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Abstract

For many tumuors, pathological subclasses exist which have to be further defined by genetic

markers to improve therapy and follow-up strategies. In this study, cDNA array analyses of

breast cancers have been performed to classify tumuors into categories based on expression

patterns. Comparing purified normal ductal epithelial cells and corresponding tumour tissues, the

expression of only a small fraction of genes was found to be significantly changed. A subset of

genes repeatedly found to be differentially expressed in breast cancers was subsequently employed

to perform a classification of 82 normal and malignant breast specimens by cluster analysis. This

analysis identifies a subgroup of transcriptionally related tumours, designated class A, which can

be further subdivided into A1 and A2. Correlation with classical clinicopathological parameters

revealed that subgroup A1 was characterized by a high number of node-positive tumours (14 of

16). In this subgroup there was a disproportionate number of patients who had already developed

distant metastases at the time of diagnosis (25% in this subgroup, compared with 5% among the

rest of the samples). Taken together, the use of these differentially expressed marker genes in

conjunction with sample clustering algorithms provides a novel molecular classification of breast

cancer specimens, which facilitates the identification of patients with a higher risk of recurrence.
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Introduction

Breast cancer is a major cause of death among women

in the age group of 35–55 years. Despite important

advances in therapy, still more than half of the affected

patients suffer from relapses [1]. This is in part due to

the highly heterogenous nature of this disease; the

various pathological breast cancer subclasses have

markedly different clinical courses and treatment

responses. Thus, breast cancer subclasses have to be

further defined by genetic markers to improve therapy

and follow-up strategies.
Although little is known about the genetic events

implicated in tumour development and progression,

common hallmarks of cancer cells include oncogene

activation and loss of tumour suppressor gene func-

tion, as well as karyotypic mutations [for a recent

review see Reference 2]. These mutations induce com-

plex changes in cellular gene expression, which in

concert define the biological tumour phenotype. No

close, consistent correlation has been found between

the expression of any given single gene and the clinical

behaviour of breast tumours. Recently, however, novel

array hybridization techniques based on cDNA or

oligonucleotides have enabled the parallel expression
profiling of several thousand genes, providing a power-
ful tool for characterizing complex cellular transcrip-
tional activities [3–16]. At present, one major aim is to
use DNA arrays as a tool to understand and classify
tumours into categories based on shared gene expres-
sion patterns. It is anticipated that global determina-
tion of cellular transcriptional activity will identify
gene expression signatures that predict the clinical
behaviour of tumuors.

In the present study, we applied low and high
density cDNA array analyses to identify differentially
expressed genes and to evaluate transcriptional diver-
sity among human breast cancers. The detected
differentially expressed transcripts include several
genes known from previous studies, as well as pre-
viously unrecognized transcripts. We show that class
discovery analysis based on our gene expression
profiling of 82 specimens identifies four main sample
groups. A correlation of the cluster data with classical
clinicopathological parameters revealed that one sub-
group was characterized by a remarkably high number
of node-positive tumours and a disproportionate
number of patients who had already developed distant
metastases at the time of diagnosis. These M1 patients
compared 25% of this subgroup, compared with 5% of
the rest of the samples. These cluster analysis data may

Abbreviations: FAM: 6-carboxy-fluorescein-succinimidylester; TAMRA:
6-carboxy-tetramethyl-rhodamine-succinimidylester.
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help to define patients with an early onset of disease
progression, providing a first step towards improved
patient-adapted therapy.

Materials and methods

Tissue samples

All tissue samples were obtained from patients under-
going surgical resection between June 1997 and June
1999 at the Department of Obstetrics and Gynecology
of the J. W. Goethe University (Frankfurt). Specimens
included ductal and lobular carcinomas of different
tumour size (T1–T4), lymph node status (N0–1), grade
(G1–G3), hormone receptor status (ER/PR positive
and negative) and distant metastases (M0–1). Normal
tissue samples were obtained from patients undergoing
surgical breast reduction. The cluster analysis was
performed on a sample group of 9 benign and 73
malignant breast specimens (7 M1, 66 M0, 41 N1, 26
N0, 6 NX) as well as several additional samples, such
as cell lines and lymph node metastases, which were
not considered in the statistical evaluations. Only
pathologically verified data on lymph node status
were considered for calculations.

Epithelial cell purification from human mammary
gland

Mammary ductal epithelial cells were isolated from
sections of breast tissue by two rounds of immuno-
magnetic purging, using the monoclonal antibody
HEA125 as described [17]. Briefly, tissue was mechani-
cally disintegrated (MediMachine, DAKO, Hamburg,
Germany) and the cell suspension was subsequently
incubated with mAb HEA125 for 1 hour at 4uC. Cells
were then washed with PBS/EDTA, incubated with a
magnetic bead-coupled goat anti-mouse IgG antibody
and passed through a MACS (magnetic cell separation
system) separator column (Miltenyi Biotec, Bergisch
Gladbach, Germany). The purity of the isolated
epithelial cells was >90% as judged microscopically.

RNA isolation and cDNA array hybridization

Total RNA from human primary mammary carcino-
mas was isolated by the guanidinium isothiocyanate
method [18] in combination with affinity purification
(RNeasy, Qiagen, Hilden, Germany). Radiolabelling of
the nucleic acid was performed by reverse transcription
of 5 mg total RNA according to the protocols of the
Atlas Array Blots from Clontech (Palo Alto, CA)
using the reagents provided in these kits (MMLV
reverse transcriptase) and [a-32P]-dATP. The probes
were added to the ExpressHyb (Clontech) hybridiza-
tion solutions at a concentration of 1r106 dpm/ml.
Hybridizations were performed overnight and blots
were subsequently washed under high stringency
conditions (0.1rSSC, 0.5% SDS, 68uC). After auto-
radiography, films were analysed by densitometric
scanning (Personal Densitometer, Molecular Dynamics,

Sunnyvale, CA). Raw data were processed using
imaging software (ImageQuant, Molecular Dynamics,
Sunnyvale, CA), transferred to spreadsheet programs
and normalized by calibration markers. Low density
arrays (Human Cancer Blot, 588 genes) were obtained
from Clontech (Palo Alto, CA). High density arrays
(Human GDA 1.3 containing 45 000 cDNA clones)
were supplied by GenomeSystemsInc (St. Louis, MO).

Real-time PCR analysis

Real-time PCR analyses were performed using the ABI
7700 Sequence Detection System (PE-Applied Bio-
systems, Foster City, CA). cDNAs for all PCRs were
generated by random primed reverse transcription
(ProSTAR cDNA-synthesis kit, Stratagene, La Jolla,
CA). PCR reactions were performed according to the
manufacturer’s protocols (PE-Applied Biosystems,
Foster City, CA). VIC-fluorophore labelled GAPDH
TaqMan probes served as internal quantification
markers in multiplex PCR reactions. Each quantitation
was reproduced three times and normalized by
GAPDH, actin and 18S rRNA standards.

Cluster analysis and class prediction

Differentially expressed genes recurrently observed in
multiple array analyses of primary breast cancers were
used to screen a panel of 94 specimens by real-time
PCR assays (TaqMan); 15 of the marker genes most
varying in expression among samples were picked from
low density arrays, as well as eight genes from high
density arrays. In addition, 11 genes were included
whose role in breast cancer has already been described
or which are useful as surrogate markers for prolifera-
tion (MKi67, PoloLikeKinase), IFN inducible genes
(STAT1), stromal cells (DDR2) and vascularization
(VEGFR). Prior to cluster analysis, expression data
were log-transformed and 10-times median centred
for each sample. Samples were grouped according to
these normalized expression data by average linkage
clustering, using the Pearson correlation as imple-
mented in the program CLUSTER [19]. Calculated rela-
tive similarities were subsequently graphically displayed
using the TREEVIEW program [19]. The output of this
program is an unrooted tree, where lengths of the
horizontal branches represent similarity distances of the
expression profiles (1 – Pearson correlation coefficient).

To validate class distinctions identified by this
cluster analysis and to test their consistency, the
method of class prediction as proposed by Golub et al.
[7] was used. In brief, a prediction strength (PS) for the
assignment of a sample to a specific class is calculated
by PS=(VwinxVlose)/(Vwin+Vlose), where V is the
absolute value of the vote total for the respective
classes (‘win’ or ‘lose’). A weighted vote vi in favour of
a class for each gene i is calculated by vi=Pie(xix
(m1+m2)/2), where xi represents the expression level of
the gene i in the sample, m and s represent the mean
and standard deviation respectively of the gene’s
expression in the two classes and the correlation
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metric P is defined by P=(m1xm2)/(s1+s2). Positive
values for vi represent votes for the winning class and
negative value votes for the losing class. For cross-
validation, one sample was withheld, the p-value of
each gene was calculated for the rest of the samples in
the respective class and the prediction strength (PS) for
the withheld sample was computed [for details see
Reference 7].

Results

Detection of differentially expressed genes in
human primary mammary carcinomas

To collect differentially expressed genes as markers for a
molecular tumour classification, cDNA array analyses

of human mammary carcinomas were performed.

Pathological cases used for mRNA expression analysis

encompassed 15 ductal and 2 lobular carcinomas of

different grading (G1–G3), tumour size (T1–T4) and

lymph node status. These samples were hybridized to

low density arrays (Atlas Cancer Array containing 588

genes). In addition, four tumour samples (three ductal

and one lobular carcinoma, G1–G2, N0 and N1) were

analysed by using high density arrays (GenomeSystems

GDA 1.3 filters containing 45 000 genes). A pool of

RNAs from antibody purified normal mammary gland

epithelial cells obtained from two healthy donors were

subsequently hybridized to high and low density

arrays, which served as a reference for all later

performed comparisons. Antibody purified cells were

chosen since total benign tissue is composed of a

Figure 1. Comparison of cDNA array and RT-PCR results. (A) Ratios of expression levels detected by cDNA array hybridization
from eight different tumour samples (T1–T8) compared with normal epithelial cells are given in log units on the y axis for four
different genes (see squares on the right for gene identities). (B) The same samples and genes as in (A) were analysed by real-time
RT-PCR. Expression level ratios of tumour versus normal cells are displayed in log units on the y axis
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mixture of different cell types, while tumours represent

enriched transformed epithelial cell populations. After

hybridization, autoradiographs were scanned densito-

metrically, normalized and differences in relative gene

expression were determined as signal ratio of tumour

versus normal mammary gland epithelial cells. The use

of this common reference allows the comparison of

relative expression levels across all our samples. Array

hybridization results were validated by real-time PCR

analysis of 15 differentially expressed genes. As shown

by an example of four genes (Figure 1), quantification

with both methods gave similar results, although it

should be noted that the range of detection is more

dynamic for PCR analysis. In general, measurement

of gene expression by low and high density array

hybridization yielded levels over background for more

than half of the analysed genes. We observed subtle

differences (2y3-fold) in gene expression for about

one-third of the analysed genes when RNA from

different parts of the same tissue sample were

compared. Thus, to define a cut-off value for the

comparison of different samples, only changes greater

than five-fold were considered in further analyses.

Comparing the expression profiles of mammary carci-

nomas versus normal epithelial cells by low density

array analysis (588 genes), approximately 6.4% of the
genes were found to be more than five-fold altered;
only 2.7% differed when the cut off value was increased
to ten-fold (Table 1). Less than 1% of the genes showed
more than a 20-fold alteration in expression, indicating
that between individual tumours the number of strong
expression differences is smaller than 2%. These values
are in agreement with data from high density arrays: in
two comparisons, we identified about 100 genes with
differences in expression of more than 20-fold, corre-
sponding to 0.5% of clones with hybridization signals
over background (data not shown). To estimate the
transcriptional diversity among mammary carcino-
mas, the cumulative number of detected differentially
expressed genes was plotted against the number of
analysed samples. As depicted in Figure 2, the data set
generates an asymptotic curve with a typical saturation
plateau. From this plot it can be calculated that about
20 mammary tumour samples are sufficient to detect
most of the differentially expressed genes.

Molecular tumour classification by sample
clustering

Gene expression data generated by array hybridization
can be used to group tumour samples into clusters that
reflect their biological properties [19–21]. A number of
genes repeatedly found to be differentially expressed in
array analyses were applied in TaqMan assays to
perform a molecular tumour classification of 82
normal and malignant breast specimens (see Materials
and methods for details). As shown in Figure 3A,
cluster analysis of the expression data identifies four
main sample groups (indicated by I–IV in the figure).
The largest group (III) splits into two sub-branches
containing one population of transcriptionally related
tumour samples (designated as class A), as well as a less
homologous tumour class B. Note the shorter branch
distances between tumours of class A compared with
class B, indicating the higher degree of transcriptional

Table 1. Differentially expressed genes in mammary car-
cinomas versus normal epithelial cells

Fold difference of expression Percentage of genes altered*

i5r 6.4%

i10r 2.7%

i15r 1.5%
i20r 0.9%

*Tumour RNA as well as RNA from antibody-purified mammary epithelial
cells were hybridized to cDNA arrays containing 588 different genes.

Differences in gene expression were determined as a ratio between

signals of tumour and normal cells. The percentage of altered genes was
calculated for different cut-off values in fold expression. The data

represent mean values of seven analyses.

Figure 2. Analysis of the transcriptional heterogeneity of mammary carcinomas. Several randomly selected mammary carcinomas
were analysed by array hybridization and the cumulative number of detected differences in gene expression (y axis) was plotted
against the number of analysed samples (x axis). Data from low density arrays (588 genes) are shown for three different cut-off
values in fold expression (see respective symbols on the top)
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similarity. A more detailed inspection of class A

tumours revealed a further splitting into two subpopu-

lations (A1 and A2). This subdivision is also visible at

the transcriptional level of single genes by an excep-

tionally low expression of the oestrogen and progesterone

receptor, as well as the proapoptotic BAD gene and

IGFBP2 in subpopulation A2 compared with A1.

However, one of the most common hallmarks of class

A tumours, the striking downregulation of the recently

described ER-b-cx gene [22], is perfectly retained in
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each sample of both subpopulations. We used cross-

validation analysis [7] to verify the consistency of

sample distribution, yielding prediction strengths sig-

nificantly higher than would be expected for random

class distinctions (Figure 3B).
We next correlated the cluster data with classical

clinicopathological parameters (TNM state, histolo-

gical subtype and grade) to elucidate relationships

between gene expression profiles and the biological

behaviour of the analysed tumours. While no correla-

tion was detectable between cluster data and tumour

size, grade or histological subtype, a striking enrich-

ment of node-positive tumours (88% relative to 61%

overall) was observed in subgroup A1. Interestingly, in

this subgroup we also found an accumulation of

samples from patients who had already developed

distant metastases at the time of diagnosis (Figure 3A,

marked by arrows). The percentage of these M1

patients among the node-positive samples was deter-

mined to be 29% within this subgroup, in contrast to

11% of the node-positive samples outside subgroup

A1. Overall, 25% of all samples within subgroup A1

are M1, in contrast to only 5% among the rest of the

malignant samples. In conclusion, this subgroup con-

tained a disproportionate number of breast cancers

which already showed peripheral tumour cell dissemi-

nation, associating these patients with a higher risk of

disease recurrence.

Discussion

The analysis of pathological changes in gene expres-

sion can contribute to the understanding of disease

mechanisms, the improvement of diagnosis and the

identification of novel therapeutic targets. New tech-

nical advances and the completion of several sequen-

cing projects enabled the production of high density

DNA arrays, providing ideal tools to analyse the

complex transcriptional changes accompanying cellular

transformation.
The major aim of our study was the identification of

differentially expressed genes in breast cancer which

can subsequently be employed as markers for a mole-

cular characterization of tumour samples. First, sys-

tematic expression analyses were performed to give

hints about the transcriptional diversity and the

number of tissue samples which have to be analysed

to detect the bulk of differentially expressed genes

among breast cancers. A comparative expression

analysis between normal mammary ductal epithelium

and primary mammary carcinomas, based on array

hybridization results, revealed that most genes were

expressed at roughly equal levels. These findings are

similar to SAGE (serial analysis of gene expression

[23]) analysis data provided by Zhang et al. [24],

who described approximately 2% of transcriptionally

altered genes, comparing normal colon epithelium and

Figure 3. Class discovery of primary breast cancers by cluster analysis. (A) Cluster analysis of expression profiles. Shown is a
schematical representation of gene expression patterns across all specimens. Red indicates expression levels above median, green
below. The corresponding unrooted tree, where branch lengths represent similarity distances (1 – Pearson correlation coefficient) of
samples as judged by their expression patterns, is depicted on the right. The four main sample groups (I–IV) are indicated by vertical
bars on the right. Note the clustering of samples in classes A1 and A2 (magenta and violet coloured bars, respectively). Pathologically
verified node-positive patients are represented by magenta coloured dots, node-negative patients by dark blue dots. The percentage
of node-positive patients in class A1 is 88%, in contrast to 53% across the remaining malignant samples. The accumulation of patients
with distant metastases at time of diagnosis in this subgroup is highlighted by arrows. A second group of mammary tumours was
identified in class B, which consists exclusively of oestrogen receptor negative specimens. (B) Validation of sample clustering by class
prediction. The method of class prediction as proposed by Golub et al. [7] was used to validate class distinctions. The scatterplots on
the left show the distribution of prediction strength (PS) scores, which measure the assignment of a sample to a given class. The first
plot shows the prediction strength values observed in cross-validation of samples belonging to class A compared with all malignant
samples not belonging to class A or B (median=0.73, represented by a vertical bar). The remaining plots show the distribution of
predictors corresponding to two randomly generated classes (median 0.21 and 0.31, respectively). A total of 500 such random class
distinctions using the same data were analysed to evaluate the statistical significance of the class A distinction. The histogram on the
right shows the distribution of median PS values obtained. The highest median PS value observed was 0.52, on one occasion among
these permutations. The distinction between subclasses A1 and A2 with a median PS value of 0.54 seems therefore to be less
significant than the class A identification, but for most samples even this distinction is above a threshold PS of 0.3 as suggested by
Golub et al. [7]
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primary colon cancer. We could show that an expres-
sion analysis of approximately 20 tumours should be
sufficient to detect most of the transcriptionally altered
genes. According to these data, we estimate that our
analyses using high density 45 000 clone arrays have so
far detected about 10–20% of the differentially
expressed genes in breast cancer.

The histomorphological and clinical parameters in
use today seem not to be sufficient to discriminate
some subtypes of breast cancer with a markedly
different clinical course and response to therapy. It
can be expected that analyses of tumour expression
profiles will allow a precise definition of the cellular
status quo, allowing this gap to be filled. An intriguing
possibility for the interpretation of global cellular
expression data is provided by gene and sample
clustering algorithms [19–21]. Based on transcriptional
similarities, a molecular classification of pathological
tissue specimens is performed, providing the opportu-
nity to detect novel prognostic or predictive markers in
each subgroup [7,11]. A molecular classification of
tumour samples can be achieved using either unsuper-
vised methods like hierarchical clustering [19], k-means
clustering [20] or ‘SOMs’ (self organizing maps) [21], as
well as supervised methods like ‘SVMs’ (support vector
machines) [25]. We chose hierarchical clustering, which
has already been successfully used to classify tumour
samples [6,11]. Alizadeh et al. [11] were able to identify
formerly unknown types of B-cell lymphoma with
distinct clinical behaviour by using hierachical cluster-
ing of expression data. Golub et al. [7] used SOMs on
DNA array data to differentiate subtypes of acute
leukaemia. By using 50 ‘informative genes’ they
succeeded in discriminating the different treatment-
requiring forms of ALL and AML, as well as class-
ifying new subtypes.

In our sample group, a hierarchical clustering
programme identified one cluster of mammary carci-
nomas which consisted disproportionately of node-
positive tumours, predicting an unfavourable outcome
for these patients. Interestingly, in this subgroup we
also detected an accumulation of samples from patients
who had already developed distant metastases at the
time of diagnosis. The total percentage of these M1
patients was determined to be 25% in this subgroup,
compared with 5% among the rest of the samples.
Carcinomas in this cluster seem therefore to share
biological properties which allow an early peripheral
dissemination of viable tumour cells. Thus, our actual
set of differentially expressed marker genes may be
useful to define cancer patients with a higher risk of
disease recurrence.

Although a hallmark of patients from subgroup A1
is a positive lymph node status, two breast cancer
specimens from node-negative patients were found in
this cluster branch. It is not yet clear if this is due to an
incorrect classification by pathological examination, or
if further markers are required to define this subgroup
more precisely. We are currently analysing breast
cancers with long term follow-up, to determine the

exact predictive and prognostic value of these marker
genes and we are checking the inclusion of additional
informative genes.
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Supplementary information: nucleotide sequences of primers and probes

Marker Acc.-No. Primer/Probe Sequence (5k–3k)

AKAP450 AJ131693 Upper GAGCAGGGCTTCTCTGTGGAAC

AKAP450 AJ131693 Lower CACAAAACTGCAACCATTTACC
AKAP450 AJ131693 Probe FAM-CAACCACAGCAGATGACTCAGTT-TAMRA

BAD U66879 Upper GCACAGCAACGCAGATGCGGC

BAD U66879 Lower AACTTCCGATCCCACCAGGAC
BAD U66879 Probe FAM-CTCCAGCTGGACGCGAGTCTTCC-TAMRA

beta-act. X00351 Upper CCATCATGAAGTGTGACGTGGAC

beta-act. X00351 Lower TGGTGGTGCCGCCAGACAGCAC

beta-act. X00351 Probe FAM-CCGCAAAGACCTGTACGCCAAC-TAMRA
BRCA2 U43746 Upper CAAGATGGTGCAGAGCTTTATG

BRCA2 U43746 Lower TCTTCACTGAAATAACCCTCAAG

BRCA2 U43746 Probe FAM-CAGTGAAGAATGCAGCAGACCCAGC-TAMRA

CD24 L33930 Upper ACTAATGCCACCACCAAGGCGGC
CD24 L33930 Lower TGCAGAAGAGAGAGTGAGACCAC

CD24 L33930 Probe FAM-CCTGCAGTCAACAGCCAGTCTC-TAMRA

DDR2 X74764 Upper CCATTGTAGCCAGATTTGTCC
DDR2 X74764 Lower GCTCCACTCTCATACACACATTC

DDR2 X74764 Probe FAM-CATTCCAGTCACCGACCACTCC-TAMRA

EB1 U24166 Upper ATTGTCAGTTTATGGACATGC

EB1 U24166 Lower CTAGCTTAGCTTGGAATTTCAC
EB1 U24166 Probe FAM-CCCTGGCTCCATTGCCTTGAA-TAMRA

EGR-1 X52541 Upper GTGCCGCATCTGCATGCGCAAC

EGR-1 X52541 Lower GCTTTTCGCCTGTGTGGGTGCGG

EGR-1 X52541 Probe FAM-CAGCCGCAGCGACCACCTCACC-TAMRA
ErbB2 M11730 Upper AATGAGGACTTGGGCCCAGC

ErbB2 M11730 Lower CAGATACTCCTCAGCATCCACCAGG

ErbB2 M11730 Probe TAM-CAGCACCTTCTACCGCTCACTGC-TAMRA

ER-beta cx AB006589 Upper GTAGACAGCCACCATGAATATCC
ER-beta cx AB006589 Lower CTGGGAATGCTGTAATTCATC

ER-beta cx AB006589 Probe FAM-CCATGACATTCTATAGCCCTGC-TAMRA

EST-AA679039 N54493 Upper CCTCTCTAGGGAGGAGAAAGG
EST-AA679039 N54493 Lower CCCAGCCAGTCCTGCTCTGTG

EST-AA679039 N54493 Probe FAM-CTAGCTACAGTCACCAGCAGGACC-TAMRA

EST-AA928060 AA029434 Upper GTAACCATAATGTCAACATAACC

EST-AA928060 AA029434 Lower GGAAAACGCACGCACTTAGGC
EST-AA928060 AA029434 Probe FAM-CCTAACGGAACAGGAGATCGCC-TAMRA

EST-AI817868 R85813 Upper GGCCATTGTGTCAATGGCTCAG

EST-AI817868 R85813 Lower GCTGAATCGAACATTCCAATCC

EST-AI817868 R85813 Probe FAM-CTTCAAGATCTTCGCTGGAACC-TAMRA
EST-HS465208 T89015 Upper AATTATCTAATAGGTTGGCAC

EST-HS465208 T89015 Lower AGGACAATAGAGAGCTTCACC

EST-HS465208 T89015 Probe FAM-CATGAGCCCCTGTTCTCATTCTGC-TAMRA
EST-HSM800383 AL050276 Upper GACAAACTGCTGCTTGGCTAC

EST-HSM800383 AL050276 Lower AGTCAATGAGCTTTTGCACTGAC

EST-HSM800383 AL050276 Probe FAM-CATCGAGATCCCGTCGGTGGTGTC-TAMRA

Estrogen receptor X03635 Upper CAAGGAGACTCGCTACTGTGC
Estrogen receptor X03635 Lower GCCCTCACAGGACCAGACTCC

Estrogen receptor X03635 Probe FAM-CAATGACTATGCTTGACCGTACC-TAMRA

FEZ1 AF123659 Upper TGGCCATGTACCAGCGGAACC

FEZ1 AF123659 Lower CCGGCGCTGTCCCCACGTGC
FEZ1 AF123659 Probe FAM-CCTGGAGAAGGCCCTGCAGCAGC-TAMRA

FGFR4 X59932 Upper GTGGCCAAGGTCAGCGACTTTG

FGFR4 X59932 Lower TGACTGGCAGCTTGCCCGTGTC
FGFR4 X59932 Probe FAM-CACCAAGGAGGCGTCCAGCACC-TAMRA

Molecular classification of breast cancer 319

Copyright # 2001 John Wiley & Sons, Ltd. J Pathol 2001; 195: 312–320.



GADD45 M60974 Upper CGAGGACGACGACAGAGATGTGGC

GADD45 M60974 Lower ATGTCGTTCTCGCAGCAAAACGC

GADD45 M60974 Probe FAM-CAGATCCACTTCACCCTGATCC-TAMRA

HEK2 X75208 Upper AGGCTGCCCCGTCTGAAGTGC
HEK2 X75208 Lower AGGATAGGGTGAGGCTGCTGC

HEK2 X75208 Probe FAM-CACACTACGCCTGCACAGCAGCTC-TAMRA

HTK U07695 Upper CATCGCCTCGGGCATGCGGTAC

HTK U07695 Lower GATGTTGCGAGCAGCCAGGTC
HTK U07695 Probe FAM-CCGAGATGAGCTACGTCCACC-TAMRA

IGFBP2 M34510 Upper CTGCACATCCCCAACTGTGAC

IGFBP2 M34510 Lower GCCCGTTCAGAGACATCTTGC
IGFBP2 M34510 Probe FAM-CATGGCCTGTACAACCTCAAAC-TAMRA

IGFBP5 M65062 Upper TACTCCCCCAAGATCTTCCGGCC

IGFBP5 M65062 Lower TTCTGCGGTCCTTCTTCACTGC

IGFBP5 M65062 Probe FAM-CCCGCATCTCCGAGCTGAAGGC-TAMRA
ICFBP6 M62402 Upper TGGGCCCATGCCGTAGACATC

ICFBP6 M62402 Lower TGTTTGAGCCCCTCGGTAGAC

ICFBP6 M62402 Probe FAM-CAGTGCTGCAGCAACTCCAGAC-TAMRA

MMKi67 NM_002417 Upper AGACTTGGCTGGCTTGAAAGAGC
MMKi67 NM_002417 Lower GTGTTTTCTCGTGAGTCGTGGGC

MMKi67 NM_002417 Probe FAM-CCAGACACCAGTATGCACTGA-TAMRA

MMP14 D26512 Upper TGCCGAGGGCTTCCATGGCGAC

MMP14 D26512 Lower GCCCTGGGAAGTAGGCATGG
MMP14 D26512 Probe FAM-AGCCGCCCTCACCATCGAAGGGC-TAMRA

MRP6 AF076622 Upper CCCATGTACCTCTGGGTCCTTG

MRP6 AF076622 Lower ACCATCTTGGCTTTGAAGAGTG
MRP6 AF076622 Probe FAM-TCCACAGGTAGCCCCGGCCATGGT-TAMRA

NDKA/nm23 X17620 Upper ACCCTGCAGACTCCAAGCCTG

NDKA/nm23 X17620 Lower ATGTATAATGTTCCTGCCAAC

NDKA/nm23 X17620 Probe FAM-CCATCCGTGGAGACTTCTGCATAC-TAMRA
PDGF-assoc.-prot. U41745 Upper GGAAGACAGAGCAAGCCAAGGC

PDGF-assoc.-prot. U41745 Lower TTCCGGGCAGCCTCCTCCCGC

PDGF-assoc.-prot. U41745 Probe FAM-CCTGGCCCGGCTGGCCATCATCC-TAMRA

PoloLikeKinase NM_005030 Upper GATACTACCTACGGCAAATTGTGC
PoloLikeKinase NM_005030 Lower AGGTTGCCCAGCTTGAGGTCTC

PoloLikeKinase NM_005030 Probe FAM-CTGCCAGTACCTGCACCGAAACC-TAMRA

Progest receptor X51730 Upper ACCACGGTGATGGATTTCATCC
Progest receptor X51730 Lower AGCAGCTGCCGAGTGCGGGCTGC

Progest receptor X51730 Probe FAM-CCTATCCTGCCTCTCAATCACGCC-TAMRA

RGC1 X78817 Upper GGGCAGGTGCTCCGGAGCTAC

RGC1 X78817 Lower GGCTGCCCAGGCCCTGCACTTG
RGC1 X78817 Probe FAM-CGCTGAGAGCCGCACCCAAGCC-TAMRA

RhoC L25081 Upper GACACAGCAGGGCAGGAAGAC

RhoC L25081 Lower ACATGAGGATGACATCAGTGTC

RhoC L25081 Probe FAM-CGACTGCGGCCTCTCTCCTACCC-TAMRA
Semaphorin-V U33920 Upper TCCCGTGCACTGCAGCTCAGCGATC

Semaphorin-V U33920 Lower GACGACGTGCTTAAAGTTGTTC

Semaphorin-V U33920 Probe FAM-CCTCTACTCCTGCACAGCCAC-TAMRA

Stat1 M97935 Upper CATTCAGAGCTCGTTTGTGGTG
Stat1 M97935 Lower CTTCAAGACCAGCGGCCTCTG

Stat1 M97935 Probe FAM-CAGCCCTGCATGCCAACGCACC-TAMRA

STAT5B U47686 Upper CTCTCCAGCTGGAAGCCTTGC
STAT5B U47686 Lower GTCGCAGCTCCTCAAACGTCTG

STAT5B U47686 Probe FAM-CATGTCCCAGAAACACCTCCAGATC-TAMRA

THBS2 L12350 Upper CAACCTCAATCTGGTCTGCGC

THBS2 L12350 Lower TGGCAGATGGGGGCAGTTATC
THBS2 L12350 Probe FAM-CAACGCCACCTACCACTGCATC-TAMRA

TNFR1 M33294 Upper AGATTGAGAATGTTAAGGGCAC

TNFR1 M33294 Lower GGCAAAGACCAAAGAAAATGAC

TNFR1 M33294 Probe FAM-CTCAGGCACCACAGTGCTGTTGC-TAMRA
Tpl-2/Cot NM_005204 Upper ACCCGCCCAGAGAGGATCAGC

Tpl-2/Cot NM_005204 Lower CTCAGCAGCCTCTTGCGCTCC

Tpl-2/Cot NM_005204 Probe FAM-CTGTACGAGTCTGGACTCTGCC-TAMRA
VEGFR X51602 Upper CACATGACTGAAGGAAGGGAGC

VEGFR X51602 Lower TAAAGTAACAGTGATGTTAGG

VEGFR X51602 Probe FAM-CGTCATTCCCTGCCGGGTTAC-TAMRA

ZNF217 AF041259 Upper GATGTTACTCCTCCTCCGGATG
ZNF217 AF041259 Lower CACACTTGGCCTGTATCTGCA

ZNF217 AF041259 Probe FAM-AAAGAGAAGCAAACGGAGACCGCAGC-TAMRA
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