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ABSTRACT
◥

Purpose: We examined gene expression, germline variant, and
somatic mutation features associated with pathologic response to
neoadjuvant durvalumab plus chemotherapy in basal-like triple-
negative breast cancer (bTNBC).

Experimental Design: Germline and somatic whole-exome
DNA and RNA sequencing, programmed death ligand 1 (PD-L1)
IHC, and stromal tumor-infiltrating lymphocyte scoring were
performed on 57 patients. We validated our results using 162
patients from the GeparNuevo randomized trial.

Results: Gene set enrichment analysis showed that pathways
involved in immunity (adaptive, humoral, innate), JAK–STAT
signaling, cancer drivers, cell cycle, apoptosis, and DNA repair
were enriched in cases with pathologic complete response (pCR),
whereas epithelial–mesenchymal transition, extracellular matrix,
and TGFb pathways were enriched in cases with residual disease
(RD). Immune-rich bTNBCwith RDwas enriched in CCL-3, -4, -5,

-8, -23, CXCL-1, -3, -6, -10, and IL1, -23, -27, -34, and had higher
expression of macrophage markers compared with immune-rich
cancers with pCR that were enriched in IFNg , IL2, -12, -21,
chemokines CXCL-9, -13, CXCR5, and activated T- and B-cell
markers (GZMB, CD79A). In the validation cohort, an immune-
rich five-gene signature showed higher expression in pCR cases
in the durvalumab arm (P¼ 0.040) but not in the placebo arm (P¼
0.923) or in immune-poor cancers. Independent of immune mar-
kers, tumor mutation burden was higher, and PI3K, DNA damage
repair, MAPK, and WNT/b-catenin signaling pathways were
enriched in germline and somatic mutations in cases with pCR.

Conclusions: The TGFb pathway is associated with immune-
poor phenotype and RD in bTNBC. Among immune-rich bTNBC
RD, macrophage/neutrophil chemoattractants dominate the cyto-
kine milieu, and IFNg and activated B cells and T cells dominate
immune-rich cancers with pCR.

Introduction
Multiple randomized trials demonstrated increased pathological

complete response (pCR; ypT0is/ypN0) rates when an anti–
programmed cell death protein 1 (PD-1; pembrolizumab) or anti–
programmed death ligand 1 (PD-L1; atezolizumab, durvalumab)
antibody is included with standard-of-care neoadjuvant chemother-
apy in triple-negative breast cancer (TNBC; refs. 1–5). Patients who
achieve pCR have excellent long-term survival, and two of these
randomized trials also reported statistically significant improvement
in recurrence-free survival with immunotherapy (2, 6). The pCR rates
after combined neoadjuvant immunotherapy þ chemotherapy range
between 44% and 65% depending on the type of chemotherapy
regimen indicating that many patients continue to have residual
disease (RD) after therapy.

Several studies examined molecular predictors of pCR in neoad-
juvant immunotherapy þ chemotherapy trials and demonstrated
that cancers with higher levels of tumor-infiltrating lymphocytes
(TIL) and greater expression of PD-L1 protein on immune cells
have higher pCR rates compared with cancers with lesser immune
infiltration (7). The presence of TILs and PD-L1 expression are
associated with the expression of a broad range of immune gene
expression signatures that also predict pCR (8, 9). Tumor mutation
burden (TMB) recently emerged as an independent predictor for
pCR (10). However, all of these markers are predictive of pCR
with or without immunotherapy (11–13), no validated molecular
markers exist that could identify patients who selectively benefit
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from inclusion of immunotherapy with their neoadjuvant chemo-
therapy. We recently reported that MHC class II protein expression
on tumor cells may identify cancers that are selectively benefitting
from neoadjuvant immunotherapy, but this observation will require
independent validation (14).

The goal of this study was to comprehensively characterize molec-
ular features of basal-like TNBC (bTNBC) that achieved pCR after
neoadjuvant anti–PD-L1 therapy plus chemotherapy compared
with cases with RD in the overall study population and in the
immune-rich subset. We focused on bTNBC to minimize molecular
heterogeneity in our relatively small sample set and because of the
clinical differences between bTNBC and other less frequent TNBC
molecular subtypes (15, 16). We performed whole-exome and whole-
transcriptome RNA sequencing (RNA-seq) along with histologic
assessment of pretreatment needle biopsies collected during a single
arm phase II clinical trial to identify candidatemarkers of response (7).
We assessed the association between our candidate response markers
on the chemotherapy alone and chemotherapy plus durvalumab arms
of the GeparNuevo randomized trial.

Methods
Patient population and biospecimens

Pretreatment core needle biopsies for research were obtained from
patients with stage I to III TNBC who enrolled in a single arm
neoadjuvant clinical trial (NCT02489448) and received durvalumab
concurrent with weekly nab-paclitaxel x 12 followed by durvalumab
plus dose dense doxorubicin/cyclophosphamide x 4 treatments.
Primary efficacy results were previously published (7). Sixty female
patients were enrolled in the trial, 2 patients were not evaluable for
pathologic response, and 1 patient withdrew consent; therefore, the
biomarker population includes 57 patients (pCR n ¼ 26, RD n ¼ 31;
Supplementary Fig. S1). All patients provided written informed con-
sent for research on their donated tissues, including germline DNA
sequencing. Ethical approval was obtained from the Yale Human
Investigations Committee (HIC; Yale University, New Haven,
CT; HIC no. 1409014537). The validation data included targeted
mRNA sequencing results of 2,559 transcripts generated from
pretreatment biopsies of 162 patients enrolled in the GeparNuevo
trial (NCT02685059) who received durvalumab or placebo every plus

nab-paclitaxel x 12 weeks, followed by durvalumab or placebo plus
epirubicin/cyclophosphamide x 4 treatments (2). The GeparNuevo
protocol was approved by the respective ethics committee, institu-
tional review board, and national competent authority. All studies
were conducted in accordance with the Declaration of Helsinki.

Isolation of RNA and DNA
For the Yale cohort, RNA andDNAwere extracted from one biopsy

collected in RNAlater� (Qiagen) and stored at -80�C. After homog-
enization with the TissueLyser II bead-milling system (Qiagen), DNA
was isolated using the AllPrep DNA/RNA/miRNA Universal Kit, and
the flow-through RNA was extracted with RNeasy Plus Kit (Qiagen)
following the manufacturer’s instructions. The quality and concen-
tration of isolated DNA and RNA were tested on the Agilent 2100
Bioanalyzer system. DNA and RNA-seq were performed at the Yale
Center for Genome Analysis.

RNA-seq and data processing
Paired-end sequencing of 100-bp fragments of total RNA for a

targeted depth of 50 million reads was performed using the Illumina
NovaSeq platform. Quality was assessed using FastqQC v 0.11.5 (17),
adapter sequences were trimmed with Trimmomatic v0.36 (RRID:
SCR_011848; ref. 18). Sequencing reads were aligned to human
genome, hg38, with STAR v2.5.3a (RRID:SCR_004463; ref. 19) using
two-pass mode and default parameters; alignment quality and strand-
edness was checked using RSeQC v2.6.4 (RRID:SCR_005275; ref. 20).
Gene expression was quantified using RSEM v1.3.0 (RRID:
SCR_013027) (21) and ENSEMBL release 91 (RRID:SCR_002344)
was used to annotate reads to human genes. One specimen was
excluded due to poor RNA quality. Molecular subtyping was per-
formed using the AIMS, SCMOD2, and PAM50methods. All methods
identified the same 6 cases as non–basal-like and outlier analysis using
principal component analysis (PCA) and uniform manifold approx-
imation and projection (UMAP) of transcriptomic data confirmed
these cases as distinct from the remaining samples. (Supplementary
Figs. S1 and S2). All six nonbasal cases had RD. In order to work with a
molecularly homogeneous bTNBC set we excluded these 6 cases from
further analysis, resulting in 50 bTNBC cases (pCRn¼ 25, RDn¼ 25).

Gene expression differences between pCR and RD samples were
determined using “DESeq2” R package (RRID:SCR_000154; ref. 22).
To adjust for variable tissue composition from case to case, we added a
previously published stromal score that quantifies tumor stromal
content calculated using the ESTIMATE R package (23). Differentially
expressed genes were defined as log-fold change > 1, the Benjamini–
Hochberg method was used to adjust for multiple comparisons and
adjusted P < 0.05 was considered significant. Gene set enrichment
analysis (GSEA) was implemented using the fgsea R package (24). To
quantify biological and immune processes, the NanoString Hallmarks
of Cancer and Biological Pathways and Processes gene sets and a
collection of previously published immune gene signatures (5, 8) were
used (Supplementary Tables S1–S2). Immune signature-based classi-
fication into immune-high versus immune-low status was performed
using the median values of the Tumor Inflammation Signature (TIS),
GeparSixto, NHI 5-gene, STAT1 gene signatures, and expression of
IFNg single gene, respectively. Gene signature expressions were com-
pared between pCR and RD groups using the Mann–Whitney test.
Multivariate association between gene signatures expressions and pCR
were assessed using logistic regression adjusted for age (continuous
variable), tumor size (T1 vs. ≥ T2), nodal status (N0 vs. N1–N3), and
stromal score (from ESTIMATE algorithm). Benjamini–Hochberg
corrected P < 0.05 was considered significant.

Translational Relevance

We found that high tumor mutation burden and immune-rich
microenvironment are independently associated with pathologic
complete response (pCR) to anti–programmed death ligand 1
therapy plus chemotherapy in basal-like triple-negative breast
cancer (bTNBC), whereas lack of pCR and immune-poor pheno-
type are associated with higher expression of TGFb pathway
and epithelial/mesenchymal markers. Immune-rich bTNBC
with residual disease are characterized by higher expression of
CCL-3, -4, -5, -8, -23, CXCL-1, -3, -6, -10, IL1, -23, -27, -34, and
more abundant in macrophage markers. Immune-rich bTNBC
with pCR are characterized by activated T- and B-cell markers and
expression of IFNg , IL2, -12, -21, CD79A, andGZMB.Nomutation
in single genes was associated with response, but cancers with pCR
had significantly more germline variants and somatic mutations in
the PI3K, DNA damage repair, MAPK, andWNT/b-catenin path-
ways that could affect chemotherapy sensitivity.
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For the GeparNuevo validation cohort, formalin-fixed, paraffin-
embedded (FFPE) tissues were processed using an HTG EdgeSeq
instrument (HTG Molecular Inc.) with the Oncology Biomarker
Panel according to the manufacturer’s instructions as previously
described (2, 10). Fisher exact test and Pearson c2 were used to
evaluate categorical variables [pCR status; stromal TILs (sTIL; high,
low); ref. 10]. Univariate and multivariate logistic regression models
with adjustments for clinical covariates (as previously described)
were used for assessment of predictive value of genes for pCR (10).

Whole-exome sequencing
Genomic DNA (1 mg) from tumor biopsies andmatched peripheral

blood buffy coats of 57 patients were sheared to a mean fragment
length of 140 bp and exomes were captured using the NimbleGen
SeqCap EZ v2 kit. The resulting library was sequenced on an Illumina
HiSeq 4000 instrument in paired-end 75-cycles mode to achieve an
average target sequencing depth of 232x for tumor samples and 207x
for matched normal samples. Reads were filtered by Illumina
CASAVA 1.8.2 software, trimmed at the 30 end using FASTX
v0.0.13 (RRID:SCR_005534), and aligned to the human reference
genome (GRCh38) by Burrows-Wheeler Aligner v0.7.15a (RRID:
SCR_010910; ref. 25). PCR duplicates were removed with MarkDu-
plicates (Picard v 2.17.11, http://broadinstitute.github.io/picard/,
RRID:SCR_006525) algorithm. Indelrealigner and RealignerTarget-
Creator kits of GATK (v3.4; ref. 26) were used to align indel regions.
Mutect (v.1.1.4; RRID:SCR_000559; ref. 27) was used to identify
somatic single-nucleotide variants (SNV). We used IndelGenotyper
(36.3336) of GATK (v3.4; RRID:SCR_001876) for somatic indel
calling. We applied the HaplotypeCaller algorithm of GATK (26) to
call high quality germline variants with default parameters. To control
for the false positive rate of germline variants calling, we filtered low-
quality variants with the following criteria: DP < 4, QD < 2.0, FS > 60.0,
MQ < 35.0, MQRankSum < �12.5, and ReadPosRankSum < �8.0.
TMB was calculated as the total number of exonic somatic mutation
divided by total length of exome capture probes (34 MB).

The functional impact of germline missense variants was pre-
dicted using MetaSVM (28) and annotation from the ClinVar
database (RRID:SCR_006169; ref. 29). We considered a missense
variant as high functional impact if it was classified as deleterious by
MetaSVM or Pathogenic/Likely-Pathogenic in ClinVar. Loss-of-
function (LoF) variants including frameshift indels, stop gain, and
stop loss variants were also considered as high functional impact, as
well as variants annotated as high-confidence loss of function in
gnomAD (30). We used 723 cancer census genes from the Catalogue
Of Somatic Mutations In Cancer database (COSMIC; release v94,
May 28th, 2021; RRID:SCR_002260; ref. 31) to generate the onco-
plots for both germline and somatic mutations. Associations
between pCR and gene- or pathway-level germline variants and
somatic mutations were assessed using logistic regression. For the
gene-level analysis, only genes affected in at least five out of 57 cases
were considered for the association test.

To assess mutations at the pathway level, we collected 107 canon-
ical biological pathways from the NanoString Hallmarks, Nano-
String Metabolic, and MSigDB Pathway databases (Supplementary
Table S2) and considered a pathway mutated if it had ≥1 member
gene with mutation. To assess significance of pathway level muta-
tion, we first calculated ORs of the response category (pCR or RD)
versus the gene or pathway status (mutated versus wild-type) using
logistic regression, next we randomly permuted the pCR or RD
labels for 1,000 iterations and the OR for each gene or pathway was
recalculated. The proportion of random permutations showing an

OR greater than the OR of the unperturbed data was defined as the
P value.

PD-L1 IHC and sTILs assessment
sTILs were assessed on FFPE hematoxylin and eosin–stained 4-mm

sections. The slides were digitally scanned and independently scored
by two pathologists. The sTILs score was calculated as the area
occupied by mononuclear inflammatory cells over the total intratu-
moral stromal area (32). Immune-high cancers were defined as sTILs≥
30% (33). PD-L1 protein expression was assessed with chromogenic
IHC using the VENTANA PD-L1 (SP263) Assay following the man-
ufacturer’s instructions. PD-L1 positivity was defined as ≥1% tumor
and/or immune cells staining positive (32,34). Mann–Whitney test
was used for sTILs scores and the Fisher exact test was use for PD-L1
IHC positivity to determine if there were significant (P < 0.05)
differences between pCR and RD.

Data and material availability
All data associated with this study are presented in this paper or

Supplemental Materials. The whole exome and transcriptomic data
from the Yale clinical trial (NCT02489448) are deposited in National
Center for Biotechnology Information (NCBI) database of Genotypes
and Phenotypes (dbGaP) under bioproject number PRJNA558949. To
access the GeparNuevo (NCT02685059) dataset please refer to https://
gbg.de/en/research/trafo.php.

Results
Differentially expressed genes and enriched pathways between
bTNBC with pCR and RD

One hundred forty-three and 66 genes were significantly over-
expressed in cancers that achieved pCR and RD, respectively (Fig. 1A;
Supplementary Table S3). GSEA showed that adaptive immunity
(P < 0.001), cancer driver genes (P < 0.01), cell cycle and apoptosis
(P < 0.05), DNA repair (P < 0.05), humoral immunity (P < 0.001),
innate immunity (P < 0.001), and JAK–STAT pathways (P < 0.001)
were enriched in patients with pCR (Fig. 1B; Supplementary
Table S4). Epithelial–mesenchymal transition (EMT; P < 0.05),
extracellular matrix (ECM; P < 0.01), and TGFb (P < 0.05) pathways
were enriched in patients with RD (Fig. 1B; Supplementary
Table S4). The leading-edge genes from the enriched pathways
showed that genes that regulate T-cell and B-cell activities drove the
pathway enrichment in pCR, and genes that impacted macrophages,
fibroblasts, and cancer cell response to cytotoxic therapy (i.e.,
decreased DNA repair machinery) drove pathway enrichment in
RD (Fig. 1C; Supplementary Table S4). These findings confirm that
high levels of immune gene expression are characteristics of highly
chemotherapy-sensitive cancers. However, a subset of immune-rich
bTNBC fail to achieve pCR and what drives this difference remains
unknown.

Differentially expressed genes and pathways between immune-
rich TNBC with pCR and RD

We also performed differential gene and pathway expression anal-
ysis between cases with pCR versus RD restricted to immune-rich
cancers only. To assess how the results might depend on the definition
of immune richness, we applied two histology based methods includ-
ing sTILs ≥ 30% and PD-L1 IHC positivity, and five immune gene
signatures dichotomized at themedian (TIS > 0.1249, GeparSixto gene
signature > 0.26, NHI 5-gene score > 0.0014, STAT1 score > 0.07695,
and IFNg gene expression ≥ 0.20) to define immune-rich status
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(Supplementary Tables S1–S2 and S5; refs. 5, 8). The ranking of
differentially expressed genes varied substantially depending on how
immune-rich status was defined (Fig. 2A–G; Supplementary Tables
S6–S13). However, GSEA revealed highly consistent differences at
pathway level between cancers with RD versus pCR, regardless of how
immune-rich status was defined (Fig. 3A; Supplementary Tables S14–
S20). The pathways that were significantly enriched in RDdespite high

immune infiltration included inflammation (P < 0.05) and innate
immunity (P < 0.05), the TGFb pathway and EMT were also consis-
tently enriched but failed to reach statistical significance. In cancers
with pCR, adaptive immunity (P < 0.05) and cancer driver gene
pathways (P< 0.01)were significantly enriched; several other pathways
including DNA repair, cell cycle, apoptosis, chromatin modifications,
PIK3A, and RAS were also consistently enriched but failed to reach

Figure 1.

Differentially expressed genes and pathways between pCR and RD in bTNBC treatedwith neoadjuvant durvalumab and standard-of-care chemotherapy.A,Volcano
plot of differentially expressed genes. Statistically significant genes are in red, top 50 significant genes annotated in blue. B, Pathway enrichment results.
C, Enrichment score plots of the leading-edge genes from significantly enriched pathways. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001.

Blenman et al.

Clin Cancer Res; 2022 CLINICAL CANCER RESEARCHOF4

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-21-3215/3119889/ccr-21-3215.pdf by Johann W
olfgang G

oethe U
niversity Frankfurt am

 M
ain user on 23 M

ay 2022



Figure 2.

Differentially expressed genes between pCR and RD in immune-rich bTNBC. A to G, Volcano plots of differentially expressed genes in immune-high cancers defined
by sTILs ≥ 30%, PD-L1–positive, TIS >0.1249, GeparSixto signature (GS) >0.26, NHI 5-gene score >0.0014, STAT1 score >0.07695, or IFNg single gene (IFNG) ≥0.20,
respectively. Statistically significant genes are in red, top 50 significant genes annotated in blue.
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statistical significance. Examination of the leading-edge genes from the
significantly enriched pathways revealed a substantially different
cytokine/chemokine milieu with RD compared with pCR (Fig. 3B;
Supplementary Tables S14–S20). In cancers with RD, the dominant
chemokines were CCL-3, -4, -5, -8, -23, CXCL-1, -3, -6, -10, and
cytokines were IL1A/B, -23A, -27, -34. The chemokines CCL-3, -5 and
CXCL-1, -6 are major chemoattractants for tumor-associated macro-
phages (TAM) and neutrophils that can exerting protumorigenic
effects (35). IL34 promotes macrophage differentiation and IL1 is the
classical macrophage-derived proinflammatory cytokine. Indeed, the
leading-edge genes of the innate immunity pathway enriched in RD
included all the hallmarks of a strong macrophage presence; high
expression of CSF1, CSF1R, CD14, scavenger receptor MARCO, and
Toll-like receptors (TLR) 1, -2, -3, -4, -5, -6.

In immune-rich cancers with pCR, the dominant cytokines were
IFNg , IL2, -12A/B, -21, and chemokines CXCL-9 andCXCL-13 and its
receptor CXCR5. IFNg and IL2 are the quintessential immune growth
factors that play critical roles in activating and sustaining T-cell
response. IL12 induces Th cell differentiation and increases the
cytotoxic activity of T cells; it also inhibits TAMs and myeloid-
derived suppressor cells. IL21 regulates differentiation of B cells into
plasma cells and increases cytotoxicity of T cells. CXCL-9 is a
chemoattractant for activated T-cells, and CXCL-13 is a chemoat-
tractant for B cells. Consistent with this highly immune activating
cytokine milieu, the leading-edge genes also included many T-cell
(CD3, CD5, CD6, CD7, CD40LG) and B-cell (MS4A1, CD19, CD38,
CD22, CD37, CD79A) markers, human leukocyte antigen class II
(HLA-D) molecules that present antigens to T cells, and granzymes
that mediate cytotoxicity.

When we compared immune-poor cancers with pCR versus RD we
identified different sets of differentially expressed genes, with less than

40% overlap with the genes associated with response in immune-rich
cancers, suggesting that different processes are involved in determin-
ing response or resistance depending on the immune microenviron-
ment. Cancers with pCR were enriched in the adaptive (P < 0.01),
humoral (P < 0.05), and innate immunity pathways (P < 0.05) despite
belonging to the overall immune-poor subset. Patients with RD were
enriched in the angiogenesis (P < 0.01), ECM (P < 0.05), and RAS
pathways (P < 0.05; Supplementary Tables S21–S34; Supplementary
Fig. S4).

The GeparNuevo randomized trial used an essentially identical
durvalumab plus chemotherapy arm as our study and therefore
represents an ideal validation cohort that also provides an opportunity
to test the immunotherapy-specific predictive role of our response
associated genes.We tested if the leading-edge genes that distinguished
immune-rich cancers with pCR from those with RD in the Yale cohort
were also differentially expressed between pCR and RD in immune-
rich cancers from the GeparNuevo trial. Only 36 of the leading-edge
genes associated with pCR in immune-rich bTNBC had expression
data available from the GeparNuevo samples. Supplementary
Table S35 lists the gene level validation results. Most importantly, we
observed that from our gene list IFNG and IL21 were significantly
positively associated with pCR in the chemotherapy alone arm and
CXCL9, CXCL13, CD79A, and cytotoxins GZMA and GZMB were
positively associated with pCR only in the durvalumab arm. Chemo-
kines CXCL1 and CXCL3 were positively associated with RD in
chemotherapy alone arm whereas CSF1, TLR3, CCL5, CXCL10, and
CCL4 were associated with RD in durvalumab arm only. An immune-
rich pCR signature created from the mean value of the scaled expres-
sion of IFNG, IL2, IL21, CD79A, and GZMB that individually showed
a weak association with pCR (P < 0.2) in GeparNuevo, showed
significantly higher expression in cases with pCR in the durvalumab

Figure 3.

Pathway enrichment differences between pCR andRD in immune-rich bTNBC.A,Heatmaps of pathway enrichment results for 21 Cancer Hallmarks Pathways in each
of the different ways immune-high statuswas defined (as onFig. 2). Pathways enriched in pCR are red and those enriched in RD are blue.B,Enrichment score plots of
the leading-edge genes from the pathways that were significantly and consistently enriched in cancers with pCR or RD. IFNG single gene expression was used to
define the immune-rich cancers for this analysis. � , P < 0.05; ��P < 0.01; ��� , P < 0.001; ���� , P < 0.0001.
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arm (P¼ 0.040) but not in the placebo arm (P¼ 0.923) or in immune-
poor cancers irrespective of treatment (Fig. 4).

Germline and somatic mutation landscape associated with
response

We identified 206 protein coding genes with high functional impact
germline variants affecting at least 5 (out of 57) patients. Among genes
affected by germline variants, there were no significant differences in

variant frequency by pathologic response after adjusting for multiple
comparison (Fig. 5A; Supplementary Tables S36). Eight patients had
germline BRCA1/2 mutation (5 pCR, 3 RD; P ¼ 0.2). Somatic
mutations affected 3,422 distinct genes, among these 1342 were
mutated in only one cancer (Fig. 5B; Supplementary Tables S37).
The most frequently mutated gene was TP53 (24 pCR, 22 RD). There
was no statistically significant difference in somatic mutation frequen-
cies by pathologic response for any gene after adjustment for multiple

Figure 4.

Expression of a five-gene index of leading-edge genes associated with pCR in immune-rich bTNBC discovered in the Yale cohort and tested in the two arms of the
GeparNuevo trial. The five genes include IFNG, IL2, IL21, CD79A, andGZMB. Expression levels are shown in the durvalumabþ chemotherapy and chemotherapy alone
(i.e., placebo) arms, each stratified by TIL.

Figure 5.

Pathways affected by germline variants or somatic mutations in bTNBC with pCR and RD. A and B, Oncoplots of germline and somatic mutations in COSMIC genes
ordered by pathologic response.
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comparison. Next, we assessed associations between response and
pathway level mutations separately for somatic mutations and high
functional impact germline variants. Four pathways were significantly
enriched in high functional impact germline variants including PI3K,
DNA damage repair, MAPK, andWNT/b-catenin signaling pathways
(P < 0.05; Table 1; Supplementary Table S38). These pathways were
more frequently affected in cases with pCR. Somatic mutations were
enriched in 22 pathways (P < 0.05) including the same four pathways
identified in the germline analysis (Table 1; Supplementary Table S39).
Higher TMB was significantly associated with pCR and was indepen-
dent of immune gene signature expression (Table 2; Supplementary
Table S40).

Discussion
Low levels of TILs and low expression of a broad range of immune

genes were associated with lack of pCR after chemotherapy plus
durvalumab therapy. The lower immune infiltration was accompanied
by higher expression of TGFb andmesenchymal features of the cancer.
TGFb is an important negative regulator of cellular immunity and has
been implicated in immune evasion and resistance to PD-L1 blockade
in multiple cancer models (36–38). These observations suggest that
targeting TGFb could remove a barrier to immune infiltration and
create a more immune competent tumor microenvironment in
immune-cold cancers.

While immune-rich cancers more frequently achieve pCR, a sub-
stantial minority continues to have viable residual cancer at surgery.
We, therefore, examined transcriptional differences between immune-
rich bTNBC that had pCR versus those with RD. Immune-rich cancers
that achieved pCR were characterized by activated T cells and B cells,

high expression of immunoglobulins, granzymes, granulysin, and
HLA class II antigens. The dominant cytokines in the tumor micro-
environment were IFNg , IL2, -12, -21, CXCL-9, -13, and CXCR5.
These are classic chemoattractants and activators of T cells, B cells, and
mediators of adaptive immunity (39). In contrast, immune-rich
bTNBCs with RD were enriched in genes associated with myeloid/
macrophage activity including monocyte chemoattractants CCL5 and
CXCL10, ILs that these cells secrete (IL1, -23, -27, -34), and classic
TLRs (TLR-1, -2, -3, -4, -5, -6) that provide pathogen recognition and
subsequent activation of innate immunity. RD samples were also
enriched in genes inhibiting the complement system including
CD46 and CD55. An impaired complement system can hinder both
antibody-dependent and -independent cell death and diminish

Table 1. Germline and somatic variants pathway associations.

Pathway Source Mutation
pCR
(n ¼ 26)

RD
(n ¼ 31)

Mutation
rate in
pCR

Mutation
rate in
RD

Permutation
P value OR

OR lower
than
95% CI

PI3K Nanostring metabolic Germline 16 9 0.6154 0.2903 0.0082 3.9111 2.2232
DNA damage repair Nanostring metabolic Germline 10 5 0.3846 0.1613 0.0307 3.2500 1.7254
MAPK Nanostring metabolic Germline 8 4 0.3077 0.1290 0.0435 3.0000 1.5141
WNT_BETA_CATENIN_SIGNALING MSigDB Hallmark Germline 16 13 0.6154 0.4194 0.0493 2.2154 1.2870
INTERFERON_ALPHA_RESPONSE MSigDB Hallmark Somatic 12 5 0.4615 0.1613 0.0048 4.4571 2.3808
MAPK Nanostring metabolic Somatic 25 23 0.9615 0.7419 0.0076 8.6957 2.8966
Myc Nanostring metabolic Somatic 24 22 0.9231 0.7097 0.0089 4.9091 2.1290
DNA damage repair Nanostring metabolic Somatic 25 23 0.9615 0.7419 0.0131 8.6957 2.8966
Transcriptional regulation Nanostring metabolic Somatic 25 23 0.9615 0.7419 0.0175 8.6957 2.8966
Wnt_pathway Nanostring hallmarks Somatic 24 23 0.9231 0.7419 0.0184 4.1739 1.7971
Cell cycle Nanostring metabolic Somatic 24 23 0.9231 0.7419 0.0184 4.1739 1.7971
Transcriptional_misregulation Nanostring hallmarks Somatic 24 23 0.9231 0.7419 0.0217 4.1739 1.7971
WNT_BETA_CATENIN_SIGNALING MSigDB Hallmark Somatic 24 23 0.9231 0.7419 0.0217 4.1739 1.7971
MYC_TARGETS_V2 MSigDB Hallmark Somatic 7 3 0.2692 0.0968 0.0250 3.4386 1.6221
DNA_REPAIR MSigDB Hallmark Somatic 25 25 0.9615 0.8065 0.0268 6.0000 1.9645
HYPOXIA MSigDB Hallmark Somatic 16 12 0.6154 0.3871 0.0287 2.5333 1.4670
INTERFERON_GAMMA_RESPONSE MSigDB Hallmark Somatic 15 10 0.5769 0.3226 0.0313 2.8636 1.6481
UV_RESPONSE_UP MSigDB Hallmark Somatic 12 8 0.4615 0.2581 0.0320 2.4643 1.3956
APICAL_SURFACE MSigDB Hallmark Somatic 8 4 0.3077 0.1290 0.0333 3.0000 1.5141
Cell_cycle_and_apoptosis Nanostring hallmarks Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113
Cytokine & chemokine signaling Nanostring metabolic Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113
E2F_TARGETS MSigDB Hallmark Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113
PI3K Nanostring metabolic Somatic 25 24 0.9615 0.7742 0.0360 7.2917 2.4113

Note: Pathways with permutation P < 0.05 are shown.
Abbreviation: CI, confidence interval.

Table 2. Multivariate analysis of TMB and inflammatory gene
signatures (GeparSixto; TIS).

Modela Multivariate

pCR–TMB OR 1.62 (1.09–2.61)
P ¼ 0.0279

pCR–GeparSixto OR 2.86 (1.37–6.80)
P ¼ 0.0091

pCR–TIS OR 3.06 (1.44–7.56)
P ¼ 0.0073

pCR–TMBþGeparSixto OR 1.83 (1.16–3.29)
P ¼ 0.0213

pCR–TMBþTIS OR 1.81 (1.15–3.28)
P ¼ 0.0249

aModel þ age þ T size þ N status.
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macrophage-mediated phagocytosis. These results suggest that some
immune-rich cancers have a possibly dysfunctional innate, rather than
adaptive immune response to the cancer that makes these cancers less
responsive to cytotoxic and PD-L1–directed therapies. Altering the
cytokine environment by targeting IL1 (40) and the macrophage
monocyte lineage might alter the balance between a dysfunctional
innate and more effective adaptive immune response in otherwise
immune-rich TNBC.

In a single-arm anti–PD-L1 plus chemotherapy trial it is not
possible to determine which response marker, if any, is selectively
predictive of benefit from the combination versus individual com-
ponents. Multiple studies have demonstrated that higher immune
infiltration that can be captured by a large number of different
immune gene signatures due to their highly correlated coexpression
is associated with higher pCR rate to chemotherapy with or without
immune checkpoint inhibitors. Our results indicated that there are
significant differences in the cytokine and immune milieu of
immune-rich cancers that achieved pCR with durvalumab plus
chemotherapy versus those that did not. We therefore tested if the
leading-edge genes that distinguished immune-rich cancers with
pCR from those with RD in the Yale cohort were also overrepre-
sented in cancers with pCR in immune-rich cancers from the
GeparNuevo trial, and if any of the genes could predict benefit
selectively from durvalumab. We could only perform partial val-
idation due to many missing genes in the GeparNuevo data, but
reassuringly several genes showed a similar trend as seen in the Yale
cohort and several cytokines showed a differential predictive role by
treatment arm. We created a five-gene signature from genes indi-
vidually weekly associated with pCR that showed significantly
higher expression in immune-rich TNBC with pCR in the durva-
lumab arm (P ¼ 0.040) but not in the placebo arm (P ¼ 0.923) or in
immune-poor cancers irrespective of treatment.

Our study has limitations, as we could only partially validate our
observations in the similar GeparNuevo trial due to missing infor-
mation on many candidate genes. The GeparNuevo data was
generated on a different RNA-seq platform and represent targeted
sequencing with a different dynamic range than whole transcrip-
tome RNA-seq. These differences decrease the power and accuracy
of our validation attempt. We also recognize that the candidate genes
were identified in the Yale cohort but the five-gene durvalumab plus
chemotherapy predictive signature itself was selected from the
GeparNuevo data, and therefore further validation on independent
data will be required. Due to colinear expression of many immune
genes, it is entirely possible that other genes could also provide the
same, or even better, response discriminating function. However, the
combined analysis of these two trials suggests that there are immu-
nologic differences between immune-rich TNBC that achieve pCR
and those that do not. These differences can inspire new therapeutic
strategies and may hold the key for developing new biomarkers for
treatment selection.

We also examined associations between pathologic response and
germline variants in coding genes and somatic mutations. We found
no statistically significant differences in somatic mutation or germ-
line variant frequencies by pathologic response for any gene.
However, TMB was significantly higher in cancers with pCR. When
mutations were mapped to biological pathways, we found that
cancers with pCR had significantly more germline variants and
somatic mutations in the PI3K, DNA damage repair, MAPK, and
WNT/b-catenin pathways. There were no statistically significantly
more frequently mutated pathways in cases with RD. The more

frequent mutations in cancer relevant signaling pathways and DNA
repair genes might lead to a more immunogenic cancer, however we
found no positive correlation between TMB and immune gene
expression, similar to an earlier study (41). It is more likely that
mutations in these cancer relevant pathways directly lead to
increased chemotherapy sensitivity due to DNA damage repair
deficiency (42–44).

In conclusion, genes in the TGFb pathway are associated with
immune-attenuated phenotype and lack of pCR. Among immune-rich
cancers that fail to achieve pCR, macrophage/neutrophil and innate
immunity related chemoattractants dominate the cytokine milieu,
whereas in cancers with pCR, IFNg , and activated B and T cells and
adoptive immunity-related markers dominate the tumor microenvi-
ronment. Inhibitors of complement cascade blockers, TGFb inhibi-
tors, and modulators of TAMs may improve immunotherapy efficacy
in basal-like TNBC.

Authors’ Disclosures
K.R.M. Blenman reports scientific advisory board membership at CDI Labs.

T. Karn reports a patent for EP18209672 pending. A. Silber reports personal fees
from AstraZeneca during the conduct of the study. C. Denkert reports personal
fees fromMSD Oncology, Daiichi Sankyo, Molecular Health, AstraZeneca, Merck,
Roche, and Eli Lilly and Company; and grants from Myriad and German Breast
Group outside the submitted work; in addition, C. Denkert has a patent for
WO2020109570A1 pending. B.V. Sinn reports a patent for PCT/EP2019/083124
pending. M. Rozenblit reports grants from American Society of Clinical Oncology
(ASCO) Young Investigator Award outside the submitted work. D.L. Rimm
reports grants and personal fees from Amgen, AstraZeneca, Cepheid, Konica -
Minolta, Eli Lilly and Company, and NextCure; personal fees from Cell Signaling
Technology, Danaher, Fluidigm, GSK, Merck, Monopteros, NanoString, Odonate,
Paige.AI, Regeneron, Roche, Sanofi-Aventis, and Ventana; and personal fees from
Verily outside the submitted work; in addition, D.L. Rimm has a patent for
Rarecyte with royalties paid. S. Loibl reports grants and other support from
Abbvie, AstraZeneca, and Celgene; other support from Amgen, Bayer HealthCare,
BMS, Eirgenix, GSK, Eli Lilly and Company, Merck, Pierre Fabre, Prime/Meds-
cape, and Samsung; grants, nonfinancial support, and other support from Daiichi
Sankyo, Gilead, Novartis, Pfizer, and Roche; and non-financial support and other
support from Puma and Seagen outside the submitted work; in addition, S. Loibl
has a patent for EP14153692.0 pending, a patent for EP21152186.9 pending, a
patent for EP15702464.7 issued, a patent for EP19808852.8 pending, and a patent
for Digital Ki67 Evaluator issued and with royalties paid. L. Pusztai reports grants
and personal fees from AstraZeneca during the conduct of the study; personal fees
from Pfizer, Merck, Novartis, Bristol-Myers Squibb, Genentech, Seagen, Syndax,
Personalis, and Natera; and other support from Bristol-Myers Squibb, Pfizer,
Seagen, and Merck outside the submitted work. No disclosures were reported by
the other authors.

Authors’ Contributions
K.R.M Blenman: Conceptualization, data curation, formal analysis, supervision,

visualization, methodology, writing–original draft, writing–review and editing.
M. Marczyk: Formal analysis, visualization. T. Karn: Validation, writing–review
and editing. T. Qing: Formal analysis, visualization, writing–review and editing.
X. Li: Formal analysis, visualization, writing–original draft, writing–review
and editing. V. Gunasekharan: Formal analysis, writing–review and editing.
V. Yaghoobi: Methodology, writing–review and editing. Y. Bai: Methodology,
writing–review and editing. E.Y. Ibrahim:Data curation, writing–review and editing.
T. Park:Data curation, writing–review and editing.A. Silber:Data curation, writing–
review and editing. D.M. Wolf: Formal analysis, writing–review and editing.
E. Reisenbichler:Methodology, writing–review and editing. C. Denkert: Validation,
writing–review and editing. B.V. Sinn: Validation, writing–review and editing.
M. Rozenblit: Data curation, writing–review and editing. J. Foldi: Data curation,
writing–review and editing. D.L. Rimm: Methodology, writing–review and editing.
S. Loibl: Validation, writing–review and editing. L. Pusztai: Conceptualization,
resources, data curation, supervision, funding acquisition, investigation, writing–
original draft, project administration, writing–review and editing.

Predictive Markers of Response to Neoadjuvant Durvalumab

AACRJournals.org Clin Cancer Res; 2022 OF9

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-21-3215/3119889/ccr-21-3215.pdf by Johann W
olfgang G

oethe U
niversity Frankfurt am

 M
ain user on 23 M

ay 2022



Acknowledgments
This work was supported by an NCI grant (R01CA219647, to L. Pusztai), a

Susan Komen Foundation Leadership Award (SAC160076, to L. Pusztai),
investigator awards from the Breast Cancer Research Foundation (AWDR11559,

to L. Pusztai and D. Rimm), and research grant M82 from H.W. & J. Hector-
Foundation (to T. Karn).

Received September 6, 2021; revised January 4, 2022; accepted April 1, 2022;
published first April 4, 2022.

References
1. Nanda R, Liu MC, Yau C, Shatsky R, Pusztai L, Wallace A, et al. Effect of

pembrolizumab plus neoadjuvant chemotherapy on pathologic complete
response in women with early-stage breast cancer: an analysis of the ongoing
phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol 2020;6:676–84.

2. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, et al. A
randomised phase II study investigating durvalumab in addition to an anthra-
cycline taxane-based neoadjuvant therapy in early triple negative breast cancer -
clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 2019;
30:1279–88.

3. Schmid P, Cortes J, Pusztai L, McArthur H, Kummel S, Bergh J, et al.
Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020;
382:810–21.

4. Mittendorf EA, ZhangH, BarriosCH, Saji S, JungKH,Hegg R, et al. Neoadjuvant
atezolizumab in combination with sequential nab-paclitaxel and anthracycline-
based chemotherapy versus placebo and chemotherapy in patients with early-
stage triple-negative breast cancer (IMpassion031): a randomised, double-blind,
phase 3 trial. Lancet 2020;396:1090–100.

5. Pusztai L, Yau C, Wolf DM, Han HS, Du L, Wallace AM, et al. Durvalumab
with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast
cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell
2021;39:989–98.

6. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, K€ummel S, et al. VP7-2021:
KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab þ chemother-
apy vs. placebo þ chemotherapy, followed by adjuvant pembrolizumab vs.
placebo for early-stage TNBC. Ann Oncol 2021;32:1198–200.

7. Foldi J, Silber A, Reisenbichler E, Singh K, Fischbach N, Persico J, et al.
Neoadjuvant durvalumab plus weekly nab-paclitaxel and dose-dense doxoru-
bicin/cyclophosphamide in triple-negative breast cancer. NPJ Breast Cancer
2021;7:9.

8. Li X,Warren S, PelekanouV,Wali V, CesanoA, LiuM, et al. Immune profiling of
pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadju-
vant trial. J Immunother Cancer 2019;7:88.

9. Sinn BV, Loibl S, Hanusch CA, Zahm DM, Sinn HP, Untch M, et al. Immune-
related gene expression predicts response to neoadjuvant chemotherapy but not
additional benefit from PD-L1 inhibition in women with early triple-negative
breast cancer. Clin Cancer Res 2021;27:2584–91.

10. Karn T, Denkert C, Weber KE, Holtrich U, Hanusch C, Sinn BV, et al. Tumor
mutational burden and immune infiltration as independent predictors of
response to neoadjuvant immune checkpoint inhibition in early TNBC in
GeparNuevo. Ann Oncol 2020;31:1216–22.

11. Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, et al. PD-L1
expression correlates with tumor-infiltrating lymphocytes and response to
neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res 2015;3:
326–32.

12. Pelekanou V, Barlow WE, Nahleh ZA, Wasserman B, Lo YC, von Wahlde MK,
et al. Tumor-infiltrating lymphocytes and PD-L1 expression in pre- and
posttreatment breast cancers in the SWOG S0800 phase II neoadjuvant che-
motherapy trial. Mol Cancer Ther 2018;17:1324–31.

13. Ahmed FS, Gaule P, McGuire J, Patel K, Blenman K, Pusztai L, et al. PD-L1
protein expression on both tumor cells and macrophages are associated with
response to neoadjuvant durvalumab with chemotherapy in triple-negative
breast cancer. Clin Cancer Res 2020;26:54560-61.

14. Gonzalez-Ericsson PI,Wulfkhule JD,Gallagher RI, SunX, AxelrodML, ShengQ,
et al. Tumor-specific major histocompatibility-II expression predicts benefit to
anti-PD-1/L1 therapy in patients with HER2-negative primary breast cancer.
Clin Cancer Res 2021;27:5299–306.

15. Bertucci F, Finetti P, Viens P, Birnbaum D. Difference in therapeutic response
between basal and nonbasal triple-negative breast cancers. Oncologist 2013;18:
1060–1.

16. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-
Bernstam F, et al. Differential response to neoadjuvant chemotherapy among

7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 2013;19:
5533–40.

17. Institute B. FastQC: A quality control tool for high throughput sequence data.
Available from: http://wwwbioinformaticsbabrahamacuk/projects/fastqc/; 2020.

18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 2014;30:2114–20.

19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

20. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments.
Bioinformatics 2012;28:2184–5.

21. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics 2011;12:323.

22. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

23. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H,
Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat Commun 2013;4:2612.

24. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis
using cumulative statistic calculation. bioRxiv 2016:060012.

25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009;25:1754–60.

26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 2010;20:1297–303.

27. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al.
Sensitive detection of somatic point mutations in impure and heterogeneous
cancer samples. Nat Biotechnol 2013;31:213–9.

28. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and
integration of deleteriousness prediction methods for nonsynonymous SNVs in
whole exome sequencing studies. Hum Mol Genet 2015;24:2125–37.

29. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al.
ClinVar: improving access to variant interpretations and supporting evidence.
Nucleic Acids Res 2018;46:D1062–D7.

30. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.
Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:
285–91.

31. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC:
the catalogue of somatic mutations in cancer. Nucleic Acids Res 2018;47:
D941–D7.

32. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The
evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recom-
mendations by an International TILsWorking Group 2014. AnnOncol 2015;26:
259–71.

33. Park JH, Jonas SF, Bataillon G, Criscitiello C, Salgado R, Loi S, et al. Prognostic
value of tumor-infiltrating lymphocytes in patients with early-stage triple-
negative breast cancers (TNBC) who did not receive adjuvant chemotherapy.
Ann Oncol 2019;30:1941–9.

34. Reisenbichler ES, Han G, Bellizzi A, Bossuyt V, Brock J, Cole K, et al.
Prospective multi-institutional evaluation of pathologist assessment of
PD-L1 assays for patient selection in triple negative breast cancer.
Mod Pathol 2020;33:1746–52.

35. Poeta VM, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine
receptors: New targets for cancer immunotherapy. Front Immunol 2019;10:
379.

36. Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D, et al.
TGF-beta: a master immune regulator. Expert Opin Ther Targets 2020;24:
427–38.

37. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-
Ramentol J, Iglesias M, et al. TGF beta drives immune evasion
in genetically reconstituted colon cancer metastasis. Nature 2018;554:
538–43.

Blenman et al.

Clin Cancer Res; 2022 CLINICAL CANCER RESEARCHOF10

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-21-3215/3119889/ccr-21-3215.pdf by Johann W
olfgang G

oethe U
niversity Frankfurt am

 M
ain user on 23 M

ay 2022

http://wwwbioinformaticsbabrahamacuk/projects/fastqc/


38. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K,Wang YL, et al. TGF
beta attenuates tumour response to PD-L1 blockade by contributing to exclusion
of T cells. Nature 2018;554:544–8.

39. Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune
cells in solid tumors. Cancer Gene Ther 2021;29:10–21.

40. Voronov E, Apte RN. Targeting the tumormicroenvironment by intervention in
interleukin-1 biology. Curr Pharm Des 2017;23:4893–905.

41. Safonov A, Jiang T, Bianchini G, Gyorffy B, Karn T, Hatzis C, et al. Immune gene
expression is associated with genomic aberrations in breast cancer. Cancer Res
2017;77:3317–24.

42. Jiang T, Shi W, Wali VB, Pongor LS, Li C, Lau R, et al. Predictors of
chemosensitivity in triple negative breast cancer: an integrated genomic analysis.
PLoS Med 2016;13:e1002193.

43. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF,
Cherniack AD, et al. Genomic and molecular landscape of DNA damage
repair deficiency across The Cancer Genome Atlas. Cell Rep 2018;23:239–54.

44. Sharma P, Barlow WE, Godwin AK, Parkes EE, Knight LA, Walker SM, et al.
Validation of the DNA damage immune response signature in patients with
triple-negative breast cancer from the SWOG 9313c trial. J Clin Oncol 2019;37:
3484–92.

AACRJournals.org Clin Cancer Res; 2022 OF11

Predictive Markers of Response to Neoadjuvant Durvalumab

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-21-3215/3119889/ccr-21-3215.pdf by Johann W
olfgang G

oethe U
niversity Frankfurt am

 M
ain user on 23 M

ay 2022





 


 


Supplementary Figure S1. Consort Diagram of Patients and Samples. 








 


Supplementary Figure S2. Outlier analysis of 56 samples with RNAseq results 


and molecular subtype assignment. Molecular subtyping, Principal component 







analysis (PCA), Uniform Manifold Approximation and Projection analysis 


(UMAP), and Heatmap of Normalized Gene Expressions for all 5 basal-like and 


nonbasal-like samples. 








 


 


Supplementary Figure S3. Pathway differences between pCR and RD in immune-


rich and immune-poor basal-like TNBC. (A) Heatmaps of pathway enrichment 


results for 21 Cancer Hallmarks Pathways. Pathways that enriched pCR = red 


and those enriched RD = blue. Immune high status was assigned based on IFNG 


single gene expression. (B) Enrichment score plots of the leading-edge genes 







from the pathways that were significantly and most consistently enriched in 


cancers with pCR or RD. p-values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 


 





