (n=405)


Patient 
age


Proliferation 
(Ki-67)


Immune activ. 
(TILs)


Correlation with outcome (n=405)


Pathol. complete
response


(pCR; ypT0ypN0)


Disease-free
survival (DFS)


Hormone receptor status


Supplementary figure S.1: Analysis of mutational signatures in tumor samples from the
GeparSepto multicenter trial - overview on clinical trial samples, consort statement and project
outline (*the therapy of the HER2pos tumors (n=396) is not shown here, as these tumors were
not included in current sequencing study)
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Appendix C – supplementary figures


Denkert et al.                                                          Supplementary Figure S.1







Denkert et al.                                                         Supplementary Figure S.2


Supplementary Figure S.2: Mutational signatures and disease-free survival (DFS) in therapy
resistant HR-positive tumors (with no pCR). Multivariable analysis. Multivariate Cox-regression
for DFS (n=239) using the covariables age, cT, cN, Ki67, and treatment in no pCR patients.
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Denkert et al.                                                         Supplementary Figure S.3


Supplementary Figure S.3: Mutational signatures and pathological complete response (pCR)
to neoadjuvant chemotherapy in HR-negative tumors – multivariable analysis (n=119). The
covariables in the multivariable models are age, cT, cN, Ki67, and treatment. The OR refers to
the transformed variables, see methods for details.
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Denkert et al.                                                       Supplemental Figure S.4


Supplementary Figure S.4: Mutational signatures and disease-free survival (DFS) in therapy
resistant triple-negative tumors (patients with no pCR) – multivariate analysis (n=73) Cox-
regression. The covariables in the multivariable models are age, cT, cN, Ki67, and treatment.
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Denkert et al.                                                      Supplementary Figure S.5


Supplementary Figure S.5: Mutational signatures and disease-free survival (DFS) in all HR-
positive tumors (n=284). a, Univariate (n=284) Cox-regression for DFS. b, Multivariable Cox-
regression for DFS (n=274) using the covariables age, cT, cN, Ki67, and treatment. c, d, Univariate
Kaplan-Meier survival analysis for S3 (HRD, c) and S4 (tobacco, d) using the median as a cutpoint
(p: log rank test).
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Denkert et al.                                                     Supplementary Figure S.6


Supplementary Figure S.6: Mutational signatures and disease-free survival (DFS) in all triple-
negative tumors (n=121). a,b Univariate (a, n=121) and multivariable (b, n=119) Cox-regression.
The covariables in the multivariable models are age, cT, cN, Ki67, and treatment. c, Univariate
Kaplan-Meier survival analysis for S6 (MMR) using the median as a cutpoint (p: log rank test).
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