Prehistory of Opacity

\author{

1. Buridan (1350)
}
(1) Debeo tibi equum.

I owe you a horse.

I posit the case that for a good service you performed for me, I promised you a good horse. [...] And since I owe you this, until I have paid that concerning the payment of which I have obligated myself [...], you could rightly take action against me to bring about payment to you of a horse, which you could not do if I did not owe you. [...] But the opposite is argued in a difficult way.
(J. Buridan, Sophisms on Meaning and Truth. Translated by Th. K. Scott. New York 1966. p. 137)

Let us then have our horse-coper arguing again. 'If I owe you a horse, then I owe you something. And if I owe you something, then there is something I owe you. And this can only be a thoroughbred of mine: you aren't going to say that in virtue of what I said there's something else I owe you. Very well, then: by your claim, there's one of my thoroughbreds I owe you. Please tell me which one it is.'
(P. Geach, 'A Medieval Discussion of Intentionality’. In: Y. Bar-Hillel (ed.): Logic, Methodology and Philosophy of Science. Amsterdam 1965, 425-33; p. 430)

(2a) Equum tibi debeo.

A horse is owed by me to you. [Scott]
There is a horse that I owe you. [Geach]
(34)Aliquem equum tibi debeo.

Some horse is owed by me to you. [Scott]
(35)Unum equum tibi debeo.

One horse is owed by me to you. [Scott]
(3a) There is something that I owe you as [under the concept (ratio) of] 'Horse'.
(b) $\quad(\exists x)$ Owe (I, you, x, \wedge Horse)
(4a) There is some (actual) horse that I owe you under some concept.
\& $\quad(\exists x)(\exists C)[\operatorname{Horse}(x) \& \operatorname{Owe}(\mathrm{I}, \mathrm{you}, x, C)]$

Without further assumptions, (3b) $\neq>(4 b)$ and (4b) $\neq>(3 b)$.
(5a) I owe you something.
(b) ($\exists x$) Owe(I, you, x, ^Thing)
(6a) There is something that I owe you.
(b) $\quad(\exists x)(\exists C)[\operatorname{Thing}(x) \&$ Owe $(\mathrm{I}, \mathrm{you}, x, C)]$

If 'Thing' is a universal predicate, then (5) => (6).

2. Quine (1960)

a) Background

Basic assumptions of logical analysis (Frege, Russell etc.):

- There are two kinds of entities: individuals and propositions.

People, animals, places, etc. are individuals; propositions are individuated by their truth-conditions

- Names and personal pronouns denote individuals.

Given a context of utterance, I and $y o u$ respectively denote speaker and hearer in that context; in any context of utterance, the name Morellus denotes the horse by that name.

- \quad Sentences denote propositions.

Given a context of utterance, I give you a horse denotes the proposition that is true iff there is a horse that the speaker in that context gives the hearer in that context).

- Verbs express relations between entities.

Give expresses a relation between three individuals; know expresses a relation between an individual and a proposition.

- An atomic sentence (consisting of a verb and its non-quantified arguments) denotes the proposition which is true iff the denotations of the arguments stand in the relation expressed by the verb.

I give you Morellus denotes the proposition that the speaker (in the given context) gives Morellus to the hearer (in that same context).

- Indefinites express existential quantification.

A horse is neighing denotes the proposition that the set of horses that are neighing is non-empty; I give you a horse expresses the proposition that the set of horses that the speaker gives to the hearer is non-empty.

Quine does not share all of these assumptions, but the difference between his and the classical position(s) are largely independent of his analysis of opacity.

1.2 Opaque verbs

(7) The commissioner is looking for the chairman of the hospital board.
(8) Ernest is hunting lions.
(9) Ernest is looking for a lion.

Three reasons why opaque verbs defy classical analysis:

- The construction is ambiguous: specific vs. non-specific reading.
(9) may express the proposition that the set of lions sought by Ernest is non-empty (specific reading); but
(9) may also be true if Ernest is not looking for any lion in particular (unspecific reading).
- On the non-specific reading, the object is non-quantificational: existential generalization is blocked.

The sentence Ernest is looking for a striped lion may be true (on its non-specific reading) without there being any striped lions.

- The object position is intensional, i.e. substitution of extensionally equivalent objects is blocked.

Even if all maned lions are male and vice versa, (10) could be true but (11) could be false:
(10) Ernest is looking for a maned lion.
(11) Ernest is looking for a male lion.

1.3 Propositional attitudes

(12) Tom believes that someone denounced Catiline.
(13) Tom believes that someone is such that he denounced Catiline.
(14) Someone is such that Tom believes that he denounced Catiline.

Scope ambiguity in (12) and (13):

- narrow scope reading: Tom stands in the relation expressed by believe to the proposition denoted by Someone denounced Catiline.
- wide scope reading, as in (14): The set of individuals that Tom believed to have denounced Catiline is non-empty.

On both readings, the indefinite someone expresses existential quantification.
(15) Tom is trying to read a book on Roman history.
(16) Tom is endeavoring (-to-cause) Tom to read a book on Roman history.

Tom stands in the relation of endeavoring to the proposition expressed by Tom reads a book on Roman history.
(17) A book on Roman history is such that Tom is endeavoring (-to-cause) Tom to read it. The set of books b on Roman history such that Tom stands in the relation of endeavoring to the proposition expressed by Tom reads b, is non-empty.

Lexical decomposition: x tries V is analyzed as x endeavors (-to-cause) x to V.
1.4 'Opacity in certain verbs': Scope ambiguity and lexical decomposition (W. V. O. Quine, Word and Object, Cambridge, Mass. 1960, §32, pp. 151-6)
(18) Ernest is looking for Simba.
(19) Ernest is trying to find Simba.
(20) Ernest is endeavoring (-to-cause) Ernest to find Simba.
(21) Ernest is looking for a lion. [= (9)]
(22) Ernest is trying to find a lion.
(23) Ernest is endeavoring (-to-cause) Ernest to find a lion.
(24) A lion is such that Ernest is endeavoring (-to-cause) Ernest to find it.

Lexical decompositions of opaque verbs:
x looks for $y \equiv x$ endeavors (-to-cause) x to find y.
x owes y to $z \equiv x$ is obliged (-to-cause) x to give y to z.
Further opacity expected!

Explanation of odd behavior of opaque verbs in terms of lexical decomposition:

- Ambiguity between specific and non-specific reading is an ordinary scope ambiguity in attitude context.
- Non-quantificationality of indefinite is only superficial, due to its narrow scope.
- Intensionality is due to the meaning of the attitude verb.

3. Montague (1969, 1973)

Principle of (Surface) Compositionality
The meaning of a complex expression can be obtained by (suitably) combining the meanings of its immediate parts.

Context Principle

The meaning of an expression is its denotation or its contribution to the meanings of larger expressions in which it occurs.

Possible Worlds Semantics

The truth conditions of a sentence correspond to the set of world-time-points that the sentence truthfully describes.
(25) Jones is approaching.
(26) A unicorn is approaching.
(27) Jones finds Corny.
(28) Jones finds a unicorn.
(29) Jones tries to find Corny.
(30) Jones seeks a unicorn.

Expression	Meaning	Type
Jones is approaching	$\{(w, t) \mid$ Jones is approaching in w at $t\}\left[=: p_{\text {Jones }}\right]$	st
Jones	Jones	e
is-approaching	" $p_{\text {Jones }}$ minus Jones", i.e.: a function (or property) App assigning p_{x} to any individual x	$e(s t)$
A unicorn is approaching	$\{(w, t) \mid\{u \mid u$ is a unicorn in w at $t\} \cap$ $\{u \mid u$ is approaching in w at $t\} \neq \varnothing\}\left[=: q_{\text {App }}\right]$	$s t$
a unicorn	" $\mathrm{q}_{\text {App }}$ minus $A p p$ ", i.e.: a function assigning q_{Q} to any property Q, where q_{Q} is: $\{(w, t) \mid\{u \mid u$ is a unicorn in w at $t\} \cap$ $\{u \mid(w, t) \in Q(u)\} \neq \emptyset\}$	$(e(s t)(s t)$
find(s)	a function assigning to any individual y the property F_{y} that assigns to any x the proposition: $\{(w, t) \mid x$ finds y in w at $t\}$	$e(e(s t))$

Jones tries to find Corny
tries

$\{(w, t) \mid$ In w at t, Jones is endeavoring-to-cause Jones to find Corny $\}$	st
a function assigning to any proposition p the property T_{p} that assigns to any x the proposition: $\{(w, t) \mid$ in w at t, x is endeavoring-to-cause p to become true	((st)(e(st)))
$\begin{array}{r} \{(w, t) \mid \text { In } w \text { at } t \text {, Jones is endeavoring-to-cause } p \text { to be true }\}, \\ \text { where } p=\left\{\left(w^{\prime}, t^{\prime}\right) \mid\left\{u \mid u \text { is a unicorn in } w^{\prime} \text { at } t^{\prime}\right\} \cap\right. \\ \left.\left\{\mathrm{y} \mid \text { Jones finds } \mathrm{y} \text { in } \mathrm{w}^{\prime} \text { at } \mathrm{t}^{\prime}\right\} \neq \emptyset\right\} \end{array}$	st

Digression: Two-sorted Type Theory (Ty2)

Definitions

The set $T 2$ of (two-sorted) types is the smallest set containing s, e, and t as elements and every pair ($a b$) of elements a and b.

For $a \in T 2$, the domain D_{a} of objects of type a is defined by induction on a 's length:
(i) D_{s} is the logical space of all world-time pairs; (ii) D_{e} is the set of all (possible) individuals; (iii) D_{t} is the set $\{0,1\}$ of truth-values; (iv) $D_{a b}$ is the set of functions with domain D_{a} and range included in D_{b}.

For any $a \in T 2$, there is a (possibly empty) set Con_{a} of constants of type a and an infinite set Var_{a} of variables of type a. Con $:=\bigcup_{a \in T 2} \operatorname{Con}_{a}$, Var $:=\bigcup_{a \in T 2} \operatorname{Var}_{a}$. For any $a \in T 2$, the set $T y 2_{a}$ of Ty2-expressions of type a is defined by induction on the length of strings consisting of constants, variables and auxiliary symbols ' $('$, ')', ' λ ', and ' $=$ ':
(a) $\operatorname{Con}_{a} \subseteq T y 2_{a}$; (b) $V a r_{a} \subseteq T y 2_{a}$; (c) ' $\alpha(\beta)$ ' $\in T y 2_{b}$ whenever $\alpha \in T y 2_{b}$ and $\beta \in T y 2_{a}$; (d) '($\lambda x \alpha$)' $\in T y 2_{a b}$ whenever $x \in \operatorname{Var}_{a}$ and $\beta \in T y 2_{b}$; (e) ' $(\alpha=\beta)^{\prime} \in T y 2_{t}$ whenever $\alpha \in T y 2_{a}$ and $\beta \in T y 2_{a}$.

For any constant c of any type $a \in T 2$, we take it that c denotes some fixed object $F(c) \in D_{a}$. A variable assignment g is a function whose domain is Con, whose range is included in $\bigcup_{a \in T 2} D_{a}$ and such that, for any $a \in T 2, g(x) \in D_{a}$. If g is a variable assignment, $a \in T 2, x \in \operatorname{Var}_{a}$ and $u \in D r_{a}$, then $g[x / u]$ is the assignment that differs from g at most in assigning u to $x: g[x / u]:=$ $(g \backslash\{(x, g(x))\}) \cup\{(x, u)\}$.
If g is a variable assignment, $a \in T 2$, and $\alpha \in T y 2_{a}$, then the denotation of α under $g,\|\alpha\|^{g} \in D_{a}$ is defined by the following induction on α :
(a) $\|\alpha\|^{g}=F(\alpha)$ if $\alpha \in \operatorname{Con} ;(b)\|\alpha\|^{g}=g(\alpha)$ if $\alpha \in \operatorname{Var} ;$ (c) $\|\beta(\gamma)\|^{g}=\|\beta\|^{g}\left(\|\gamma\|^{g}\right)$ if $\alpha={ }^{\prime} \beta(\gamma)$ ' (for some β and γ); (d) $\|(\lambda x \beta)\|^{g}=\left\{\left(u,\|\beta\|^{g}{ }^{[x / / u}\right) \mid u \in D_{a}\right\}$, if $\alpha={ }^{\prime}(\lambda x \beta)^{\prime}$ (for some x and β); (e) $\|(\beta=\gamma)\|^{g}=1[0]$ iff $\|\beta\|^{g}=\|\gamma\|^{g}\left[\|\beta\|^{g} \neq\|\gamma\|^{g}\right]$, whenever $\alpha=$ ' $(\beta=\gamma)$ ' (for some β and γ).

Notation

a) Conventions

- boldface: (non-logical) constants
- italics \& fancy letters: variables
- Greek letters (other than ' λ '): meta-variables
- ' i ' designates the first variable of type s (standing for the actual world/time index);
' j ' and ' k ' designate (other) variables of type s
b) Abbreviations

Formula	is short for	
α_{j}	$\alpha(j)$	
$\alpha(\beta, \gamma)$	$\alpha(\gamma)(\beta)$	
$(Q x) \varphi$	$Q(\lambda x \varphi)$	
$(\forall x) \varphi$	$((\lambda x \varphi)=(\lambda x(x=x)))$	[where v is of type $t]$
$\neg \varphi$	$(\varphi=(\forall v) v)$	
$(\varphi \wedge \psi)$	$((\lambda R R(\varphi, \psi))=(\lambda R R((\forall x)(x=x),(\forall x)(x=x))))$	[where R is of type $(t(t t))]$
$(\varphi \vee \psi)$	$\neg(\neg \varphi \wedge \neg \psi)$	
etc.		

Translating natural language into Ty2 (vs. IL)

English	Ty2	IL	Type
Jones is approaching	$\mathbf{A}_{i}(\mathbf{j})$	A(j)	t
Jones	j	j	e
is-approaching	\mathbf{A}_{i}	A	et
A unicorn is approaching	$(\exists x)\left[\mathbf{U}_{i}(x) \wedge \mathbf{A}_{i}(x)\right]$	$(\exists x)[\mathbf{U}(x) \wedge \mathbf{A}(x)]$	t
a unicorn	$\left[\lambda Q(\exists x)\left[\mathbf{U}_{i}(x) \wedge Q(x)\right]\right.$	$[\lambda Q(\exists x)[\mathbf{U}(x) \wedge Q(x)]]$	(et)t
find(s)	F_{i}	F	$e(e t)$
Jones tries to find Corny	$\mathbf{T}_{i}\left(\mathbf{j},\left[\lambda j \mathbf{F}_{j}(\mathbf{j}, \mathbf{c})\right]\right)$	$\mathbf{T}\left(\mathbf{j},\left[{ }^{\wedge} \mathbf{F}(\mathbf{j}, \mathbf{c})\right]\right)$	t
tries	T ${ }_{i}$	T	((st)(et))
Jones tries to find a unicorn	$\mathbf{T}_{i}\left(\mathbf{j},\left[\lambda j(\exists y)\left[\mathbf{U}_{j}(y) \wedge \mathbf{F}_{j}(\mathbf{j}, y)\right]\right]\right)$		t
		$\mathbf{T}(\mathbf{j},[\wedge(\exists y)[\mathbf{U}(y) \wedge \mathbf{F}(\mathbf{j}$,	
tries to find a unicorn	$\lambda x \mathbf{T}_{i}\left(x,\left[\lambda j(\exists y)\left[\mathbf{U}_{j}(y) \wedge\right.\right.\right.$		et
	$\lambda x \mathbf{T}(x,[\wedge(\exists y)[\mathbf{U}(y) \wedge \mathbf{F}(x, y)]])$		

MORE ON TY2 (AND ITS RELATION TO MONTAGUE'S IL) CAN BE FOUND IN THE NOTES ON FORMAL SEMANTICS

End of Digression
seeks $=$ "tries to find a unicorn minus a unicorn":

$$
\begin{array}{ll}
& \lambda x \mathbf{T}_{i}\left(x,\left[\lambda j(\exists y)\left[\mathbf{U}_{j}(y) \wedge \mathbf{F}_{j}(x, y)\right]\right]\right) \\
\equiv & \lambda x \mathbf{T}_{i}\left(x,\left[\lambda j\left[\lambda Q(\exists y)\left[\mathbf{U}_{j}(y) \wedge Q(y)\right]\right]\left(\lambda y \mathbf{F}_{j}(x, y)\right)\right]\right) \\
\equiv & \lambda x \mathbf{T}_{i}\left(x,\left[\lambda j\left[\lambda k \lambda Q(\exists y)\left[\mathbf{U}_{k}(y) \wedge Q(y)\right]\right](j)\left(\lambda y \mathbf{F}_{j}(x, y)\right)\right]\right) \\
\equiv & \\
& \underline{\left.\overline{\lambda Q} \lambda_{x} \mathbf{T}_{i}\left(x,\left[\lambda j \mathbb{Q}_{j}\left(\lambda y \mathbf{F}_{j}(x, y)\right)\right]\right)\right]\left(\lambda k \lambda Q(\exists y)\left[\mathbf{U}_{k}(y) \wedge Q(y)\right]\right)}
\end{array}
$$

The underlined formula denotes the intension of a unicorn; hence the doubly underlined formula (of type $((s((e t) t))(e t)))$ must denote the extension of seek.

Translation of VP on non-specific (opaque/de dicto) reading: $\left(\mathrm{V}_{\text {tran }}^{\mathrm{op}}+\mathrm{NP}\right)^{\prime}=\mathrm{V}_{\text {tran }}^{\mathrm{op}}{ }^{\prime}(\lambda i \mathrm{NP})^{\prime}$
Opaque verbs à la Montague
('On the Nature of Certain Philosophical Entities', The Monist 53 (1969); 'The Proper Treatment of Quantification in Ordinary English'. [= PTQ] In: J. Hintikka et al. (eds.), Approaches to Natural Language. Dordrecht 1973. Both reprinted in R. H. Thomason (ed.): Formal Philosophy. Selected Papers of Richard Montague, New Haven 1974.)

seeks	$\lambda \mathbb{Q} \lambda_{x} \mathbf{T}_{i}\left(x,\left[\lambda_{j}\left(\mathbb{Q}_{j} y\right) \mathbf{F}_{j}(x, y)\right]\right)$	$((s((e t) t))(e t))$
owes	λ 羽 λ O $\lambda^{\prime} \mathbf{O}_{\mathbf{O}}\left(x,\left[\lambda_{j}\left(\right.\right.\right.$ 的 $\left.\left.\left.j_{j} y\right)\left(\mathbb{C}_{j} z\right) \mathbf{G}_{j}(x, y, z)\right]\right)$	$((s((e t) t))((s((e t) t))(e t))$)
[or:		$((s((e t) t))((s((e t) t))(e t))$)
or:	$\lambda y \lambda \mathbb{Q} \lambda x \mathbf{O}_{i}\left(x,\left[\lambda j\left(\mathbb{Q}_{j} z\right) \mathbf{G}_{j}(x, y, z)\right]\right)$	$(e((s((e t) t))(e t)))]$
appear	$\lambda \mathbb{Q}^{\text {d }}$ P $\mathbf{A}_{i}\left(\lambda j \mathbb{Q}_{j}(P)\right)$	$((s((e t) t))((s(e t)) t))$
worships	$\mathbf{W}_{i} \quad$ [Opacity without decomposition]	$((s((e t) t))(e t))$
[cf. kill	$\lambda y \lambda_{x} \mathbf{C}_{i}\left(x,\left[\lambda_{j} \mathbf{D}_{j}(y)\right]\right) \quad$ [Decomposition without opacity]	(e(et))

Specific (transparent/de re) reading

Syntax:

Semantics:

seeks y

$$
(\lambda P P(y))
$$

$$
\begin{equation*}
\left(\lambda \mathbb{Q} \lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j}\left(\mathbb{Q}_{j} y\right) \mathbf{F}_{j}(x, y)\right]\right)\right)\left(\lambda_{i} \lambda P P(y)\right) \tag{et}
\end{equation*}
$$

$$
\begin{array}{lll}
& \equiv & \left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j}(\lambda i \lambda P P(y))(j)\left(\lambda y \mathbf{F}_{j}(x, y)\right)\right]\right)\right) \\
& \equiv & \left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j}(\lambda P P(y))\left(\lambda_{y} \mathbf{F}_{j}(x, y)\right)\right]\right)\right) \\
& \equiv & \left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j}\left(\lambda_{y} \mathbf{F}_{j}(x, y)\right)(y)\right]\right)\right) \\
\equiv & \left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j} \mathbf{F}_{j}(x, y)\right]\right)\right) & \\
\text { Jones seeks y } & \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, y)\right]\right) & t \\
\text { (a unicorn y) Jones seeks } y & & {\left[\lambda Q(\exists x)\left[\mathbf{U}_{i}(x) \wedge Q(x)\right]\right]\left(\lambda_{y} \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, y)\right]\right)\right)} \\
& \equiv & (\exists x)\left[\mathbf{U}_{i}(x) \wedge\left(\lambda_{y} \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, y)\right]\right)\right)(x)\right] \\
& \equiv & (\exists x)\left[\mathbf{U}_{i}(x) \wedge \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, x)\right]\right)\right]
\end{array}
$$

Definiteness and opacity

(31) Jones is looking for the headmaster.

$$
\begin{align*}
& \text { the headmaster } \\
& \text { seeks the headmaster } \\
& {\left[\lambda P(1 x)\left[\mathbf{H}_{i}(x), P(x)\right]\right]} \\
& \text { ((et)t) } \\
& \left(\lambda \mathbb{Q} \lambda x \mathbf{T}_{i}\left(x,\left[\lambda j\left(\mathbb{Q}_{j} y\right) \mathbf{F}_{j}(x, y)\right]\right)\right)\left(\lambda i \lambda P(1 x)\left[\mathbf{H}_{i}(x), P(x)\right]\right) \tag{et}\\
& \equiv \quad\left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda_{j}\left(\lambda P(1 y)\left[\mathbf{H}_{j}(y), P(y)\right]\right)\left(\lambda y \mathbf{F}_{j}(x, y)\right)\right]\right)\right) \\
& \equiv \quad\left(\lambda x \mathbf{T}_{i}\left(x,\left[\lambda j(1 y)\left[\mathbf{H}_{j}(y), \mathbf{F}_{j}(x, y)\right]\right]\right)\right) \\
& \text { (the headmaster } y \text {) Jones seeks y } \quad\left[\lambda P(1 x)\left[\mathbf{H}_{i}(x), P(x)\right]\right]\left(\lambda_{y} \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, y)\right]\right)\right) \\
& \equiv \quad(1 x)\left[\mathbf{H}_{i}(x), \mathbf{T}_{i}\left(\mathbf{j},\left[\lambda_{j} \mathbf{F}_{j}(\mathbf{j}, x)\right]\right)\right]
\end{align*}
$$

Montague's analysis: synopsis

An opaque verb takes the intension of a quantified noun phrase as its argument, i.e. it expresses an intensional third-order relation.

Explanation of odd behavior of opaque verbs:

- Ambiguity between specific and non-specific reading is due to a general syntactic construction that allows the quantified object to outscope the verb.
- Non-quantificationality of object (on unspecific reading) is due to higher order of verb the (et)t part of its type $((s \underline{((e t) t)}))(e t))$.
- Intensionality is part of the lexical meaning of the verb - reflected by the s in the extension type $((s(l e t) t))(e t))$ of seek.

Intensionality and non-quantificationality are independent of each other and therefore not expected to co-occur.

- Intensionality without higher order (PTQ)
(32) The temperature is ninety but it's rising.

is-rising	\mathbf{R}_{i}	(se)t
the temperature	$\left[\lambda Q(1 f)\left[\mathbf{T}_{i}(f), Q(f)\right]\right]$	($($ se)t)t
the temperature is-rising	$\left[\lambda Q(1 f)\left[\mathbf{T}_{i}(f), Q(f)\right]\right]\left(\mathbf{R}_{i}\right)$	t
	$\left[\lambda Q(1 f)\left[\mathbf{T}_{i}(f), \mathbf{R}_{i}(f)\right]\right]$	
is	$\left(\lambda g \lambda f\left(f_{i}=g_{i}\right)\right)$	((se)((se)t))
ninety	($\lambda \mathbf{i} \mathbf{n}$)	(se)
is ninety	$\left(\lambda f\left(f_{i}=\mathbf{n}\right)\right)$	(et)
the temperature is ninety	$\left[\lambda Q(1 f)\left[\mathbf{T}_{i}(f), Q(f)\right]\right]\left(\lambda f\left(f_{i}=\mathbf{n}\right)\right)$	t
	$\left[(1 f)\left[\mathbf{T}_{i}(f),\left(f_{i}=\mathbf{n}\right)\right]\right]$	
ninety is-rising	$\mathbf{R}_{i}\left(\lambda_{i} \mathbf{n}\right)$	

- Higher order without intensionality

(M. Rooth, as quoted on p. 152 of T. E. Zimmermann, 'On the Proper Treatment of Opacity in Certain Verbs'. Natural Language Semantics 1 (1993), 149-79)

Mats owns a stamp.

I posit the case that for a good service Mats and I performed for you, you bestowed upon us two valuable stamps which are absolutely indistinguishable from one another. You handed the stamps over to us in a black box, which neither Mats nor I nor anyone else ever opened. And since you gave us this, it is true that both Mats and I now own a stamp. But the opposite is argued in an obvious way.
(E. Zimmermann, Conversation with Roger Schwarzschild. Starbucks New Brunswick Jan 26, 2000)
owns

\mathbf{O}_{i}	$(((e t) t)(e t))$
$\mathbf{O}_{i}\left(\mathbf{m},\left[\lambda Q(\exists x)\left[\mathbf{S}_{i}(x) \wedge Q(x)\right]\right]\right)$	t
$(\exists x)\left[\mathbf{S}_{i}(x) \wedge \mathbf{O}_{i}\left(\mathbf{m}, x^{*}\right)\right] \quad\left(\right.$ where ' $x^{*}{ }^{*}$ abbreviates ' $\lambda P P(x) \prime$	t

unsp. spec.

Mats owns a stamp that Ede doesn't own.
Mats owns the stamp that Ede doesn't own.

\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}

Specificity vs. Existence

1. Observations

(M. Bennett, Some Extensions of a Montague Fragment of English. UCLA dissertation 1974, 82ff., where S. Kripke is credited)
(1) Julius worships a Greek goddess.

Existential generalization fails:
(2a) There is at least one Greek goddess.
(2b) There exists at least one Greek goddess.

But there is noambiguity:
(3a) Julius worships a specific Greek goddess.
(3b) Julius worships an arbitrary Greek goddess.

Substitutivity fails too (but wait):
(4) Julius worships a unicorn.

Intuition

Worship is not really an opaque verb but as spedific and extensional as kick, the only difference being that it may relatereal peopleto (specific) non-existent objects.

Problem

How can it bethat J ulius is related to a spedific (non-existent) object, without there being such an dbject?

Solution (T. Parsons, Nonexistent Objects. New Haven 1980)
Meinongian ontology - to be developed in 3 steps:

STEP A: MOTIVATION, i.e. criticism of non-Meinongian ontology
STEP B: FORMULATION of Meinongian ontology as a formal theory
STEP C: PROOF OF CONSISTENCY of that theory
2. Background: Meinong's Theory of Objects (simplified version)
[A. Meinong, 'Über Gegenstandsthorie’. In: R. Haller (ed.): Alexius Meinong. Gesamtausgabe, Bd. II. Graz 1971, 481 -535]

Context: Foundations of psychology, espedially the psychology of perception (induding inner perception of psychdogical processes) and judgement (knowledge, error,...)

Psychological processes can be dissected into their:

- act (of seeing, daiming, wondering,...)
- content (mental image, proposition, question,...)
- objects (whatever is seen, daimed, in question,...)

Kinds of dojects:

- higher vs. lower order
properties and reations are of higher order than ther bearers (becausethe they cannot be thought without the latter)
- existing VS. non-existent

Highe-order dbjects do not exist - the god mountain being one of them (becauseit cannot bethought without the properties defining it)

- complete vs. incomplete

Existing dbjeds are always complete in that they satisfy the Law of the Exduded Middle; the (generic) triangle is incomplete (because it is neither isosceles nor nor non-isosceles)

- possible vs. impossible

The fying horse and the gold mountain are possible ebjects because their defining properties do not contradid each other; the round square is impossible. I mpossible objects never exist, some of them (induding concepts and relations) do not even subsist, but they still have their spedific quality [Sosein].

General prindiples about objects

Leibniz' Principle (or one of Leibniz' Principles)
Notwo distind objects have exadly the same properties. (If $x \neq y$, then x, but not y, has the property of being identical to x.)

Independence Principle (E. Mally)
Quality is independent of existence, i.e. objects can have properties without existing.

Quality principle

Every dbject has precisely the properties defined in its quality.

Principle of Non-Existence

Not all objects exist; some even could not have existed.
"Those who like paradoxical modes of expression could very well say: Thereare objects of which it is true that there areno such objects.' (Meinong quote found on theinternet)

Principle of Combination

For any set X of properties there is an object whose properties are precisely the elements of X. Due to the set being round, being square\}, there is an object that is both round and a square and has no other properties; this 'generic round square' is an impossible object.

Principle of Reification [Vergegenständlichungsprinzip']

Descriptions of theform the N denote (possibly non-existent) objects with property N .
The gold mountain denotes an object that is both a mountain and of gold. The object denoted by the gold mountain does not exist.

Completeness Principle

An existing object has a property p iff it does not have theopposing property \bar{p}.
The generic gold mountain is indeterminate as to its size.

3. More Background: Russell's Theory of Descriptions

(5) Heinz Schleußer has many hats.
(6) The former minister of finance has many hats.

NaiveSemantics of definitedescriptions

(cf. G. Frege, 'Über Sinn und Bedeutung', Zeitschrift für Philosophie und philosophische Kritik 100 (1892), 25-50; tr.:'On Sense and Reference'. In: P. Geach, M. Black (eds.), Translations from the Philosophical Writings of Gottlob Frege. Oxford 1960, 56-78)

$$
\llbracket \text { the } N \rrbracket=\left\{\begin{array}{l}
u \text { if } \llbracket N \rrbracket=\{u\} \\
\text { undefined otherwise }
\end{array}\right.
$$

Objections against naive semantics of definitedescriptions

1. If a is identical with b, whatever is true of the one is true of the other, and either may be substituted for the other in any proposition without altering the truth or falsehood of that proposition. Now GeorgeIV wished toknow whether Scott was the author of Waverley; and in fact Scott was the author of Waverley. Hence we may substitute Scott for the author of Waverley', and thereby provethat GeorgeIV wished to know whether Scott was Scott. Yet an interest in the law of identity can hardly be attributed tothefirst gentleman of Europe.
2. By the law of the exduded middle, either ' A is B ' or ' A is not B ' must betrue. Henceeither the present King of France is bald' or the present King of France is not bald' must betrue Yet if weenumerated thethings that are bald, and then the things that arenot bald, we should not find the present King of France in either list. Hegelians, who love a synthesis, will probably condudethat he wears a wig.
(B. Russell, ‘On Denoting’. Mind 14 (1905), 479-93; p. 485. http://www.santafe.edu/-shalizi/Russell/denoting/)

Objections against Meinong

"Meinong is best known as the loser of the Russell-Meinong debate of 1905."
(T. Parsons, 'A Meinongian Analysis of Fictional Objects'. Grazer Philosophische Studien 1 (1975), 73-86, p. 73)

OBJ ECTION \#1 (Russel):

According to the Principle of Reification, the description the round square denotes an object that is both round and square. This is absurd (contradicting logic); for any round object is not square.
Meinong: No problem, not even for the round square that is not round.

OBJ ECTION \#2 (Quine):

Meinongian ontology poses unsol vable problems and meaningless questions like:
« Is the possible fat man in the doorway identical with the possible thin man in the doorway?

- How many possible men are there standing in the doorway?

凶 Are there more possible fat men than possible thin men?
('On what there is'. In: W. V. O. Quine, From a Logical Point of View. New York 1961, 1-19)
Menong:Thesequestions may be hard to answer but they do makesense.

OBJ ECTION \#3 (Russell):

According to the Principle of Reification, the description the existent gold mountain denotes an existent object that is both a mountain and of gold. This is absurd (contradicting facts); for thereareno gold mountains, they do not exist.
Meinong: ???

Condusion (Russell 1905):

Definitedescriptions do not denoteobjects; they quantify over objects.
Generalized quantifier formulation:
\llbracket the $\rrbracket=\{(A, B) \mid \quad \bar{A}=1 \& A \subseteq B\}$
the ${ }^{\prime}=(\lambda P \lambda Q(1 x)[P(x), Q(x)]) \quad[\equiv(\lambda P \lambda Q(\exists x)[(\forall y)[P(y) \leftrightarrow(x=y)] \wedge Q(x)])]$
(7) \quad The gold mountain is made of gold.
(8a) The gold mountain is not made of gold.
(8n) $\quad(\exists x)\left[(\forall y)\left[\left[\left[\mathbf{G}_{i}(y) \wedge \mathbf{M}_{i}(y)\right] \leftrightarrow(x=y)\right] \wedge \neg \mathbf{G}_{i}(x)\right]\right) \quad \quad \mathbf{F}$
$(8 w) \quad \neg(\exists x)\left[(\forall y)\left[\left[\left[\mathbf{G}_{i}(y) \wedge \mathbf{M}_{i}(y)\right] \leftrightarrow(x=y)\right] \wedge \mathbf{G}_{i}(x)\right]\right) \quad$ T

Cordlary

There is no evidence for Meinongian ontology. Hence (by Occam's Razor), there are no objects denoted or quantified over other than ordinary (existing) individuals.

4. A Problem for Russell's Theory of Descriptions (STEP A)

(9) A certain continental philosopher (Sartre) is more famous than any analytic philosopher.
(10) A certain fictional Belgian (Poirot) is more famous than any real Belgian.

Problem:

Like (9), (10) seems to existentially quantify over objects; but the objects cannot beordinary existing individuals.

Ways out?
I: (10) is false, becausetherearenofictional detectives
II: (9) and (10) have completetly different logical forms:
$a \quad$ (10) involves intensionality
or: $\quad b \quad$ (10) involves (purely) substitutional quantification
or: $\quad c \quad$ (10) must be suitably paraphrased

Objections (Parsons):

I: gets the data wrong.
Πa : (9) and (10) do not differ in their logical behavior:
(11) Sartre is the author of 'Les mots'.
(12) The author of 'Les mots' is more famous than any analytic philosopher.
(13) Poirot is the Belgian hero in Agatha Christie's detective stories.
(14) The Belgian hero of Agatha Christie's detective stories is more famous than any real Belgian.
(15) Some (specific) individual, viz. Sartre, is such that it is a continental philosopher and that it is more famous than any analytic philosopher.
Some (specific) individual, viz. Poirot, is such that it is a fictional Belgian and that it is more famous than any real Belgian.
II b : Purely substitutional quantification is absurd.
(17) There are cows.
(18) Bessie is a cow.

IIc: How?
The extent to which faith in theexistence of an appropriate paraphraseautruns the believer's ability togive such a paraphrase is often quitestriking
[Nonexistent Objects, p. 36]
5. Reformulating Meinong (STEP B)

Basic idea (Mally):
Stick to Meinong's prindiples but relativize them to properties that don't get you intotrouble (like existence). Call such 'harmless' properties NUCLEAR ["konstitutorisch"].

Leibniz' NEW Principle

Notwo distind objeds have exactly the sameNUCLEAR properties.
NEW Independence Principle
Objects can have NUCLEAR properties without existing.
NEW Quality pinciple
Every object has precisely theNUCLEAR properties defined in its quality.
OLD Prinicple of Non-Existence
Not all objects exist; some even could not have existed.

NEW Principle of Combination
For any set X of NUCLEAR properties there is an object whoseNUCLEAR properties are predisely the elements of X.

NEW Principle of Reification
Descriptions of the form the P denote (possibly non-existent) objects with theNUCLEAR propertyP.

NEW Completeness Principle
An existing object has a NUCLEAR property p iff it does not have the opposing NUCLEAR property \bar{p}.

Some extra-nuclear properties

Property	True of x if ...	Examples
Existence	x is an ordinary (non-Meinongian) object	London, Russell
Incompleteness	x lacks some nudear property and its opposite	Holmes, the round square
Consistency	x 's nudear properties do not contradid each other	thegeneric square, Meinong
Indeterminateness as to baldness	x is neither bald nor non-bald	thepresent king of France
Possibility	it is possiblethat thereexists something with all of x 's nudear properties	thegold mountain
Fictionality	x does not exist and there exists a work of fiction according to which thereis someone with predisely x 's nudear properties	Holmes
Being Worshipped by J ulius	J ulius worships x	Diana

Working definition for Extra-Nuclearity

Assume that a given property p is nudear unless this leads to unwel come consequences.

In order to show that the above properties are all extra-nudear one may assumethe contrary, apply Combination to a certain set C of nudear properties and derive a contradiction to other principles. Ecample: Existence cannot be nudear, because otherwise there would bean object e whose solenuder property is existence; but then e would be inderminate as to non-existence (the opposite of existence) and hence incomplete, contradicting Completeness. In this case $C=\{$ existence\}. In the other cases the following sets C do the trick: incompleteness: $C=$ Meinong* \cup $\{$ incompleteness\}; consistency: $C=\{$ consistency, inconsistency\}; indeterminateness as to baldnes: $C=$ $\{b a l d n e s s$, indeterminateness as to baldness\}; possibility: $C=\{p o s s i b i l i t y$, impossibility\}; ficitonality: $C=\{p \mid p$ is a nudear property of Holmes $\} \cup\{$ fictionality \}; being worshipped by Julius: $C=$ Meinong* $\cup\{b e i n g$ worshipped by J ulius\}.

5. Modelling Meinong(STEP C)

Montague Lift

There is a one-one correspondence $\quad=$ matching each individual with the set of its properties (principal ultrafilter):

$$
x \xlongequal[=]{=} x^{*}[:=\{p \mid x \text { has } p\}]
$$

Basicidea:

Construct a (set-theoretic, extensional) model of Meinongian ontology out of theset of (ordinary) individuals by interpreting the theory as follows.

- NUCLEAR (arbitrary) properties aresets of individuals;
- the OPPOSITE of a nudear property is its complement with respect to the set of individuals
- EXISTING OBJ ECTS are Montague lifts of individuals;
- OBJ ECTS are (arbitrary) sets of NUCLEAR properties;
- EXTRA-NUCLEAR properties are (arbitrary) sets of objects.
- an object x HAS a NUCLEAR property p iff $p \in x$;
- \quad an object x HAS an EXTRA-NUCLEAR property P iff $x \in P$;

Thus interpreted, the Meinongian principles become truths:
Leibniz
Notwo distinct sets of sets of individuals have the same elements. follows from the set-theoretic Axiom of Extensionality

Independence

A set of sets of individuals can be non-empty without being a principal ultrafilter.
true of many sets

Quality

Every set of sets of individuals has precisely the ements it has.
under the natural assumption that thequality of an dbject is theset of nudear properties it has - i.e the object itself (in the model)

Non-Existence

Not every object is a prinipal ultrafilter; some even cannot be extended to one. under the assumption that possibility is consistency (in this extensional mode), i.e. having a quality with a non-empty intersection

Combination

Any set of sets of individuals is identical to a set of sets of individuals.
highly controversial

Reification
 SKIPPED

Completeness

A set of individuals is an element of a given principal ultrafilter iff the complement of that set is not an element of that ultrafilter.
this is can be easily seen by looking at the definition of the Montague Lift

Condusion

The Meinongian principles are consistent (if set theory is).

Observations (on the mode)

(I) For any nudear property p there is a unique corresponding extra-nudear property p^{+} such that any individual x has p iff x has p^{+}.

$$
\begin{aligned}
& \mathrm{p}^{+}=\{x \mid p \in x\} \text { : }
\end{aligned}
$$

Uniqueness follows by Extensionality.
(II) For any extra-nudear property P there is a unique corresponding nudear property P such that any existing individual x has p iff x has P.
If x exists, it is of the form a^{*} (for someindividual a). We then have:

Uniqueness again follows by Extensionality.
(III) $\left(p^{+}\right)^{-}=p$, for any nuclear p; but $\left(P^{-}\right)^{+} \neq P$, for some extra-nudear P.

The first part follows immediately from the definitions; the second part holds because, e.g., inconsistency, nonexistence, and impossibility (construed as above) all correspond tothesame (empty) nudear property.
(IV) The above distinctions between properties carry over from properties to redations: A nudear relation is a relation between individuals, an extranudear relation is a relation between objects, and there are al so mixed cases.
(V) On the basis of observation (I), one can do without nudear properties, replading them with their extra-nudear counterparts. (This is reminiscent of Montague's strategy of generalizing to the worst case.)

Remarks on the status of the model

In Parsons' reconstruction of Meinong's ontology, the observatons (I) and (II) are general principles that hold in all models.

The model given here is not a standard or intended model. Its only purpose is to prove consistency. Given that the theory has a model at all, it can beshown (by predicate logic) that it has many non-isomorphic models, some of which are more plausible than the extensional one with its typelayered ontdogy.
6. Extranudearity vs. Opacity

Analysis according to Parsons:

verb	nudear positions	type	lowest typein extensional model
worship	subject	$e(e t)$	$((\underline{e t) t)(e t)}$
seek	subject	$(s(e t) t)(e t)$	$((\underline{(e t) t) t) t)(e t)}$

Property treatment of opacity

T.E. Zimmermann, 'On the Proper Treatment of Opacity in Certain Verbs'. Natural Language Semantics 1 (1993), 149-79.

1 Problems with the classical analysis of opacity

Classical decomposition of seek into Try and Find:
(CD) $\quad \operatorname{seek} k^{\prime}=\left[\lambda \mathbb{Q} \lambda \times \mathbf{T}_{i}\left(\mathrm{x},\left[\lambda j\left(\mathbb{Q}_{j} \mathrm{y}\right) \mathbf{F}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$
W. V. O. Quine, Word and Object, Cambridge, Mass. 1960, Chapter 4 (Vagaries of Reference), 125-56 + R. Montague, 'The Proper Treatment of Quantification in Ordinary English', J. Hintikka, J. Moravcsik, P. Suppes (eds.), Approaches to Natural Language, Dordrecht 1973, 221-42

- Lexical decomposition not always possible
(1) Mary worships a Greek goddess.

No problem (seelast handout); logical form is:
(2) $(\exists \mathrm{y})\left[\mathbf{G G}_{i}(\mathrm{y}) \& \mathbf{W}_{i}(\mathbf{m}, \mathrm{y})\right]$
where the variable y may range over real individuals as well as at least some "non-existent objects"
T. Parsons, Nonexistent Objects, New Haven 1980
(3) Tom's horse resembles a unicorn.
(4) Tom compares his horse to a unicorn.

Conceivableparaphrases

(3') Tom's horse has a form which seems to be like a unicorn form. (anonymous eviewer)
Problem: a unicorn is not a constituent and thus has a form which seems to be like \qquad form cannot beinterpreted by abstraction.
(3") Tom's horse could (almost) be a unicorn. ('close in meaning': Roger Schwarzschild, p.c.)
Problem: Not dbvious how to interpret modality. In particular, the following account does not do: resemble $^{\prime}(\mathrm{x}, \mathrm{Q}) \equiv(\exists j)\left[i \approx j \&(\forall \mathrm{P})\left[C_{\mathrm{x}}(\mathrm{P}) \rightarrow\left[\mathrm{P}_{j}(\mathrm{x}) \&\left(\mathrm{Q}_{j} \mathrm{y}\right)(\mathrm{x}=\mathrm{y})\right]\right]\right]$, where \approx is a suitablesimilarity relation between worlds and C_{x} are some contextually relevant properties of x . This would have Jane resembles Mary express a contradiction.
(4') Tom says $\left\{\begin{array}{c}\text { that } \\ \text { whether }\end{array}\right\}$ his horse looks like a unicorn.
Problem: reintroduces opacity in look like
Montague's condusion
(RM) Referentially opaquetransitive verbs denote (not necessarily decomposable) attitudes of individuals towards intensional quantifiers.
R. Montague, 'On the Nature of Certain Philosophical Entities', Monist 53 (1969), 159- 94.

Compositionality Problem

It does not al ways seem possible to describe the meaning of a VP containing an opaque verb as depending on the meaning of its (quantified) object.
It does seem possible, though, to describe the meaning of VPs with indefinite objects as depending on the meaning of the indefinite's domain. Example: resemble \approx share some contextually relevant features with all typical (and possibly nonexistent) members of.

- Lack of opaque readings
(5) Arnim compares himself to a pig.
(6) Arnim compares himself to each/every pig.
(6') Arnim compares himself to every pig.
(7) Arnim compares himself to Porky.
(8) Alain is seeking each comic-book.
(8') Alain is seeking every comic-book.
(9) Alain is trying to find each comic-book.
(9') Alain is trying tofind every comic-book.
(10) Alain sucht jeden Comic. German
(11) Alain versucht, jeden Comic zu finden. German
(8) (9) (10) (11)
(w) $\quad(\forall \mathrm{y})\left[\mathbf{C B}_{i}(\mathrm{y}) \rightarrow \mathbf{T}_{i}\left(\mathbf{a}, \lambda j \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right) \quad \boldsymbol{v} \quad \boldsymbol{\nu} \quad \boldsymbol{v} \quad$ wide scope
(n) $\quad \mathbf{T}_{i}\left(\mathbf{a}, \lambda j(\forall \mathrm{y})\left[\mathbf{C B}_{j}(\mathrm{y}) \rightarrow \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$

'Axiomatic' Solution

Assume opacity without decomposability and add a meaning postulate to the effect that wide scope and narrow scope coindide in case of non-existential objects.
SeeT. E. Zimmermann, 'Meaning Postulates and the Model-Theoretic Approach to Natural Language Semantics', Linguistics and Philosophy 22 (1999), 529-61, for general criticism

Further unattested opaque readings
(12) Alain is seeking most comic-books.
(13) Alain is seeking at most five comic-books.
(14) Alain sucht die meisten Comics.
(15) Alain sucht höchstens vier Comics.
(16) J ane is looking for no cow.
(17) J anesucht keine Kuh.
(16) (17)
(w) $\quad-(\exists \mathrm{y})\left[\mathbf{C}_{j}(\mathrm{y}) \& \mathbf{T}_{i}\left(\mathbf{j}, \lambda j \mathbf{F}_{j}(\mathbf{j}, \mathrm{y})\right]\right) \quad \boldsymbol{\nu} \quad \boldsymbol{\nu}$ wide scope
(n) $\mathbf{T}_{i}\left(\mathbf{j}, \lambda j-(\exists \mathrm{y})\left[\mathbf{C}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{j}, \mathrm{y})\right]\right) \quad$ narrow scope
(w) $\quad \neg \mathbf{T}_{i}\left(\mathbf{j}, \lambda j(\exists \mathrm{y})\left[\mathbf{C}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{j}, \mathrm{y})\right]\right) \quad$? $\boldsymbol{v} \quad$ split scope
J. J acobs, 'Negation', A. v. Stechow \& D. Wunderlich (eds.), Semantik/ Semantics, Berlin 1991, 560-96

Overgeneration Problem

Not all sentences involving opaque verbs are ambiguous in the way predicted by the dassical analysis.

- Analytic overkill
'Reduction' of try to seek:

$$
\mathbf{T}=\lambda i \lambda p \lambda \times \operatorname{seek}^{\prime}\left(\mathrm{x}, \lambda j \lambda P p_{j}\right):
$$

Proof:

$$
\begin{array}{ll}
& {\left[\lambda i \lambda p \lambda \mathrm{x} \operatorname{see} \mathrm{~K}^{\prime}\left(\mathrm{x}, \lambda j \lambda P p_{j}\right)\right](i)(p)(\mathrm{x})} \\
\equiv & \operatorname{see} k^{\prime}\left(\mathrm{x}, \lambda j \lambda P p_{j}\right) \\
\equiv & {\left[\lambda \mathbb { Q } \lambda \mathbf { T } _ { i } \left(\mathrm{x},\left[\lambda j \mathbb{Q}_{j}\left(\lambda k \lambda \mathrm{y} \mathbf{F}_{k}(\mathrm{x}, \mathrm{y})\right)\right]\right.\right.} \\
\equiv & \mathbf{T}_{i}\left(\mathrm{x},\left[\lambda j [\lambda j \lambda P p _ { j }] (j) \left(\lambda k \lambda \mathrm{y} \mathbf{F}_{k}(\mathrm{x}, \mathrm{y})\right.\right.\right. \\
\equiv & \mathbf{T}_{i}\left(\mathrm{x},\left[\lambda j\left[\lambda P p_{j}\right]\left(\lambda k \lambda \mathrm{y} \mathbf{F}_{k}(\mathrm{x}, \mathrm{y})\right)\right]\right) \\
\equiv & \mathbf{T}_{i}(\mathrm{x},[\lambda j p(j)]) \\
\equiv & \mathbf{T}_{i}(\mathrm{x}, p) \\
\equiv & \mathbf{T}(i)(p)(\mathrm{x})
\end{array}
$$

$$
\equiv \operatorname{seek}^{\prime}\left(x, \lambda j \lambda P p_{j}\right) \quad 3 \beta \text {-conversions }
$$

$$
\equiv\left[\lambda \mathbb{Q} \times \mathbf{T}_{i}\left(\mathrm{x},\left[\lambda j \mathbb{Q}_{j}\left(\lambda k \lambda y \mathbf{F}_{k}(\mathrm{x}, \mathrm{y})\right)\right]\right)\right]\left(\lambda j \lambda P p_{j}\right)(\mathrm{x}) \quad \text { by (CD) + notational convention }
$$

$$
\equiv \mathbf{T}_{i}\left(\mathrm{x},\left[\lambda j\left[\lambda j \lambda P p_{j}\right](j)\left(\lambda k \lambda \mathrm{y} \mathbf{F}_{k}(\mathrm{x}, \mathrm{y})\right)\right]\right) \quad 2 \beta \text {-conversions }
$$

2 From Existential Quantifiers to Properties

Basicidea

Common source of all three inadequacies:
The reduction of try exploits the fact that seek is defined for arbitrary quantifiers including $\lambda j \lambda P p_{j}$.
a The unattested opaque readings arise because (the opaque reading of) seek is defined for arbitrary quantifiers induding most comic books'.
« Lexical decomposition is impossible becauseit would have to involve arbitrary quantifiers, not just (domains of) existentials.

Ede's Condusion

The domain of opaque verbs must be restricted from arbitrary quantifiers to existentials.

Definition

An existential ist a quantifier of the form $\mathbb{Q}=\lambda i \lambda P(\exists x)\left[\mathrm{A}_{i}(\mathrm{y}) \& P(\mathrm{x})\right]$, where A is some property (called a's domain).
NB: This definition uses Ty2 as part of the meta-language.

Remark

Under Russell's theory of descriptions, definites are existentials:
"I gnoring coordination and other complications, it seems that we are left with essentially two kinds of noun phrases acceptable for opaque verbs, viz. indefinites of the form ' $a \mathrm{~N}$ ' and definite descriptions of the form 'the N' [...]' (Zimmermann 1993, 163)

Observation

There is a one-one correspondence BE between existentials and properties, i.e. objects of $\operatorname{type}(s(e t)): \mathbf{B E}(\mathbb{Q})=\lambda i \lambda x\left(\mathbb{Q}_{i} y\right)(x=y)$.
B. Partee, 'Noun Phrase Interpretation and Type Shifting Principles', J. Groenendijk et al. (eds.), Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers, Dordrecht 1987, 115-43.

Ede's Proposal

Thetype of an opaque position is that of a property.

Solution of Problems

- Compositionality

Truth conditions can now begiven directly in terms of properties. Example(elaborating above paraphrase): resemble' (x, P) is true iff there is a nonempty set of (contextually relevant) features \mathcal{F} such that x has all features in \mathcal{F} (at the given index) and such that, for any index j and any object y, the following holds: if (at j) y is a typical representative of the objects that have P, then y has all features in \mathcal{F} (at j).

- Overgeneration

Opaque readings for non-existentials are blocked due to a type mismatch. Existentials are not blocked provided that either (i) they are type-shifted by some systematic application of $\mathbf{B E}$ restricted to existentials (as in type-driven frameworks), or (ii) they denote properties anyhow (as in DRT). (i) will be pursued on this handout, (ii) is what happens in the text.
Example (Nessie resembles a unicorn):
(i) $\quad \mathbf{R}_{i}\left(\mathbf{n}, \mathbf{B E}\left(\lambda j \lambda P(\exists \mathrm{y})\left[\mathbf{U}_{j}(\mathrm{y}) \& P(\mathrm{y})\right]\right)\right)$

$$
\left[\equiv \mathbf{R}_{i}(\mathbf{n}, \mathbf{U})\right]
$$

In later examples we will not explicitly mention the $\mathbf{B E}$-operator but directly use the property reduction on the right.
(ii) $\quad \lambda \mathrm{x}\left[\mathrm{x}=\mathbf{n} \& \mathbf{R}_{i}\left(\mathrm{x}, \lambda j \lambda \mathrm{y} \mathbf{U}_{j}(\mathrm{y})\right)\right]$

$$
\left[\equiv \lambda x\left[\mathrm{x}=\mathbf{n} \& \mathbf{R}_{i}(\mathbf{n}, \mathbf{U})\right]\right]
$$

Since, on this variant, all existentials are treated as properties, so are proper names like Nessie.

- Overkill

Adaptation of Quine's paraphrase:
(ED) seek' $=\left[\lambda P \lambda \times \mathbf{T}_{i}\left(\mathrm{x}, \lambda j(\exists \mathrm{y})\left[P_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$
Then the meaning of \mathbf{T} is not a function of the meaning of seek'.
To be specific, let M and M ' be Ty2-models satisfying all relevant postulates including (ED) and differing only in their interpretation of \mathbf{T} : whereas M verifies $\mathbf{T}_{i}\left(\mathrm{x}, \lambda j \neg(\exists \mathrm{y}) \mathbf{F}_{j}(\mathrm{x}, \mathrm{y})\right.$), the same formula is false in M '. It is easily seen that such models exist, under certain natural assumptions about our system of postulates. In particular, due to (ED), M and M ' agree on the interpretation of seek'; but they differ in their evaluation of \mathbf{T}, as required.

3 Transparent Readings

(18) Richard is seeking a unicorn.
(dd) $\quad \mathbf{S}_{i}(\mathbf{r}, \mathbf{U})$
(dr) ($\exists \mathrm{y})\left[\mathbf{U}_{i}(\mathrm{y}) \& \mathbf{S}_{i}\left(\mathbf{r}, \mathrm{y}^{+}\right)\right] \quad$ where $\mathrm{y}+\mathrm{is} \mathrm{y}^{\prime}$ s essence $[\lambda j \lambda z \mathrm{z}=\mathrm{y}]$
We thus obtain essentially the same first-orderly de re reading as M ontague's version of the classical analysis, except that individuals y get represented by essences $y+$ rather than by namelike quantifiers y^{*}.

$$
\begin{gather*}
(\exists \mathrm{y})\left[\mathbf{U}_{i}(\mathrm{y}) \& \mathbf{S}_{i}\left(\mathbf{r}, \mathrm{y}^{+}\right)\right] \tag{18t}\\
\lambda P(\exists \mathrm{y})\left[\mathbf{U}_{i}(\mathrm{y}) \& P(\mathrm{y})\right] \text { y } \mathbf{S}_{i}\left(\mathbf{r}, \mathrm{y}^{+}\right)
\end{gather*}
$$

(19) Theo is seeking each unicorn.

$$
\begin{equation*}
(\forall \mathrm{y})\left[\mathbf{U}_{i}(\mathrm{y}) \rightarrow \mathbf{S}_{i}\left(\mathrm{x}, \mathrm{y}^{+}\right)\right] \tag{19t}
\end{equation*}
$$

$$
\lambda P(\forall \mathrm{y})\left[\mathbf{U}_{i}(\mathrm{y}) \rightarrow P(\mathrm{y})\right] \quad \mathrm{y} \quad \mathbf{S}_{i}\left(\mathbf{t}, \mathrm{y}^{+}\right)
$$

4 Plurals

(20) Tom needs five toy monsters.
(dd) $\quad \mathbf{N}_{i}\left(\mathbf{t}, \lambda j \lambda \gamma\left[\mathbf{T M}_{j}(\gamma) \& 5(\gamma)\right]\right)$
$(d r) \quad(\exists \gamma)\left[\mathbf{T M}_{i}(\gamma) \& \mathbf{5}(\gamma) \& \mathbf{N}_{i}\left(\mathbf{t}, \gamma^{+}\right)\right]$
(21) Tom needs many toy monsters.
a. cardinal many:
$\llbracket \mathbf{M}^{\mid ।} \rrbracket(\Gamma)=1$ iff $|\Gamma|$ 'exceeds a certain (contextually given) standard'
(dd) $\quad \mathbf{N}_{i}\left(\mathbf{t}, \lambda j \lambda \gamma\left[\mathbf{T M}_{j}(\gamma) \& \mathbf{M}^{\mid} \mid(\gamma)\right]\right)$
$(d r) \quad(\exists \gamma)\left[\mathbf{T M}_{i}(\gamma) \& \mathbf{M}^{| |}(\gamma) \& \mathbf{N}_{i}\left(\mathbf{t}, \gamma^{+}\right)\right]$
b. proportional many:

$$
\begin{aligned}
& \llbracket \mathbf{M}^{\gg} \|(A)(B)=1 \text { iff }|A \cap B| \gg|A \backslash B| \\
& (d r) \quad \mathbf{M P}^{\gg}\left(\mathbf{T M}_{i}, \lambda y \mathbf{N}_{i}\left(\mathbf{t}, \mathrm{y}^{+}\right)\right)
\end{aligned}
$$

according to classical analysis with decomposition need \approx must have:
(dd) $\quad \mathbf{M}_{i}\left(\lambda j \mathbf{M} \gg\left(\mathbf{T M}_{j}, \lambda y \mathbf{H}_{j}(\mathbf{t}, \mathrm{y})\right)\right.$
need $^{\prime}=\left[\lambda \mathbb{Q} \lambda \times \mathbf{M}_{i}\left(\lambda j\left(\mathbb{Q}_{j} y\right) \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right)\right]$
(22) Nessie resembles two monsters.
$(c d d) \quad \mathbf{R}_{i}\left(\mathbf{n}, \lambda j \lambda \gamma\left[\mathbf{M}_{j}(\gamma) \& \mathbf{2}(\gamma)\right]\right)$
$(c d r) \quad(\exists \gamma)\left[\mathbf{M}_{i}(\gamma) \& \mathbf{2}(\gamma) \& \mathbf{R}_{i}\left(\mathbf{x}, \gamma^{+}\right)\right]$
$(d d r) \quad(\exists \gamma)\left[\mathbf{M}_{i}(\gamma) \& \mathbf{2}(\gamma) \&(\forall \mathbf{y})\left[\mathrm{y} \in \gamma \rightarrow \mathbf{R}_{i}\left(\mathbf{x}, \mathrm{y}^{+}\right)\right]\right]$
On the property approach, there cannot bea distributive dedido reading because distribution is a (universal) quantifier. On Montague's analysis, one would expect such a fourth reading.
(23) Tom needs at most two blankets.
$(d r) \quad(\exists \gamma)\left[\mathbf{2}(\gamma) \& \mathbf{B}_{i}(\gamma) \&\left(\forall \gamma^{\prime}\right)\left[\mathbf{M}_{i}\left(\lambda j\left[\mathbf{H}_{j}\left(\mathbf{t}, \gamma^{\prime}\right) \rightarrow \gamma^{\prime} \subseteq \gamma\right]\right)\right]\right]$
$(d d) \quad(\forall P)\left[\mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[P_{j}(\gamma) \& \mathbf{H}_{j}(\mathbf{t}, \gamma)\right] \rightarrow\right.\right.$
$\left.(\forall j)(\forall \gamma)\left[P_{j}(\gamma) \rightarrow\left(\exists \gamma^{\prime}\right)\left[\gamma \subseteq \gamma^{\prime} \& 2\left(\gamma^{\prime}\right) \& \mathbf{B}_{j}\left(\gamma^{\prime}\right)\right]\right]\right]$
$(d n) \quad(\forall N) \mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{j}(\gamma) \& \mathbf{H}_{j}(\mathbf{t}, \gamma)\right] \rightarrow N \leq \mathbf{2}\right]$
Seeextra handout for details.
(23c) $\quad \mathbf{M}_{i}\left(\lambda j\left(\exists^{\leq 2} \mathrm{y}\right)\left[\mathbf{B}_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathbf{t}, \mathrm{y})\right]\right)$
Expected on dassical approach, cf.:
(24) Tom needs to have at most two blankets.

5 Higher Order Quantification

(25) Geach is looking for something.
$(d d) \quad \mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathbf{y}) \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right)$
(dr) $\quad(\exists \mathrm{y}) \mathbf{T}_{i}\left(\mathbf{g}, \lambda j \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right)$
(h) $\quad(\exists P) \mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathrm{y})\left[P(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right]\right)$
something ${ }^{\prime}=\lambda \wp_{s((s(e t)) t)}\left(\exists P_{s(e t)}\right) \wp_{i}(P)$
(26) Geach is seeking something Quine is not seeking.
(dd) $\quad \mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathbf{y})\left[\neg \mathbf{T}_{j}\left(\mathbf{q}, \lambda k \mathbf{F}_{k}(\mathbf{q}, \mathrm{y})\right) \& \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right]\right)$
(dr) $\quad(\exists \mathrm{y})\left[\neg \mathbf{T}_{i}\left(\mathbf{q}, \lambda j \mathbf{F}_{j}(\mathbf{q}, \mathrm{y})\right) \& \mathbf{T}_{i}\left(\mathbf{g}, \lambda j \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right)\right]$
(h) $\quad(\exists P)\left[\quad \mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathrm{y})\left[P_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right]\right)\right.$

$$
\left.\& \neg \quad \mathbf{T}_{i}\left(\mathbf{q}, \lambda j(\exists \mathbf{y})\left[P_{j}(\mathrm{y}) \& \mathbf{F}_{j}^{\prime}(\mathbf{q}, \mathrm{y})\right]\right)\right]
$$

(27)

(28)

(29i) Geach is seeking an arbitrary book.
(ii) $\quad\left[\operatorname{seek}^{\prime}(\mathbf{g}, \mathbf{B}) \&(\forall P)\left[P<\mathbf{B} \rightarrow \neg \operatorname{seek}^{\prime}(\mathrm{x}, P)\right]\right]$
(iii) $\quad\left[\mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathrm{y})\left[\mathbf{B}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{g}, \mathrm{y})\right]\right) \&\right.$
$\left.(\forall P)\left[P<\mathbf{B} \rightarrow-\mathbf{T}_{i}\left(\mathbf{g}, \lambda j(\exists \mathrm{y})\left[P_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{g}, \mathbf{y})\right]\right)\right]\right]$

6 Counterexamples

(30) Few professors appear to berich.
$\mathbf{A}_{i}\left(\lambda j \mathbf{F}^{\ll}\left(\mathbf{P}_{j}, \mathbf{R}_{j}\right)\right)$
proportional few: $\quad \llbracket \mathbf{F}^{\ll} \rrbracket(A)(B)=1$ iff $|A \cap B| \ll|A \backslash B|$
(31) For her term project, Mary needs every book by someNorwegian. M. Rooth, Association with Focus, UMass dissertation 1985, p. 116
(32) Everybody met in the hall.
collective every
Properties vs. relations:
(32) A student reads a book by someNorwegian.
$\lambda x \lambda y \lambda z\left[\mathbf{S}_{i}(\mathrm{x}) \& \mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y}) \& \mathbf{R}_{i}(\mathrm{x}, \mathrm{y})\right]$
need $d^{\prime}=\left[\lambda P \lambda \times \mathbf{M}_{i}\left(\lambda j(\exists \mathrm{y})\left[P_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$
type: ((s(et)))(et))
(33)

> needs a book by some Norwegian
> needs' $\left(\lambda \mathrm{y} ~ \exists \mathrm{z}\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right) \equiv$
> $\lambda \times \mathbf{M}_{i}\left(\lambda j(\exists y)(\exists \mathrm{z})\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y}) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)$

$\left[\lambda P \lambda \times \mathbf{M}_{i}\left(\lambda j(\exists y)\left[P_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right] \quad \lambda \mathrm{y} \lambda \mathrm{z}\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]$

$n e e d^{\prime}=\left[\lambda R \lambda \times \mathbf{M}_{i}\left(\lambda j\left(\exists \mathrm{y}_{1}\right) \ldots\left(\exists \mathrm{y}_{n}\right)\left[R_{j}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$
(23dr)

(23dd)

Tom needs at most two blankets
$(\forall P)\left[\mathbf{M}_{i}\left(\lambda j(\exists \mathrm{y})\left[P_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathbf{t}, \mathrm{y})\right] \rightarrow P \leq\left[\lambda \gamma\left[\mathbf{2}(\gamma) \& \mathbf{B}_{i}(\gamma) \& P(\gamma)\right]\right]\right]\right.$
at most two blankets
$\left[\lambda \mathbb{Q}(\forall P)\left[\mathbb{Q}(P) \rightarrow P \leq\left[\lambda \gamma\left[\mathbf{2}(\gamma) \& \mathbf{B}_{i}(\gamma) \& P(\gamma)\right]\right]\right]\right]$
at most
$[\lambda \mathbb{R} \lambda \mathbb{Q}(\forall P)[\mathbb{Q}(P) \rightarrow P \leq \mathbf{B E}(\mathbb{R})]]$
two blankets
$\left[\lambda P(\exists \gamma)\left[\mathbf{2}(\gamma) \& \mathbf{B}_{i}(\gamma) \& P(\gamma)\right]\right]$

(23dn)
om needs at most two blankets $(\forall N)\left[\mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{i}(\gamma) \& \mathbf{H}_{j}(\mathbf{t}, \mathrm{y})\right]\right] \rightarrow N \leq \mathbf{2}\right]$
at most two $[\lambda P(\forall N)[P(N) \rightarrow N \leq 2]]$ at most two two $[\lambda M \lambda P(\forall N)[P(N) \rightarrow N \leq M]] \quad 2$

Tom needs N blankets
$\left[\mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{i}(\gamma) \& \mathbf{H}_{j}(\mathbf{t}, \mathbf{y})\right]\right]\right.$
needs N blankets
$\left[\lambda \mathrm{x} \mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{i}(\gamma) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right]\right.$

$\left[\lambda P(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{i}(\gamma) \& P(\gamma)\right]\right]$
\varnothing
N blankets
$[\lambda Q \lambda P(\exists \gamma)[Q(\gamma) \& P(\gamma)]] \quad\left[\lambda \gamma\left[N(\gamma) \& \mathbf{B}_{i}(\gamma)\right]\right]$
$N \quad N$ blankets

(26h)

$N(\forall(\exists))$
needs every book by some Norwegian
needs ${ }^{\prime}\left(\lambda \gamma(\forall \mathrm{y})\left[\mathrm{y} \in \gamma \leftrightarrow(\exists \mathrm{z})\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right]\right) \equiv$
$\lambda \times \mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[(\forall \mathrm{y})\left[\mathrm{y} \in \gamma \leftrightarrow(\exists \mathrm{z})\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right] \& \mathbf{H}_{j}(\mathrm{x}, \gamma)\right]\right)\right.$
needs
$\left[\lambda P \lambda \times \mathbf{M}_{i}\left(\lambda j(\exists y)\left[P_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$
every book by some Norwegian
$\lambda \gamma(\forall \mathrm{y})\left[\mathrm{y} \in \gamma \leftrightarrow(\exists \mathrm{z})\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right]$
every $\lambda P \lambda \gamma(\forall \mathrm{y})[\mathrm{y} \in \gamma \leftrightarrow P(\mathrm{y})]$
book by some Norwegian
$\mathbf{C}_{\exists}\left(\lambda \mathrm{y} \lambda \mathrm{Z}\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right) \equiv$
$\lambda \mathrm{y}(\exists \mathrm{z})\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]$
book by some Norwegian $\lambda y \lambda z\left[\mathbf{B}_{i}(y) \& \mathbf{N}_{i}(z) \& \mathbf{A}_{i}(z, y)\right]$
book by some Norwegian
$\mathbf{B}_{i} \quad \lambda y \lambda z\left[\mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]$

$N(\exists(\forall))$
needs every book by some Norwegian needs ${ }^{\prime}\left(\lambda i \lambda \gamma \lambda z\left[\mathbf{N}_{i}(\mathrm{z}) \&(\forall \mathrm{y})\left[\mathrm{y} \in \gamma \leftrightarrow\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right]\right]\right) \equiv$ $\lambda \mathrm{x} \mathbf{M}_{i}\left(\lambda j(\exists \gamma)(\exists \mathrm{z})\left[\mathbf{N}_{i}(\mathrm{z}) \&(\forall \mathrm{y})\left[\mathrm{y} \in \gamma \leftrightarrow\left[\mathbf{B}_{i}(\mathrm{y}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]\right] \& \mathbf{H}_{j}(\mathrm{x}, \gamma)\right]\right)$
needs
$\left[\lambda P \lambda \times \mathbf{M}_{i}\left(\lambda j(\exists y)\left[P_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right]\right)\right]$

book by some Norwegian

book by some Norwegian
$\mathbf{B}_{i} \quad \lambda \mathrm{y} \lambda \mathrm{z}\left[\mathbf{N}_{i}(\mathrm{z}) \& \mathbf{A}_{i}(\mathrm{z}, \mathrm{y})\right]$

Moltmann on Opacity

F. Moltmann, 'Intensional Verbs and Quantifiers'. Natural Language Semantics 5 (1993), 1-52.

1 Criteria of opacity

Quantifier Exportation

Opaque verbs V do not satisfy thefollowing equivalence:
$x V s Q \Leftrightarrow F o r Q y: x$ Vs y
where the subject x is a proper name.
Example:
J ohn is looking for a horse $\#>$
For a horse y: J ohn is looking for y. [\approx Thereis a horsethat J ohn is looking for.]
NB: Moltmann only considers the ' \Rightarrow ' direction; the test is not genuinely linguistic in that it employs mathematical jargon (variabletalk).

Substitution

Opaque verbs V do not satisfy the following equivalence:
$x V s Q \Leftrightarrow x V s Q^{\prime}$
where Q and Q^{\prime} are co-extensional.

Standard Example:

J ohn is looking for an animal with a heart $<\nless>$ J ohn is looking for an animal with a kidney

Moltmann's variant

(MV) x Vs $D N$ and the N that x Vs is the $M \Rightarrow x$ Vs $D M$

NB: A Montagovian interpretation of own as higher-order and extensional would falsify (MV)!

Discourse Anaphora

More a generalization than a test - ambiguity is the test
Anaphoric pronouns relating to dbjects of opaque verbs disambiguate.
'Multiple reference often necessitates transparency' (Montague)

Example

J ohn is looking for an expert on unicorns. She lives in Hobart Lane.
specific

Impersonality

On the unspecific reading, the object of an opaque verb behaves as if it referred to an inanimateobject.

Examples

J ohn is looking for something, viz. an expert on unicorns. unspeafic
J ohn is looking for the same thing as Mary, viz. an expert on unicorns. unspeafic
J ohn is looking for the same person as Mary, viz. an expert on unicorns. spedific

Corollary (Moltmann's fifth criterion)
Personal vs. impersonal proforms in theobject positions of opaque verbs may disambiguate.
Examples
Who isJ ohn looking for? An expert on unicorns.
What is J ohn looking for? An expert on unicorns.
specific unspecific

2 Classes of opaque verbs

Verbs of absense

J ohn is looking for an expert on unicorns.
J ohn needs an expert on unicorns.
This car lacks two wheels.
$\leftrightarrow>$ It is not the case that this car has two wheels
I oweyou a horse.

Verbs of comparison

J ohn compares his stepmother to an alien.
J ohn's stepmother resembles an alien.
This book differs from a newspaper (in that it is heavier).

Epistemic verbs

Men have seen unicorns.
Grover counted 6 cookies (though there were only 5).
Friederike found someone who knew her father's birthday.

Resultative verbs

J ohn found a friend.
The philosophy department hired a metaphysics professor.

Verbs of creation

J ohn painted $\left\{\begin{array}{l}\text { a unicorn } \\ \text { a picture }\end{array}\right\}$.
J ohn imagined a unicorn.

Verbs of ownership

Mats inherited a stamp.

3 Problems with previous approaches

Propositions
J ohn needs at most two assistants.
->Zimmermann (1993)
J ohn needs to have at most two assistants.
J ohn needs no assistant.
J ohn needs to have no assistant.

Properties

?J ohn and Bill area doctor and a lawyer.
${ }^{?}$? consider J ohn and Bill two nice people.
J ohn needs at most two secretaries.
intensional reading available
(dd) $\quad(\forall P)\left[\mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[P_{j}(\gamma) \& \mathbf{H}_{j}(\mathbf{j}, \gamma)\right]\right) \rightarrow\right.$
$\left.(\forall j)(\forall \gamma)\left[P_{j}(\gamma) \rightarrow\left(\exists \gamma^{\prime}\right)\left[\gamma \subseteq \gamma^{\prime} \& 2\left(\gamma^{\prime}\right) \& \mathbf{S}_{j}\left(\gamma^{\prime}\right)\right]\right]\right]$
'J ohn needs at most a group containing at most two secretaries' at most' $=[\lambda \mathbb{R} \lambda(\forall P)[\mathbb{Q}(P) \rightarrow P \leq \mathbf{B E}(\mathbb{R})]]$

Zimmermann (1993)
(dn) $\quad(\forall N)\left[\mathbf{M}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{S}_{j}(\gamma) \& \mathbf{H}_{j}(\mathbf{j}, \gamma)\right] \rightarrow N \leq \mathbf{2}\right)\right]$
The number of secretaries needed by John is at most 2 '
[+ヨ-presupp.]
Zimmermann (p.c.)
J ohn is looking for exadly two secretaries.
intensional reading available
(dd) $\quad(\forall P)\left[\mathbf{T}_{i}\left(\lambda j(\exists \gamma)\left[P_{j}(\gamma) \& \mathbf{F}_{j}(\mathbf{j}, \gamma)\right]\right) \leftrightarrow P=\left[\lambda j \lambda \gamma\left[2(\gamma) \& \mathbf{S}_{j}\left(\gamma^{\prime}\right)\right]\right]\right]$
'J ohn tries to find nothing but a group containing (exactly) two secretaries' exadty' $=[\lambda \mathbb{R} \lambda \mathbb{Q}(\forall P)[\mathbb{Q}(P) \leftrightarrow P=\mathbf{B E}(\mathbb{R})]]$
by analogy
(dn) $\quad(\forall N)\left[\mathbf{T}_{i}\left(\lambda j(\exists \gamma)\left[N(\gamma) \& \mathbf{B}_{j}(\gamma) \& \mathbf{F}_{j}(\mathbf{j}, \gamma)\right] \rightarrow N=\mathbf{2}\right)\right]$
[+ヨ-presupp.]
'The number of secretaries sought by John is exactly 2 '

| J dhn braucht | keinen | Assistenten |
| :--- | :--- | :--- | :--- |
| J dhn needs | no | assistent |
| 'J ohn does not need an(y) | assistent' | |

John	braucht	keinen	Assistenten	außer	Bill
J dhn	needs	no	assistent	except	Bill
J ohn does not need an(y)	assistent except Bill'				

John muss kein Haus außer diesem kaufen
J dhn must no house except this one buy
J ohn does not have to buy a house apart from this one'

J ohn wants every painting by Matisse.
They resemble at most ten kings.
intensional reading available no intensional reading \Rightarrow property analysis

Quantifiers

Decompositions of need:
(a) $\quad\left[\lambda \mathbb{Q} \lambda \times \mathbf{M}_{i}\left(\lambda j\left(\mathbb{Q}_{j} y\right) \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right)\right]$
(b) $\left.\quad\left[\lambda \boldsymbol{Q} \lambda x(\forall j)\left[\mathbf{S}_{j}(\mathrm{x}) \rightarrow\left(\mathbb{C}_{j} y\right) \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right)\right]\right]$
modality independ of subject modality depends on subject

J ohn needs at most two assistents.
'does not exdudethat J ohn's needs are satisfied even if he happens to haveten assistents'
$(\forall j)\left[\mathbf{S}_{j}(\mathbf{j}) \rightarrow \boldsymbol{\square}(\exists x)(\exists y)(\exists z)\left[\mathbf{3}(\{x, y, z\}) \& \mathbf{A}_{j}(\{x, y, z\}) \&(\quad \forall u)\left[u \in\{x, y, z\} \rightarrow \mathbf{H}_{j}(\mathbf{j}, u)\right]\right]\right]$
(c) $\left.\quad\left[\lambda \mathbb{Q} \lambda x(\forall j)\left[\mathbf{M I N}\left(j,\left[\lambda k \mathbf{S}_{k}(x)\right]\right) \rightarrow\left(\mathbb{Q}_{j} y\right) \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right)\right]\right] \quad$ minimality added
J ohn needs exactly two assistents.
$(\forall j)\left[\mathbf{M I N}\left(j ;\left[\lambda k \mathbf{S}_{k}(\mathrm{x})\right]\right) \rightarrow(\exists \mathrm{x})(\exists \mathrm{y})\left[\mathbf{2}(\{\mathrm{x}, \mathrm{y}\}) \&(\quad \forall \mathrm{u})\left[\mathrm{u} \in\{\mathrm{x}, \mathrm{y}\} \leftrightarrow\left[\mathbf{A}_{j}(\mathrm{u}) \& \mathbf{H}_{j}(\mathrm{j}, \mathrm{u})\right]\right]\right]\right.$
$? \Rightarrow$? $\left.(\forall j)\left[\mathbf{M I N}\left(j,\left[\lambda k \mathbf{S}_{k}(\mathrm{x})\right]\right) \rightarrow(\forall \mathrm{x})\left[\mathbf{A}_{j}(\mathrm{x}) \rightarrow \mathbf{H}_{j}(\mathbf{j}, \mathrm{u})\right]\right]\right]$
J ohn needs every assistent.

4 Domain Presupposition

Basic idea:
Lexical meanings should imply

$$
V(x, \mathbb{Q}) \leftrightarrow\left(\mathbb{Q}_{i} y\right) V\left(x, y^{*}\right)
$$

whenever needed, e.g. if V translates need and is universal.

Would work if, e.g., V and © are both universal:

Thus: all quantifiers in lexical analyis of verb would haveto be universal.

Cf. the above need $\left.{ }^{\prime}=\left[\lambda \mathbb{Q} \lambda x(\quad \forall j)\left[\mathbf{M I N}\left(j,\left[\lambda k \mathbf{S}_{k}(\mathrm{x})\right]\right) \rightarrow\left(\mathbb{C}_{j} \mathrm{y}\right) \mathbf{H}_{j}(\mathrm{x}, \mathrm{y})\right)\right]\right]$
Complication: intensionality. One of the bound variables is " i '. But $(\forall \mathrm{x})\left[\mathrm{P}_{\underline{i}}(\mathrm{x}) \rightarrow(\forall i)\left[\mathrm{Q}_{i}(\mathrm{y}) \rightarrow \varphi\right]\right]$ (with free $\left.\underline{i}\right)$ is not necessarily equivalent to $(\forall \bar{i})\left[\mathrm{Q}_{i}(\mathrm{y}) \rightarrow(\forall \mathrm{x})\left[\mathrm{P}_{\underline{i}}(\mathrm{x}) \rightarrow \varphi\right]\right]$ (with \underline{i} bound by $\left.\left.{ }^{\prime} \quad(\forall i)\right)^{\prime}\right)$

Only works if P is constant (rigid), i.e. if ' $\quad(\forall \hat{i})(\forall i)\left[\mathrm{P}_{\underline{i}}=\mathrm{P}_{j}\right]$ ' is true.

Domain Presupposition Thesis

Strong quantifiers presupposetheir domain:
If D is a strong determiner, then for a context c and any situaton s, [D N']s is defined relativeto c only if $\left[\mathrm{N}^{\prime}\right] s=\left[\mathrm{N}^{\prime}\right] D(c)$.

Attitudes de rebus

1 Wide scope readings

(1) Alain is looking for a guinea pig.
(n) $\quad \mathbf{T}_{i}\left(\mathbf{a}, \lambda j(\exists \mathbf{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$
narrow scope $=$ unspecific
'Alain is looking for some guinea pig or other', i.e.:
'Alain is trying to bring it about that there is someguinea pig that Alain finds'
(w) $\quad(\exists \mathrm{y})\left[\mathbf{G} \mathbf{P}_{i}(\mathrm{y}) \& \mathbf{T}_{i}\left(\mathbf{a}, \lambda j \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right)\right]$

> wide scope = specific

There is some guinea pig that Alain is looking for', i.e.:
There is some guinea pig such that Alain is trying to bring it about that Alain finds it'
(2) Alain is looking for the guinea pig.
(n) $\quad \mathbf{T}_{i}\left(\mathbf{a}, \lambda j(\mathrm{y})\left[\mathbf{G} \mathbf{P}_{j}(\mathrm{y}) ; \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$
narrow scope $=$ de dicto
'Alain is looking for whatever would be the unique guinea pig', i.e.:
'Alain is trying to bring it about that: (a) there is a unique guinea pig; and (b) there is some guinea pig that Alain finds'
(w) (cy) $\left[\mathbf{G} \mathbf{P}_{i}(\mathrm{y}) ; \mathbf{T}_{i}\left(\mathbf{a}, \lambda j \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right)\right]$
wide scope $=d e$ re
'There is a uniqueguinea pig; and there is some guinea pig that Alain is looking for', i.e.:
There is a unique guinea pig; and there is someguinea pig such that Alain is trying to bring it about that Alain finds it'
(3) Alain is looking for Leo.
$\mathbf{T}_{i}\left(\mathbf{a}, \lambda_{j} \mathbf{F}_{j}(\mathbf{a}, \mathbf{l})\right)$
only one reading
'Alain is looking for Leo', i.e.:
'Alain is trying to bring it about that Alain finds Leo'

2 Double vision

W. V. O. Quine, 'Quantifiers and propositional attitudes'. Journal of Philosophy 53 (1956), 157-87 S. Kripke, 'A Puzzle about Belief', A. Margalit (ed.), Meaning and Use. Dordrecht 1979, 239-83

Ralph has two neighbors, Will and Van. Will once invited him, on which occasion he showed him a guinea pig, which seemed to cause a strong allergic reaction in Ralph, who decided to avoid any further contact with that particular animal, though not with guinea pigs in general. So from that time on, Ralph has tried hard to not get in contact with - let alone: find - that particular animal. Hence (4) appears be true, where the constant 'o' refers to Ortcutt, the animal that Ralph takes to be Will's obnoxious guinea pig:
(4) $\mathbf{T}_{i}\left(\mathbf{r}, \lambda j \neg \mathbf{F}_{j}(\mathbf{r}, \mathbf{o})\right)$

As a matter of fact, Ortcutt is not Will's guinea pig but Van's; and Ralph is not allergic to it, but to the wall paint in Will's house. In fact, Van often invites Ralph to his house, mainly to show off with his award-winning guinea pig, i.e. Ortcutt, and Ralph never showed an allergic reaction on those occasions. So he erroneously believes there to betwo guinea pigs in the neighborhood. Now. one day Ortcutt disappears and Ralph joins Van in his search for the animal. Now Ralph is looking for a particular guinea pig (Ortautt) and thus, given certain contextual restrictions, (5) - (7) should all be trueon their wide scope readings:
(5) Ralph is looking for a guinea pig.
$(\exists \mathrm{y})\left[\mathbf{G P}_{i}(\mathrm{y}) \& \mathbf{T}_{i}\left(\mathbf{r}, \lambda j \mathbf{F}_{j}(\mathbf{r}, \mathrm{y})\right]\right)$
(6) Ralph is looking for the guinea pig.

$$
\text { (iy) }\left[\mathbf{G P}_{i}(\mathrm{y}) ; \mathbf{T}_{i}\left(\mathbf{r}, \lambda j \mathbf{F}_{j}(\mathbf{r}, \mathrm{y})\right)\right]
$$

(7) Ralph is looking for Ortatt.

$$
\mathbf{T}_{i}\left(\mathbf{r}, \lambda_{j} \mathbf{F}_{j}(\mathbf{r}, \mathbf{o})\right)
$$

(4) remains valid - Ralph still hasn't found out about the true causes of his allergy, nor about the identity of the guinea pig he met at Will's place. But according to (4) and (7), Ralph appears to be irrational in his desires: if only he made the connection between the goal of his search and his avoidance of Will's guinea pig - and why shouldn't he? - he would have to see a conflict, which is not true.

3 Attitude reports and internalism Frege's idea

G. Frege, 'Über Sinn und Bedeutung', Zeitschrift für Philosophie und philosophische Kritik

100 (1892), 25-50
A propositional attitude verb expresses a relation between persons and propositions. An attitude report is true if the person denoted by the subject stands in the relation expressed by the verb to the informative value of the complement dause, i.e. the proposition it expresses.

Possible worlds formulation

J. Hintikka, ‘Semantics for Propositional Attitudes’, in: J. W. Davis et al. (eds.),

Philosophical Logic. Dordrecht 1969, 21-45
The extension of a (non-presuppositional) propositional attitude verb is a relation between persons and possible worlds [indices, situations,...]. An attitude report is true if the complement dause is true of every world [index, situation,...] to whid the person denoted by the subject stands in therelation denoted by the object.
In symbols: $\llbracket x V S \rrbracket i=1$ iff $(\forall j)\left[\left(\llbracket x \rrbracket i_{j}\right) \in \llbracket V \rrbracket i \rightarrow \llbracket S \rrbracket j=1\right]$, i.e. (identifying sets with their characteristic functions) iff $\lfloor V i([x] i) \subseteq[S]$.

Special case

$\llbracket x$ believes $S \rrbracket{ }^{i}=1$ iff \llbracket believe $\rrbracket^{i}\left(\left[x \rrbracket{ }^{i}\right) \subseteq \llbracket S \rrbracket\right.$. The belief set \llbracket believe \rrbracket^{i} (Alain) is the set of all indices that arecompatible with what Alain knows about i :
The belief set model [...] is supposed to be an internal (or individualistic) characterisation of a person's beliefs. That is, whether a possible world w belongs to a given person's belief set is solely determined by that person's inner psychol ogical state [...] The usually understood criterion of membership can be roughly characterised likethis: Imagine the actual epistemic state of a person as fixed and then place him in a world w which he may investigate in each and every detail. If he then finds no clues that w is not the actual world - if, in other words, he can in no way distinguish w from the real world as heknows it - then, and only then, will w be an element of his belief set. As a result, a proposition p is believed by a person if p is a superset of the person's belief set; for it is then that he takes the adual world to bein p.'
U. Haas-Spohn, Versteckte Indexikalität und subjektive Bedeutung, Berlin 1995, ch. 1 [tr. by E. Z.] Internalism
Whether or not the relation expressed by a (non-presuppositional) attitude verb holds between a person and a world depends only the person's cognitivestate.

4 Singular propositions

D. Kaplan, 'How to Russell a Frege-Church'. Journal of Philosophy 72 (1975), 716-29 D. Lewis, 'What puzzling Pierre does not believe'. Australasian Journal of Philosophy 59 (1981), 283-89
(8) Alain is looking for a green pen.
(n) $\quad \underline{\underline{T}}_{i}\left(\mathbf{a}, \lambda j(\exists \mathrm{y})\left[\mathbf{G} \mathbf{P}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$
(w) $\quad(\exists \mathrm{y})\left[\mathbf{G P}_{i}(\mathrm{y}) \& \quad \underline{\underline{\mathbf{T}}}_{i}\left(\mathbf{a}, \lambda_{j} \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right)\right]$

Same propositional attitude \mathbf{T} characterized (roughly) by:
$\mathbf{T}_{i}(\mathrm{x}, \mathrm{p})$ iff at $i \times$ performs actions aimed at making p true.
$\Rightarrow(8 \mathrm{w})$ is trueiff there is some object f such that (i) f is a green pen and (ii) Alain's search is aimed at indices at which Alain finds f.

Here, aims are (understood to be) subjective: whether or not a given index is compatible with the subject's aim depends on the subject's cognitive state.
Alain may have means of recognizingf (color, texture, etc.) - in which case his aims depend on these identification procedures; or he may remember usingf recently and now aims at finding the pen he used - in which casehis aims depend on this piece of memory.

However

Cognitive states practically never suffice to determine the precise identity of an object.
Though the properties Alain uses for identifyingf (by perception, memory, etc.) may pick out one particular object in each world compatible with Alain's cognitive state, this object need not al ways be f : If Alain recognizes f by perceptual properties, this test is not infallible - so his aim may be reached without him finding f; if Alain relies on his memory, then the object heremembers having used need not bef - becauseAlain used different pens in lots of worlds compatible with what he remembers.

Alternatively (Twin-earth gedankenexperiment) [H. Putnam, The meaning of "meaning"', In Mind, Language, and Reality. Philosophical Papers. Vol. 2. Cambridge 1975. 215-71] I magine someone exactly like Alain, including all his perceptions, beliefs, desires etc., but living in a different (though subjectively indistinguishable) environment. That person would have the same aims. However, he could not be satisfied if he found f.

Condusion:

Given internalism, people do not have subjective attitudes to singular propositions, i.e. sets of possible worlds in which a particular object has a particular property. So de re (specific) attitudes cannot be wide scope attitude reports.
For externalism see
T. Burge, 'Individualism and the Mental’, Midwest Studies in Philosophy 4 (1979), 73-121

5 Relational attitudes

Redational belief

Quine (1956)
(9) Alain believes that there are whiteguinea pigs.

$$
\begin{aligned}
& \mathbf{B}_{i}\left(\mathbf{a}, \lambda j(\exists \mathrm{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y})\right]\right) \\
& \text { propositional }
\end{aligned}
$$

(10) Alain believes of something that it is a white guinea pig. 'Alain believes being-a-white-guinea-pig of something'.
$(\exists y) \underline{\underline{B}}_{i}\left(\mathbf{a}, y, \lambda j \lambda y\left[\mathbf{G P}_{j}(y) \& \mathbf{W}_{j}(y)\right]\right)$
relational
NB: Equivocation ! The two relations \mathbf{B} and $\underline{\underline{B}}$ cannot be the same- they have different -arites.
(11) Alain believes that the white guinea pig is hungry.

$$
\begin{aligned}
& \mathbf{B}_{i}\left(\mathbf{a}, \lambda_{j}(\mathrm{z})\left[\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y})\right] ; \mathbf{H}_{j}(\mathrm{y})\right]\right) \\
& \text { de dicto }=\text { propositional }
\end{aligned}
$$

(12) Alain believes that the whiteguinea pig is hungry.

Alain believes the white guinea pig to be hungry.
'Of the white guinea pig, Alain believes being-hungry.'
(y y$)\left[\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y})\right] ; \quad \underline{\underline{\mathbf{B}}}(\mathbf{a}, \mathrm{y}, \mathbf{H})\right]$
de re $=$ relational
(13) Alain believes that a whiteguinea pig is hungry.
$\mathbf{B}_{i}\left(\mathbf{a}, \lambda j(\exists \mathrm{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y}) \& \mathbf{H}_{j}(\mathrm{y})\right]\right)$
unspecific = propositional
(14) Alain believes that a whiteguinea pig is hungry.

Alain believes a white guinea pig to be hungry.
'Of a whiteguinea pig, Alain believes being-hungry.'
$(\exists \mathrm{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y}) \& \quad \underline{\underline{\mathbf{B}}}_{i}(\mathbf{a}, \mathrm{y}, \mathbf{H})\right]$
specific $=$ relational

By analogy

(15) Alain is looking for a white guinea pig.
$\mathbf{T}_{i}\left(\mathbf{a}, \lambda j(\exists \mathrm{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$
propositional
(16) 'Alain is trying being-a-white-guinea-pig-found-by-Alain of something.'
($\exists \mathrm{y}) \underline{\underline{\mathbf{T}}}_{i}\left(\mathbf{a}, \mathrm{y}, \lambda j \lambda \mathrm{y}\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y}) \& \mathbf{F}_{j}(\mathbf{a}, \mathrm{y})\right]\right)$
relational
(17) Alain is looking for the white guinea pig.

Alain is trying to find the white guinea pig.
'Of the white guinea pig, Alain is trying being-found-by-Alain.'
(y y$)\left[\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y})\right] ; \quad \underline{\underline{\mathbf{T}}}_{i}\left(\mathbf{a}, \mathrm{y}, \lambda j \lambda z \mathbf{F}_{j}(\mathbf{a}, \mathrm{z})\right)\right]$
de re $=$ relational
(18) Alain is looking for a whiteguinea pig.

Alain is trying to find a whiteguinea pig.
'Of a white guinea pig, Alain is trying being-found-by-Alain.'
$(\exists \mathrm{y})\left[\mathbf{G P}_{j}(\mathrm{y}) \& \mathbf{W}_{j}(\mathrm{y}) \& \quad \underline{\underline{\mathbf{T}}}_{i}\left(\mathbf{a}, \mathrm{y}, \lambda j \lambda z \mathbf{F}_{j}(\mathbf{a}, z)\right)\right]$
specific $=$ relational
Old problems

- Double vision
(4r) $\quad \underline{\underline{T}}_{i}\left(\mathbf{r}, \mathbf{o}, \lambda j \lambda z \neg \mathbf{F}_{j}(\mathbf{r}, \mathrm{z})\right)$
(7r) $\quad \underline{\underline{T}}_{i}\left(\mathbf{r}, \mathbf{o}, \lambda j \lambda z \mathbf{F}_{j}(\mathbf{r}, \mathrm{z})\right)$
No reason why (4r) and (7r) should not betrue at the same time, even for perfectly rational \mathbf{r}.
- Singular propositions
... have disappeared from the de re report. Instead, the report is external though the propositional attitudeneed not be In fact, it is open how the latter comes in at all. We thus havea

NEW PROBLEM
How arethe propositional attitude(\mathbf{T}) and therelational attitude(
$\underline{\underline{T}}$) related?

Conceivablen solutions

D. Kaplan, 'Quantifying in'. In: D. Davidson \& J. Hintikka (eds.), Words and Objections: Essays on the Work of W. V. Quine. Dordrecht 1969, 178-214

- First (stupid) guess

$$
\underline{\underline{\mathbf{T}}}_{i}(\mathrm{x}, \mathrm{y}, \mathrm{P}) \Leftrightarrow \mathbf{T}_{i}\left(\mathrm{x}, \lambda j \mathrm{P}_{j}(\mathrm{y})\right)
$$

No, because that would takeus back to singular propositions

- Exportation
(zz) $\left[\mathrm{Q}_{i}(\mathrm{z}) ; \quad \mathbf{T}_{i}(\mathrm{x}, \mathrm{z}, \mathrm{P})\right] \Leftrightarrow \mathbf{T}_{i}\left(\mathrm{x}, \lambda j(\mathrm{zz})\left[\mathrm{Q}_{j}(\mathrm{z}) ; \mathrm{P}_{j}(\mathrm{z})\right]\right)$
$" \Rightarrow$ " leads back to singular propositions (if $\mathrm{Q}=\mathrm{y}^{+}$); " \Leftarrow " overgenerates de re readings if uniqueness can be deduced (shortest spy argument).
- Vivid names
$\underline{\underline{T}}_{i}(\mathrm{x}, \mathrm{y}, \mathrm{P}) \Leftrightarrow(\exists N)\left[\mathbf{V} \mathbf{N}_{i}(N, \mathrm{y}, \mathrm{x}) \& \mathbf{T}_{i}\left(\mathrm{x}, \lambda j \mathrm{P}_{j}\left(N_{j}\right)\right)\right]$
N is an individual concept (usually partial), i.e. of type $\ll, \mathrm{e} \geqslant$; the relation denoted by $\mathbf{V N}$ holds between a concept, an object and a subject if (a) the concept represents a sufficiently detailed ('vivid') description for the subject, and (b) the concept applies to ('names') the object. (a) is an internal criterion; (b) is external (causal). [Other interpretations have been proposed for VN.]

Compositionality problem

The second and third arguments, $\mathrm{y}($ res $)$ and P (attributed property P), cannot berecovered from the singular proposition $\lambda j \mathrm{P}_{j}(\mathrm{y})$, which would be necessary for a compositional interpretation of the structure ((a guinea pig) y (Alain fseeks yt)) as de re.

DESIRED RESULT for fmarked \ddagger structure:
$\lambda \times \underline{\underline{T}}_{i}\left(\mathrm{x}, \mathrm{y}, \lambda j \lambda z \mathbf{F}_{j}(\mathrm{x}, \mathrm{z})\right)$
INPUT: $y+\ldots$
$\ldots \quad \lambda \mathbb{Q} \lambda \times \mathbf{T}_{i}\left(\mathrm{x}, \lambda j\left(\mathbb{C}_{j} \mathrm{z}\right) \mathbf{F}_{j}(\mathrm{x}, \mathrm{z})\right)$
quantifier treatment
$\ldots \quad \lambda \mathrm{P} \lambda \mathrm{x} \mathrm{T}_{i}\left(\mathrm{x}, \lambda j(\exists \mathrm{z})\left[\mathrm{P}_{j}(\mathrm{z}) \& \mathbf{F}_{j}(\mathrm{x}, \mathrm{z})\right]\right)$
property treatment
Compositional ity by typecoercion
Replace Montague Lift ...
quantifier treatment

... by De Re Lowering

$$
\mathbb{R} \leadsto \lambda y \lambda x(\exists N)\left[\mathbf{V N}_{i}(N, y, x) \& \mathbb{R}\left(x, \lambda j \lambda \mathrm{P} P\left(N_{j}\right)\right)\right]
$$

[or Essential Lifting ... property treatment

... by De Re Lowering

$$
\mathfrak{R} \curvearrowright \lambda \mathrm{y} \lambda \mathrm{x}(\exists N)\left[\mathbf{V} \mathbf{N}_{i}(N, \mathrm{y}, \mathrm{x}) \& \Re\left(\mathrm{x}, \lambda j \lambda \mathrm{z}\left(\mathrm{z}=N_{j}\right)\right)\right]
$$

]

Note: This solution does not carry over to 'overt' propositional attitudes de re, where one would have toemply structured propositions.
-> M. J. Cresswell, A. v. Stechow, ‘De Re Belief Generalized’, Linguistics and Philosophy 5 (1982), 503 535

6 Attitudes de se

(19) His pants are on fire.
(19') he = the man I am watching
(20) My pants areon fire.
(20') I =the German semanticist who is married to Carolineetc.
(20") I =theEGO
(21) Roger's pants areon fire.
(21') Roger = the semanticists who is married to Karina etc.

Attitude contents are (like) ..

... characters
D. Kaplan,: ‘Demonstratives', in J. Almog et al. (eds.), Themes from Kaplan. Oxford 1989, 481-563
(K)
\(\xrightarrow[\substack{Context c

\chi_{19} \neq \chi_{20}}]{Character}\)| Intension |
| :--- |
| $\chi_{19}(c)=\chi_{20}(c)$ |$\xrightarrow{\text { index } i}$| Extension |
| :--- |
| $\chi_{19}(c)(i)=\chi_{20}(c(i))$ |

(22) I am hungry.
$\chi_{22}=\lambda c \lambda i \mathbf{H}_{i}\left(\mathbf{m}_{c}\right)$
... (diagonal) 'propositions'
R. Stalnaker,'Assertion', in: P. Cole (ed.), Syntax and Semantics 9: Pragmatics. New York, 315-32

(22) I am hungry.
$\delta_{22}=\lambda_{c} \mathbf{H}_{c}\left(\mathbf{m}_{c}\right)$
... sets of subjects
D. Lewis, 'Attitudes de dicto and de se', Philosophical Review 8 (1979), 513-43
(22) I am hungry.

$$
\sigma_{22}=\lambda x \mathbf{H}_{\mathbf{w t}(x)}(x)
$$

Derebelief reports
(23) Alain is looking for a yeti.
$(\exists \mathrm{y})(\exists N)\left[\mathbf{Y}_{i}(\mathrm{y}) \& \mathbf{V N}_{i}(N, \mathrm{y}, \mathbf{a}) \& \mathbf{T}_{i}\left(\mathbf{a}, \lambda \mathrm{x} \mathbf{F}_{\mathbf{w t}(x)}\left(\mathrm{x}, N_{\mathbf{w t}(x)}(\mathrm{x})\right)\right)\right]$

Deseas dere

(24) Alain is looking for himself.
$(\exists N)\left[\mathbf{V N}_{i}(N, \mathbf{a}, \mathbf{a}) \& \mathbf{T}_{i}\left(\mathbf{a}, \lambda \times \mathbf{F}_{\mathbf{w t}(x)}(\mathrm{x}, N(\mathrm{x}))\right]\right.$

- true if $\left[\underline{\mathbf{V}}_{i}((\lambda \times \mathbf{x}), \mathbf{a}, \mathbf{a}) \& \mathbf{T}_{i}\left(\mathbf{a}, \lambda \times \mathbf{F}_{\mathbf{w t}(x)}(\mathrm{x}, \mathrm{x})\right)\right]$
"E veryone is presented to himself in a special and primitive way, in which he is presented to no-oneelse"
G. Frege, ‘Der Gedanke’, Beiträge zur Philosophie des deutschen Idealismus 2 (1918), 58-77

Forbes, G. (2000) "Objectual Attitudes," Linguistics and Philosophy, 23 (2):141-184

Part I. Terminology

A. notional/relational

John seeks a unicorn is ambiguous:
Relational paraphrase: There is a particular unicorn that John seeks.
Notional paraphrase: John seeks relief from unicornlessness.
B. Substitution permitting/resisting

An argument position of a predicate is substitution permitting, if coreferential names can be used there interchangeably without affecting truth.

If an argument position is not substitution permitting, it is substitution resisting.

Part II. Raw Data

Claim: the notional/relational distinction is independent of the substitution resisting/permitting distinction.
A. Relational only predicates: the 'none in particular' test
(1) John was looking for a kid in his class. (\checkmark but no kid in particular)
(2) John met a kid in his class (\#but no kid in particular)
(3) John admires a kid in his class. (\#but no kid in particular)
(4) John is afraid of a kid in his class. (\#but no kid in particular)
(5) John likes a toy in the store. (\#but no toy in particular)
(6) John worships a rock star. (\#but no star in particular).
(7) John considers a kid in his class intelligent. (\#but no kid in particular)

Like the extensional verb met, the predicates admire, is afraid of, likes, worships, consider_ AP, are all relational. Unlike met, they have substitution resisting readings:

The following inference is blocked on one reading, called substitution resisting, and goes through on another reading, called substitution permitting:
(8) John is afraid of Superman

Superman = Clark Kent
\rightarrow John is afraid of Clark Kent.
[NOTE: for the purposes of this discussion, you are to assume the Superman story is true]
The following makes sense on a substitution-resisting reading:
(9) Lois considers Clark Kent less interesting than Superman. (p9,fn3)

Conclusion: relational readings are compatible with substitution resisting and substitution permitting.
B. Predicates with notional and relational readings.
i. Relational reading with substitution (names)
(10) John is looking for Superman

Superman = Clark Kent
\rightarrow John is looking for Clark Kent.
ii. Notional readings with substitution.
"notional readings" are only defined for arguments that aren't names. So we need to widen the definition of 'substitution' to include coreferential predicates.

Examples (11)-(13) all have notional readings.
(11) Ann painted a victim of Jekyll.
a victim of Jekyll = a victim of Hyde
\rightarrow Ann painted a victim of Hyde.
(12) The police are looking for a victim of Jekyll.
a victim of Jekyll = a victim of Hyde
\rightarrow The police are looking for a victim of Hyde.
(13) John is looking for a cop
a cop $=$ a policeman
\rightarrow John is looking for a policeman.

Judgement: (11) and (12) show resistance, (13) seems not to. Forbes, I think, would say they all do.
iii. Relational reading with non-names
[Setting Up the Relational Reading:]
John is looking for Akin.
Akin is an African phonologist at Rutgers
so: John is looking for an African phonologist at Rutgers.
sticking with that reading, do we get the following inference:
(14) John is looking for an African phonologist at Rutgers.

African phonologist at Rutgers = African department chair at Rutgers
\rightarrow John is looking for an African department chair at Rutgers.

Suggestion from discussion with Ede: based on missing substitution resistance in (13) and (14), perhaps resistance only really occurs with names. Forbes believes it happens with non-names as well (see for example his discussion of chucks on bottom of page 43)

Part III. Substitution resistance and the semantics of proper names.

Kripkean Claim: Names are often associated with descriptions but the descriptions do not give the meanings of the names.

Suppose Robert Oppenheimer is a famous physicist who invented the atom bomb. (this is roughly based on an example found in Kripke's Naming and Necessity). Suppose this is all you know Robert Oppenheimer.

Even so, Oppenheimer doesn't mean the same as the inventor of the atom bomb. You may one day discover:
(15) Oppenheimer did not in fact invent the atom bomb.
which is not the same as discovering:
(16) The person who invented the atom bomb did not in fact invent the atom bomb.

And you might imagine:
(17) If the atom bomb had not been invented, Oppenheimer would not have become famous.
the inventor of the atom bomb denotes a different individual in different possible worlds. In worlds where no atom bomb was invented, it may not denote at all. But Oppenheimer denotes the same thing in (17) as it does in simpler examples like:
(18) Oppenheimer was a physicist.

The name denotes Oppenheimer, the man.
Conclusion: Names denote the same individual in all possible worlds, they are rigid designators.

Another way to see this is that in (17) you could replace Oppenheimer with a definite description, but a very special one:
(19) If the atom bomb had not been invented, the actual person who I thought invented it would not have become famous.

The definite description here is also rigid. It does NOT pick out different people in different possible worlds depending on my thoughts in those worlds, or whatever.

Resistance with names therefore doesn't follow on property analysis of opaque objects:

While names are or may be associated with concepts that is not their intension. Since Clark Kent and Superman corefer they have the same intension. It follows then that we couldn't explain substitution resistance in (8) by appeal to differences in the intensions of the names.

Part IV. An analysis of substitution resistance in relational-only predicates.

Idea: (psychological) relations between individuals maybe relative to a way of thinking.
(20) John is afraid of Superman, as Superman/qua Superman/as such.

Letting α stand for an individual concept, we can indicate this 'way of thinking' by writing:

(21) John is α-afraid of Superman.

Resistance comes about because we get different values for α in the two cases. John is afraid of Superman relative to the Superman concept (man with the extrahuman powers) but he is not afraid of him relative to the Clark Kent concept.

What determines the value of α in a given utterance of (21)? In Forbes' story, the speaker indicates or can indicate the intended value of α via a name used in the discourse. This involves a 'labelling' function, β, that relates names to individual concepts. So we have:
(22) John is α-afraid of Superman $\& \alpha=\beta$ ("Superman")
=/=>
John is α-afraid of Clark Kent \& $\alpha=\beta$ ("Clark Kent")
β is one way to set α. But not necessarily the only way:
"someone who has no names for Superman could still make a substitution-resistant ascription by pointing at two pictures, one of Superman, the other of Clark, and saying Lois is in awe of him but not of him" (footnote 40)

Note: For predicates with more opaque positions, we would need for more way-ofthinking arguments:
(23) Clark Kent doesn't α, χ-resemble Superman \& $\alpha=\beta$ ("Clark Kent") \& $\chi=$ β ("Superman)

We said that the inference in (8) is blocked on the substitution resisting reading, but there is also a substitution permitting reading in which it goes through. How do we get that?

Existentially quantify α :
(24) $\exists \alpha[$ John is α-afraid of Superman]
=>
$\exists \alpha[$ John is α-afraid of Clark Kent]
Summary: predicates that show substitution resisting behavior are interpreted relative to a way of thinking. This way of thinking can be indicated by an expression used in the context.

Upshot: while co-referent names do not have different intensions, they may be associated with different concepts and that can lead to substitution resistance.

Discussion during the seminar:
How to handle the following examples:
Markus Hiller:
(25) John is afraid of Clark Kent but he doesn't know it.

Ron Artstein:
(26) John doesn't know that he is afraid of Clark Kent.

These are intuitively true, but it doesn't look like there is any setting for α or scope setting for $(\propto \alpha)$ that will get this to be true.

Ede: This is a de-re reading of Clark Kent:
(27) $\mathrm{CK}=$ "the Clark Kent" \& John doesn't know [THE[CK(x) ; $\alpha \alpha$ John α-afraid of x]]

Part V. Substitution resistance in notional/relational predicates.

We begin with our 'favorite theory' for opacity, Zimmermann 1993.
(28) The police are looking for a victim of Mr. Hyde.
"a victim of Mr. Hyde" denotes a property which remains in situ on the notional reading.
The police do not know that Dr. Jekyll is Mr. Hyde. Hence we are reluctant to conclude that:
(29) The police are looking for a victim of Dr. Jekyll.
but the property of being a victim of Dr. Jekyll is just the property of being a victim of Mr. Hyde, so the inference is not blocked by the property theory.

Solution: extend the analysis from above.
This inference does not go through:
(30) The police are α-looking for a victim of Mr. Hyde \& $\alpha=\beta$ ("victim of Mr. Hyde")
victim of Jekyll=victim of Hyde
\rightarrow The police are α-looking for a victim of Dr. Jekyll \& $\alpha=\beta$ ("victim of Dr. Jekyll")

Again, there is a sense in which the police are looking for a victim of Jekyll. This inference does go through:
(31) $\exists \alpha$ [The police are α-looking for a victim of Mr. Hyde]
$\rightarrow \exists \alpha[$ The police are α-looking for a victim of Dr. Jekyll]
so does this one:
(32) The police are α-looking for a victim of Mr. Hyde \& $\alpha=\beta$ ("victim of Mr.

Hyde")
$\rightarrow \exists \alpha$ [The police are α-looking for a victim of Dr. Jekyll]
The story has been extended by allowing β to apply to non-names. So now we have notional readings that display the substitution resisting/permitting ambiguity.

It is possible, within this theory, that a verb could display the notional/relational ambiguity but not be relative to a way of thinking. This would mean that they would not block substitution. Forbes claims that lack is such a verb.

Part VI. Kaplan's de-re

Given last time's presentation of de-re attitudes, we could analyze
(33) John is seeking Superman
as:
(34) ($\exists_{\mathrm{N})}\left[\mathbf{V} \mathbf{n}_{\mathrm{w}_{a}}(\mathrm{~N}, \mathrm{j}, \mathrm{s}) \& \operatorname{seek}_{\mathrm{W}_{\mathrm{a}}}\left(\mathrm{j}, \lambda w \lambda \mathrm{z}\left(\mathrm{z}=\mathrm{N}_{w}\right)\right)\right]$

N is an individual concept (usually partial), i.e. of type <s,e>; the relation denoted by VN holds between a concept, an object and a subject if (a) the concept represents a sufficiently detailed ('vivid') description for the subject, and (b) the concept applies to ('names') the object. (a) is an internal criterion; (b) is external (causal). [Other interpretations have been proposed for VN.]

This comes close to the Forbes story when α is existentially quantified. This would not explain why there is substitution resistence here. For that we need a free α. (that is why Forbes calls his theory a HIT: Hidden Indexical Theory).

Part VII. How critical are the names?

Above we suggested that contrary to Forbes, substitution resistance perhaps comes from names and not from just use of different words. A relevant example would be:
(35) John is looking for a cop.
\rightarrow John is looking for a policeman.
Which on the above analysis should have a resistant reading:
(36) John is α-looking for a cop $\& \alpha=\beta$ ("a cop")
\rightarrow John is α-looking for a policeman $\& \alpha=\beta$ ("a policeman")
[we probably should assume that John doesn't know that cops are just policemen. So perhaps a better example would be:
(37) John is searching the data for a stop, a fricative or an affricate.
\rightarrow John is searching the data for an obstruent.]
This analysis therefore seems to predict that we should get resistance no matter what type of phrase the object of the attitude predicate is.

If in fact, this analysis only does work where names are concerned, it might be worthwhile reconsidering why we need it in that case.

One could think of this analysis, as an attempt to have it both ways. We have perfectly good property theory that explains substitution resistance (eg. between seek a unicorn and seek a centaur) so to extend it to names, we need properties, different ones, as part of the semantic contribution of coreferential names, on the other hand we know that coreferential names have the same meaning and that meaning is not a property.

Ede suggestion: what if both names are not rigid designators. What if in fact, one of them is not a name at all. Clark Kent really does mean something like "Superman in disguise". Relevant Kripke-type data would be:
(38) If Superman had never come to Earth, Clark Kent would not have been a reporter for a great metropolitan newspaper.

Ede: could we discover that:
(39) Clark Kent actually never came to Earth.

Karina: Would the non-rigid-designator view of Clark Kent be able to account for the substitution permitting reading of John fears Superman therefore John fears Clark Kent?

Part VIII. Semantic Innocence

"If we could recover our pre-Fregean semantic innocence...it would seem to us plainly incredible that \ldots words [in the content sentences of propositional attitude ascriptions] mean anything different, or refer to anything else, than is their wont when they come in other environments' (Davidson 1969:172)" (page 3)
"a word in an attitude ascription should contribute exactly what it does in other environments (U uses Superman just to refer to Superman)" (page 3)
"Montague's account appears to require that the notional reading of Perseus seeks a gorgon is true if and only if Perseus is seeks-related to an intensional quantifier. Despite the elegance of the formalism, this looks like a category-mistake." (page 6)
"... specific violation of semantic innocence against which Davidson was protesting: we would be implying that in objectual attitude ascriptions... the names Clark Kent and Superman do not denote people. The proposal also has intelligibility problems like those of Montague's account: it is people not concepts that are feared." (page 9)
"the semantics is innocent, in that it does not impute any 'unusual' semantic properties to the QNP's that specify depictional kinds [see below RSS] or to their constituents. However, it is innocent because it is extensional" (page 37).

There seem to me to be several independent points here:
a) intelligibility: do the meanings we assign as the objects of attitudes have the intuitively correct properties, are they the right kind of things?
b) innocence: Do attitude contexts require us to attribute strange meanings to expressions that we wouldn't otherwise need?
c) extensionality: Are extensions more intuitive than intensions? sets vs. properties? If so, then (b) comes down to asking if we really need anything other than extensions to handle attitude contexts.

Consider the following version of (c):
c') Is it possible to give a semantics for opaque contexts where noun phrases only get extensional interpretations?

If the correct theory is the one given in the last section, then the answer to c^{\prime} is no. That theory might be claimed to be semantically neither innocent nor intelligble.

Forbes believes the answer to c' is yes. His story is spelled out in terms of logical forms for sentences of natural language. I will provide these forms, explain them and show how they answer the questions.

So,
(40) Ann painted a victim of Jekyll.
has as one of its logical forms:
(41) (an x: picture(x))) Ann α-painted $x \& \operatorname{kind}_{d}(x$, (a y: victim-of(y, Jekyll))) $\alpha=\beta$ ("(a y: victim-of(y, Jekyll))")

Notes:
i. I've simplified from what Forbes has on page 38, leaving out his mechanism for setting α.
ii. $\quad \operatorname{kind}_{\mathrm{d}}(\xi, \zeta)$ is a relation read as ξ is of depictional kind ζ which holds between various types of depictions and the kind to which they belong as determined by the marks made on the physical surface of a depiction by its producer (page 34)
iii. (41)is a notional reading of (40), no particular victim is involved.
iv. (41) is presumably intelligble, since Ann is painting pictures, not properties.
v. since the meaning of the object NP is just a set of sets, this is extensional and hence its innocent.

Does this work?
If there are no victims of Jekyll, why doesn't (40) entail that:
(42) Ann painted a unicorn.
(42) should have a reading of the form:
(43) $\exists \alpha\left(\right.$ an x: picture(x))) Ann α-painted $x \& \operatorname{kind}_{d}(x$, (a y: unicorn(y)))

Since a unicorn and a victim of Jekyll are extensionally equivalent, (43) follows.
Are a unicorn and a victim of Jekyll extensionally equivalent?
Perhaps not, if we include non-existent objects, like those depicted in Ann's pictures....
To get this story, we needed to introduce pictures and depictional kinds. What should we do for verb like seek?

Here's a modified version of Forbes' (47.5),p40:
(44) Perseus seeks a groundhog.
(45) (some e: seeking(e)) [agent(e,Perseus) \& $\alpha-\operatorname{kind}_{g}(\mathrm{e}$, (a y: groundhog(y))) $\alpha=\beta$ ("(a y: groundhog(y))")
"a seeking of which Perseus is the agent has a certain kind of goal under a specific way of thinking of that kind of goal" (page 40).

Again, a groundhog innocently denotes a set of sets. And the intelligiblity comes from introducing goals.

The rest is random notes that were not part of the handout.

I still don't see how extensionality will work. If John owes me a car, does it follow, on any reading, that he owes me a car made before 2001, given that the extension of car is the same as car made before 2001? What if our bet said he has 10 years to pay the debt?

If it is true at 4:00 that John is looking for a book, in the next few minutes the number of books changes, some are created, some destroyed, nothing about John changes. From what does it follow that John is still looking for a book at 4:01?

Part IX. Issues.
What happens if we have quantified attitude bearers.
Suppose A,B,C are brothers. However, A was given up for adoption when he was born, something neither he nor B nor C are aware of.

C has gone missing and A and B set out to find him. It is true in some sense that:
(46) Only one of the boys is α-looking for his j_{j} brother.

This true reading corresponds to substitution resistance in:
A is α-looking for B's brother $\& \alpha=\beta$ (" B 's brother")
$\rightarrow \mathrm{A}$ is α-looking for A's brother. \& $\alpha=\beta$ ("A's brother")
This looks like it has something to do with how α is actually set in (46), since it is hard to get a true reading for:
(48) Only one of the boys is α-looking for C .

1. Should ways of thinking be individual concepts? What if the bearer of the attitude has no individual concept for the name in question? For example, he knows Mark Twain is a famous American author, but not much more. So, he has heard of Mark Twain, but he has not heard of Samuel Clemens. Should α be allowed to be something more general?
2. It often seems that for substitution resistance to obtain, the attitude bearer has to believe that the substituted names have disjoint reference. Is that the case? Why? Can we have:
(49) Chelsea Clinton admires her father but she doesn't admire the President.

Doesn't Chelsea have different concepts associated with "her father" and with "the President"?

Part IV. Issues:

1. quantifying in: this was the reason why quotational stories were rejected in the first place.
an apparent problem:
three successively harder cases:
Case one: bound pronoun as object of intensional verb:
(1) every toy is such that Tom is looking for it.

What is β (it)? We don't need to answer this question. There is no substitution resistance here. So in this context, it and that toy are extensionally equivalent and it follows from every toy is such that Tom is looking for that toy.
this would be a case where α is existentially quantified.
note: this shows that Forbes' account is compatible with wide scope quantifiers as objects of intensional verbs. but it doesn't force wide-scope (see below).

Case Two: expression containing bound pronoun as object of intensional verb:
Case Three: expression containing 'essential' bound pronoun as object of intensional verb:

A student died in the hospital yesterday. The police are now looking for his mother. The dead student's mother is the Attorney General
$* \Rightarrow$ The police are now looking for the Attorney General.
A student died in the hospital yesterday. The police have arrested his mother.
The dead student's mother is the Attorney General
\Rightarrow The police have arrested the Attorney General.
do we want to say that there is a concept of "his mother"? Probably not. Here's why.

Suppose A,B,C are brothers. However, A was given up for adoption when he was born, something neither he nor B nor C are aware of. (this happens in the real world, not only in philosopher's worlds).

C has gone missing and A and B set out to find him.
B is looking for his ${ }_{B}$ brother. (T)
A is looking for his ${ }_{\mathrm{A}}$ brother. ($\mathrm{F}-$ on de dicto)
A is looking for his ${ }_{B}$ brother. ($\mathrm{T}-$ on de dicto)
The concepts we want here are the concept of "my brother" or "A's brother" versus the concept of "B's brother". How do we get them?

What about:
3. Only one of the boys is looking for his ${ }_{j}$ brother.

This sentence is true on the bound reading of the pronoun (de-dicto).
if "his j_{j} brother" gives the concept of "B's mother" it's false, cause both boys are looking for him under that concept.
if it gives the concept of "A's brother" then neither of them is.
what we need here, intuitively, is the concept of "my brother".

Do we need to bind into the arguments of β ?

Easier case:

every student knows a professor who is looking for a book about him.
If a philosopher was a member of the Vienna circle, then John is looking for a book about him.
suppose all books about members for the V . circle are in fact novels, but John doesn't know it.
then:
If a philosopher was a member of the Vienna circle, then John is looking for a novel about him.
doesn't follow. but that means that we are assigning concepts to "a novel about him" where him is bound. but that seems wrong, their should be different concepts. No: the concept could be a assigned to "novel" versus "book".
this doesn't work in the brother case, because the pronoun referent is 'essential'.
ohn is looking for a unicorn under α
de-dicto: $\alpha=\beta$ ((unicorn)
de-re: $\alpha=\beta(\mathrm{N})$, where N is a vivid name for John. (note: In order for there to be a vivid name for a unicorn, there would have to be unicorns out there).

Akin's brother is looking for the chairman under α
$\alpha=\beta$ (Akin), de-re
\rightarrow Akin's brother is looking for Akin under α
as kripke pointed out, we may not have a individual concept associated with a name (his example: we might know of Richard Feynman that he is a famous physicist and that is all), but I am not sure that matters for Forbes' view.
does α have to be assigned a value based on an expression of the language? in the context of discourse? Forbes's footnote, my examples
de-re from last time. according to Kaplan, de-re attitudes involve 3-place relations, can we synthesize Kaplan and Forbes, i.e. let $\mathcal{\delta}<$ be a vivid names as arguments of β ?

Based on
4. (1)(Galileo fears the Inquisition \& the Inquisition does not exist). (Forbes example (26))
5. Galileo feared the Inquisition before it was called that.

Forbes: β is given by the context. The truth conditions make use of the way of thinking given by β to the words used by the ascriber. ...?

Is it the case that the bearer of the attitude has to not know about the equivalence, or better has to believe there is no equivalence? what does that follow from?

I like him as a father, but I don't like him as a President....

Indefinites and Properties

V. van Geenhoven, L. McN ally: 'Beliefs about Opaque and Other Property Arguments'. Ms.

1 Data

Indefinites
(1) Marta is looking for a toy. ambiguous

Bareplurals G. Carlson, Reference to Kinds in English. PhD dissertation, UMass 1977
(2) Max is looking for books on Danish cooking.
narrow scope
(3) Bill noticed adors in every scene of thefilm.
narrow scope
Nonspedific NPs
F. Liu, Scope Dependency in English and Chinese. PhD dissertation, UCLA 1990
(4) Every student read at least threepapers.
(5) Bill didn't datefew girls.
narrow scope
narrow scope

Incorporation (West Greenlandic)
(6) Juuna JuunaABS Kaali-ABL 'It is not the case that J uuna got (two) letters from Kaali.'
M. Bittner, Case, Scope, and Binding. Dordrecht 1994 marlu-nik) allagar-si-nngi-l-q narrow scope (two-INST.PL) letter-get-NEG-IND[-tr]-3SG

2 Analysis

category	type	example	translation
opaqueverb ${ }^{1}$	(s(et))(et)	seek	$\lambda P \lambda x \mathbf{T}_{i}\left(x, \lambda j(\exists y)\left[P_{j}(y) \& \mathbf{F}_{j}(x, y)\right]\right)$
transparent verb²	$(s(e t))(e t)$	eat	$\lambda P \lambda x(\exists y)\left[P_{i}(y) \& \mathbf{E}_{i}(x, y)\right]$
qpaqueverb3	$e(e t)$	seek	$\lambda y \lambda x \mathbf{T}_{i}\left(x, \lambda j \mathbf{F}_{j}(x, y)\right)$
transparent verb3	$e(e t)$	eat	\mathbf{E}_{i}
singular indefinite ${ }^{4}$	$s(e t)$	a unicorn	$\mathbf{U} \cap \mathbf{D}$
singular indefinite ${ }^{5}$	-	a unicorn	" $\left[x: \mathbf{U}_{i}(x) \& \ldots\right]$ "
bare plural ${ }^{4}$	$s(e t)$	unicorns	U
bare plural ${ }^{6}$	e	unicorns	\mathbf{u}

NB: Only Quantifiers and indefinites of the second kind may take scope!

Notes

1) = Property analysis +lexical decomposition
->Zimmermann (1993): 168
2) =Generalizing to the worst case
3) Thetwo readings can berelated by a productivelexical (type shifting) process:

If α (of type ($s(e t)$)(et)) translates a transitive verb, then so does:
$\lambda y \lambda x\left[\alpha\left(x, y^{+}\right)\right]$
4) $\mathbf{U} \in \operatorname{Con}_{s(e t)}$
5) This is theDRT/dynamic treatment of indefinites as 'introducing discourse
referents'; scope is variable.
6) $\mathbf{u}\left[\in C o n_{e}\right]$ denotes a kind.

Examples

(1o) is-looking-for'(a-toy') (Marta')
$=\left[\lambda P \lambda x \mathbf{T}_{i}\left(x, \lambda j(\exists y)\left[P_{j}(y) \& \mathbf{F}_{j}(x, y)\right]\right)\right](\mathbf{Y})(\mathbf{m})$
$\left.\equiv \mathbf{T}_{i}\left(\mathbf{m}, \lambda j(\exists y)\left[\mathbf{Y}_{j}(y) \& \mathbf{F}_{j}(\mathbf{m}, y)\right]\right)\right]$
(1t) $\quad\left[y: \mathbf{Y}_{i}(y) \&\right.$ is-looking-for"(Marta' $\left.\left.{ }^{\prime}, y\right)\right]$
$=\left[y: \mathbf{Y}_{i}(y) \&\left[\lambda y \lambda x \mathbf{T}_{i}\left(x, \lambda j \mathbf{F}_{j}(x, y)\right)\right](\mathbf{m}, y)\right]$
$\left.\equiv \quad\left[y: \mathbf{Y}_{i}(y) \& \mathbf{T}_{i}\left(\mathbf{m}, \lambda j \mathbf{F}_{j}(\mathbf{m}, y)\right)\right]\right]$
(20) is-looking-for'(books') (Max')
$=\left[\lambda P \lambda x \mathbf{T}_{i}\left(x, \lambda j(\exists y)\left[P_{j}(y) \& \mathbf{F}_{j}(x, y)\right]\right)\right](\mathbf{B})(\mathbf{m})$
$\left.\equiv \quad \mathbf{T}_{i}\left(\mathbf{m}, \lambda j(\exists y)\left[\mathbf{B}_{j}(y) \& \mathbf{F}_{j}(\mathbf{m}, y)\right]\right)\right]$
(2t) is-looking-for"(books") (Max')
$=\left[\lambda y \lambda x \mathbf{T}_{i}\left(x, \lambda j \mathbf{F}_{j}(x, y)\right)\right](\mathbf{b})(\mathbf{m})$
$\equiv \mathbf{T}_{i}\left(x, \lambda j \mathbf{F}_{j}(\mathbf{m}, \mathbf{b})\right) \quad$ sortally incorrect?
(4) [M. Krifka,'At least some determiners aren't determiners'. In: K. Turner (ed.), The

Semantics / ragmatics Interface from Different Points of View. Oxford 1999, 257-91]
three $_{F}$-papers'
$\equiv \lambda i \lambda x\left[\mathbf{3}(x) \& \mathbf{P}_{i}(x)\right]$
three $_{\mathrm{F}}$-papers ${ }^{\text {a }} \quad$ ranked alternatives
$\equiv \lambda<P, Q>(\exists n, m)\left[n \leq m \& P=\left[\lambda i \lambda x\left[n(x) \& \mathbf{P}_{i}(x)\right]\right] \&\right.$
$\left.Q=\left[\lambda i \lambda x\left[m(x) \& \mathbf{P}_{i}(x)\right]\right]\right]$
at-least'
$\left.\equiv \lambda<\boldsymbol{P}, \boldsymbol{A}>\lambda i \lambda x(\exists Q)\left[Q_{i}(x) \& \boldsymbol{A}(<\boldsymbol{P}, Q>)\right]\right)$

> at-least-three-papers'
> $=$ at-least' $^{\prime}\left(\right.$ three $_{F}$-papers', three $_{F}$-papers ${ }^{\text {a }}>$) $)$
> $\equiv \lambda<\boldsymbol{P}, \boldsymbol{A}>\lambda i \lambda x(\exists Q)\left[Q_{i}(x) \& \boldsymbol{A}(\langle\boldsymbol{P}, Q>)]\right)$
> $<\lambda x\left[3(x) \& \mathbf{P}_{i}(x)\right]$,
> $\lambda<P, Q>(\exists n, m)\left[n \leq m \& P=\left[\lambda i \lambda x\left[n(x) \& \mathbf{P}_{i}(x)\right]\right] \&\right.$
$\left.Q=\left[\lambda i \lambda x\left[n(x) \& \mathbf{P}_{i}(x)\right]\right]\right] \ggg$
$\equiv \lambda i \lambda x(\exists Q)\left[Q_{i}(x) \&(\exists n, m)\left[n \leq m \& \underline{\lambda x\left[\mathbf{3}(x) \& \mathbf{P}_{i}(x)\right]=}\right.\right.$
$\left.\left.\left.\left.\left[\lambda x\left[n(x) \& \mathbf{P}_{i}(x)\right]\right] \& Q=\left[\lambda i \lambda x\left[m(x) \& \mathbf{P}_{i}(x)\right]\right]\right]>\right)\right]\right) \quad \equiv n=3!$
$\left.\left.\equiv \lambda i \lambda x(\exists Q)\left[Q_{i}(x) \&(\exists m)\left[\mathbf{3} \leq m \& Q=\left[\lambda i \lambda x\left[m(x) \& \mathbf{P}_{i}(x)\right]\right]\right]>\right)\right]\right)$
$\left.\left.\equiv \lambda i \lambda x(\exists m)\left[\mathbf{3} \leq m \& m(x) \& \mathbf{P}_{i}(x)\right]\right]\right]$
read'
$=\lambda P \lambda x(\exists y)\left[P_{i}(y) \& \mathbf{R}_{i}(x, y)\right]$
read-at-least three-papers'
$=\quad$ read'(at-least three-papers')
$\left.\left.\equiv \lambda P \lambda x(\exists y)\left[P_{i}(y) \& \mathbf{R}_{i}(x, y)\right]\left(\lambda i \lambda y(\exists m)\left[\mathbf{3} \leq m \& m(y) \& \mathbf{P}_{i}(y)\right]\right]\right]\right)$
$\equiv \quad \lambda x(\exists y)(\exists m)\left[\mathbf{3} \leq m \& m(y) \& \mathbf{P}_{i}(y) \& \mathbf{R}_{i}(x, y)\right]$
every-student'
$\equiv \quad \lambda Q(\forall x)\left[\mathbf{S}_{i}(x) \rightarrow Q(x)\right]$
every-student-read-at-least three-papers'
$=$ every-student'(read-at-least three-papers')
$\equiv \lambda Q(\forall x)\left[\mathbf{S}_{i}(x) \rightarrow Q(x)\right]$
$\left(\lambda x(\exists y)(\exists m)\left[\mathbf{3} \leq m \& m(y) \& \mathbf{P}_{i}(y) \& \mathbf{R}_{i}(x, y)\right]\right)$
$\equiv \quad(\forall x)\left[\mathbf{S}_{i}(x) \rightarrow(\exists y)(\exists m)\left[\mathbf{3} \leq m \& m(y) \& \mathbf{P}_{i}(y) \& \mathbf{R}_{i}(x, y)\right.\right.$
(5) $\quad \operatorname{not}^{\prime}\left(\right.$ date'(few-girls') $\left.^{\prime}\right)($ Bill')
$\equiv \quad[\lambda X \lambda x \neg X(x)]$
$\left(\lambda P \lambda x(\exists y)\left[P_{i}(y) \& \mathbf{D}_{i}(x, y)\right]\left(\lambda i \lambda y\left[\mathbf{F E W}(y) \& \mathbf{G}_{i}(y)\right]\right)(\mathbf{b})\right)$
$\equiv \quad \neg(\exists y)\left[\mathbf{F E W}(y) \& \mathbf{G}_{i}(y) \& \mathbf{D}_{i}(\mathbf{b}, y)\right]$

Problem

(7) Marta is looking for at least five toys. p. 45
i. "Marta is looking for toys, namely at least five.
ii. \#There are at least fivetoys sudh that Marta is looking for them." ???
(8) John needs few assistents.
i. "J ohn needs assistents, in fact he needs few of them."
ii. \#There are few assistents such that J ohn needs them."

3 Opaque verbs

3.1 Failure of substitutivity (S) and existential generalization ($E G$)
(S) $\left.\begin{array}{l}\mathbf{T}_{i}\left(x, \lambda j(\exists \mathrm{y})\left[P_{j}(y) \& \mathbf{F}_{i}(x, y)\right]\right) \\ P_{i}=Q_{i}\end{array}\right\} \neq>\mathbf{T}_{i}\left(x, \lambda j(\exists \mathrm{y})\left[Q_{j}(y) \& \mathbf{F}_{i}(x, y)\right]\right)$
(EG) $\mathbf{T}_{i}\left(x, \lambda j(\exists y)\left[P_{j}(y) \& \mathbf{F}_{j}(x, y)\right]\right) \neq>(\exists y) P_{i}(y)$

- due to intensionality of \mathbf{T}.

Hence(?) opadity requires lexical decomposition.
(9) John resembles a unicorn.
(10) John resembles a mythological animal with one horn.
(11) John is looking for a unicorn.
(12) John is looking for a mythological animal with one horn.
resemble $^{\prime}=\left[\lambda P \lambda x(\exists Q)\left[Q_{i}(x) \& Q \supseteq P\right]\right.$
' $Q \supseteq P^{\prime}=' P$ is among the prototypical properties of the individuals that are Q '
(13) Bill and John resemble two doctors.

Moltmann (1997)
odd redundancy

3.2 Negation

(14) John needs to have no assistent.
need'(not'(have'(an-assistent'))) (John')
$\equiv \quad\left[\lambda P \lambda x \mathbf{M}_{i}(\lambda j P(x))\right] \quad$ VP negation (intensional)
$\left(\left[\lambda P \quad \lambda_{j} \lambda x \neg P_{j}(x)\right]\left(\lambda P \lambda j \lambda x(\exists y)\left[P_{j}(y) \& \mathbf{H}_{j}(x, y)\right](\mathbf{A})\right)\right)(\mathbf{j})$
$\equiv \quad\left[\lambda P \lambda x \mathbf{M}_{i}(\lambda j P(x))\right]\left(\lambda j \lambda x \neg(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(x, y)\right]\right)(\mathbf{j})$
$\equiv \lambda x \mathbf{M}_{i}\left(\lambda j \neg(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(x, y)\right]\right)(\mathbf{j})$
$\equiv \quad \mathbf{M}_{i}\left(\lambda j \neg(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(\mathbf{j}, y)\right]\right)$
(15) John needs no assistent. not'(need'(an-assistent'))(John')
$\equiv \quad[\lambda \underline{X} \lambda x \neg X(x)]\left(\left[\lambda P \lambda x \mathbf{M}_{i}\left(\lambda j(\exists y)\left[P_{j}(y) \& \mathbf{H}_{j}(x, y)\right]\right)\right](\mathbf{A})\right)(\mathbf{j})$
$\equiv \quad[\lambda X \lambda x \neg X(x)]\left(\lambda x \mathbf{M}_{i}\left(\lambda j(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(x, y)\right]\right)\right)(\mathbf{j})$
$\equiv \quad\left[\lambda x \neg \mathbf{M}_{i}\left(\lambda j(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(x, y)\right]\right)\right](\mathbf{j})$
$\equiv \quad \neg \mathbf{M}_{i}\left(\lambda j(\exists y)\left[\mathbf{A}_{j}(y) \& \mathbf{H}_{j}(\mathbf{j}, y)\right]\right)$

Problem

... toblock:
$\left[y: \underline{\mathbf{A}}_{i}(\underline{y}) \&\right.$ not'$\left.^{\prime}\left(\mathbf{n e e d}{ }^{\prime}(\underline{\chi})\right)(\mathbf{j})\right] \quad$ wide scopeindefinite
$\equiv \quad\left[y: \mathbf{A}_{i}(y) \&[\lambda X \lambda x \neg X(x)]\left(\left[\lambda y \lambda x \mathbf{M}_{i}\left(\lambda j \mathbf{H}_{j}(x, y)\right)\right](y)\right)(\mathbf{j})\right]$
$\equiv \quad\left[y: \mathbf{A}_{i}(y) \& \neg \mathbf{M}_{i}\left(\lambda j \mathbf{H}_{j}(\mathbf{x}, y)\right)\right]$

4 Kind readings of bare plurals

(16) A dog is here and a dog is not here.
i. $\quad\left[\left[\lambda P(\exists y) P_{i}(y) \& \mathbf{H}_{i}(y)\right](\mathbf{D}) \&[\lambda \boldsymbol{P} \lambda P \boldsymbol{P}(P)]\left(\lambda P(\exists y)\left[P_{i}(y) \& \mathbf{H}_{i}(y)\right]\right)(\mathbf{D})\right]$
by generalization
$\equiv \quad(\exists y)\left[\mathbf{D}_{i}(y) \& \mathbf{H}_{i}(x)\right] \& \neg(\exists y)\left[\mathbf{D}_{i}(y) \& \mathbf{H}_{i}(x)\right]$
ii. $\quad\left[x, y: \mathbf{D}_{i}(x) \& \underline{\mathbf{D}}_{i}(y) \& \mathbf{H}_{i}(x) \& \neg \mathbf{H}_{i}(y)\right]$ contradidion wide scopeindefinite
(17) Dogs are here and dogs are not here.
i. $\left[\left[\lambda P(\exists y) P_{i}(y)\right](\mathbf{D}) \&[\lambda \boldsymbol{P} \lambda P \boldsymbol{P}(P)]\left(\lambda P(\exists y)\left[P_{i}(y) \& \mathbf{H}_{i}(x)\right]\right)(\mathbf{D})\right]$
property reading
$\equiv \quad(\exists y)\left[\mathbf{D}_{i}(y) \& \mathbf{H}_{i}(x)\right] \& \neg(\exists y)\left[\mathbf{D}_{i}(y) \& \mathbf{H}_{i}(x)\right]$ contradidion
ii. $\quad\left[\lambda x \mathbf{H}_{i}(x)\right](\mathbf{d}) \&[\lambda X \lambda x-X(x)]\left(\lambda x \mathbf{H}_{i}(x)\right)(\mathbf{d})$
$\equiv \quad\left[\mathbf{H}_{i}(\mathbf{d}) \& \neg \mathbf{H}_{i}(\mathbf{d})\right]$ kind reading contradition
(18) Dogs are nice.

NOT: (GEN $i, x)\left(\mathbf{D}_{i}(x) ; \mathbf{N}_{i}(x)\right) \quad$ 'Bareplurals don't introduce variables'

$$
[\equiv \operatorname{GEN}(\mathbf{D}, \mathbf{N})!]
$$

BUT: $\mathbf{N}_{i}(\mathbf{b})$
(19) Otto wollte Tollkirschen in den Obstsalat tun, weil er sie mit richtigen Kirschen verwechselte.
Otto wanted to put belladonna berries into the fruit salad, because he mistook them for [real] cherries.
$\left.(\exists y)\left[\mathbf{T}_{i}(y) \& \mathbf{W}_{i}\left(\mathbf{o}, \lambda j \mathbf{P}_{j}(\mathbf{o}, y)\right) \& \mathbf{V}_{i}(\mathbf{o}, y, \mathbf{C})\right]\right]$
A. Kratzer, 'Die Analyse des bloßen Plurals bei Gregory Carlson', Linguistische Berichte 70(1980),47-50

Res est qualitas + E-type analysis
$\left[\left[\lambda \underline{P} \mathbf{W}_{i}\left(\mathbf{o}, \lambda j(\exists y)\left[P_{i}(y) \& \mathbf{P}_{j}(\mathbf{o}, y)\right]\right]\right](\mathbf{T}) \&\right.$
$\left.\mathbf{V}_{i}\left(\mathbf{o}, \underline{\left(\underline{(P)} \mathbf{W}_{i}\right.} \underline{\underline{(\mathbf{o}, \lambda j}(\exists y)\left[P_{i}\right.} i \underline{\left.\left.\underline{(y) \&} \mathbf{P}_{j}(\mathbf{o}, y)\right]\right)}, \mathbf{C}\right)\right]$
why the kind variant? (cf. p. 42, (94))
or, rather:
$\left[(\exists N)\left[\mathbf{V N}_{i}(N, \mathbf{T}, \mathbf{o}) \& \mathbf{W}_{i}\left(\mathbf{o}, \lambda j(\exists y)\left[N_{i}(y) \& \mathbf{P}_{j}(\mathbf{o}, y)\right)\right] \& \ldots\right.\right.$

The Clausal Analysis of Opacity

R. Larson, M. den Dikken, P. Ludlow: Intensional Transitive Verbs and Abstract Clausal Complementation'. Ms.

1 Clausal Analysis: Basic Idea

(The rest is syntax)
(1) Mary wants a cracker.

Mary wants [FOR PRO TO HAVE a cracker]
Mary wants-FOR-HAVE PRO a cracker
Mary [AgroP a cracker wants-FOR-HAVE PRO t]
restructuring
scope ambiguity (by reconstruction)
(2) Mary wants to have a cracker.

Mary wants [FOR PRO to have a cracker] norestructuring
(3) Mary hopes for a cracker.

Mary hopes [for PRO TO HAVE a cracker]
(4) Mary seeks a cracker.

Mary seeks [FOR PRO TO FIND a cracker]
(5) Mary seeks to find a cracker.

Mary seeks [FOR PRO find a cracker] no restructuring
(6) Max imagined a new car.

Max imagined [a new car P] small dause with 'hidden' stage level predicate P

Lexical Assumptions

$[$ have $]=[H A V E\rfloor,[$ find $]=[F I N D], \llbracket$ seek $] \approx[\operatorname{try}]$ (and, of course, $[$ for $]=[F O R]=[\lambda x x]$)

2 Evidence for a clausal analysis

- Selectional restrictions and 'disjointness effects'

J .R. Ross, To Have Have and to Not Have Have', in: M. J azayery et al. (eds.), Linguistic and Literary Studies in Honor of Archibald Hill. Lisse 1976, 263-70.
(7) I $\left\{\begin{array}{l}\text { want } \\ \text { have }\end{array}\right\}\left\{\begin{array}{c}\text { a cold } \\ \text { a sister } \\ \text { freedom } \\ \text { a driveway }\end{array}\right\}$.
(7') \#I $\left\{\begin{array}{l}\text { want } \\ \text { have }\end{array}\right\}$ sentencehood.
(8) You $\left\{\begin{array}{l}\text { want } \\ \text { have }\end{array}\right\}$ my sympathy.
(8') \#You $\left\{\begin{array}{l}\text { want } \\ \text { have }\end{array}\right\}$ your sympathy.

Comment: These effects should follow from a decomposition of want in terms of want and have plus a semantic account of selectional restrictions and 'disjointness'.

- Adverbial Modification

(9) Max will need to have a bicycle tomorrow.
ambiguous (?)
(10) Max will need a bicycle tomorrow.
ambiguous (?)
(11) A week ago Bill wanted your car yesterday.
J. McCawley, 'On Identifying the Remains of Deceased Clauses', Language Researc 3.2 (1974), 73-85.
(12) A week ago Bill needed your car yesterday.
(13) Walter was looking for a camera before the meeting.
unambiguous
(14) Walter was looking to find a camera before the meeting.
ambiguous
B. Partee, 'Opacity and Scope', in M. Munitz, P. Unger (eds.), Semantics and Philosophy. New York 1974.

- Ellipsis
(15) Do you want another sausage?

I can't have another sausage, I'm on a diet.
(16) Jonathan wants to have more toys than Benjamin.

\Leftrightarrow Jonathan wants to have more toys than Benjamin has.

(17) Do you need your glasses?

Actually, I don't need my glasses. $\quad \neq \mathrm{I}$ don't have my glasses
(18) Jonathan needs more toys than Benjamin.
\Leftrightarrow Jonathan needs more toys than Benjamin needs.
(19) Bush needs more votes than Gore.
(Roger Schwarzschild, p.c.)
(20) Are you looking for your glasses?

I can't leok for my glasses, my eyes are too bad. $\quad \neq$ I can't find my glasses
(21) Jonathan was looking for more toys than Benjamin.
\Leftrightarrow Jonathan was looking for more toys than Benjamin is looking for.
\neq Jonathan was trying to find more toys than Benjamin foumd

- Propositional Anaphora
(22) Joe wants some horses but his mother won't allow it.
\Leftrightarrow Joe wants [FOR PRO HAVE some horses $]_{p}$ but his mother won't allow it ${ }_{p}$.
(23) Joe needs some horses but his mother won't allow it.
$\stackrel{\Leftrightarrow}{\Leftrightarrow}$ Joe needs [FOR PRO HAVE some horses $]_{p}$ but his mother won't allow it ${ }_{p}$.
(24) Joe is looking for some horses but his mother won't allow it.
$\stackrel{\Leftrightarrow}{\Leftrightarrow}$ Joe is looking $[F O R \text { PRO FIND some horses }]_{p}$ but his mother won't allow it ${ }_{p}$.

3 Counterevidence explained away

- Complex determiners
(25) Max needed no bananas.

Analysis inspired by E. Klima, 'Negation in English'. In J. Fodor, J. Katz (eds.), The Structure of Language. Englewood Cliffs, NJ, 1964
no bananas $=$ NEG + bananas,
where $N E G$ takes scope over the smallest sentence containing it
Max needed [FOR PRO TO HAVE NEG bananas]
Mary needed-FOR-HAVE PRO NEG bananas
Mary [${ }_{\text {AgroP }}$ NEG bananas wants-FOR-HAVE PRO t]
NEG Mary [AgroP bananas wants-FOR-HAVE PRO $t_{N E G}$ bananas]
restructuring rasing to SpecAgro scope ambiguity

Roger's example:
(26) In order to win you need [to have] no cards.
ambiguous???
Further predictions:
(27) Max didn't need any bananas.

upstairs negation only downstairs
negation only
downstairs negation only
upstairs negation only

(31) Max needs at most five bananas.

Analysis
at most five bananas =at most + five bananas ...where at most must take narrow scope Then proceed as above.
(32) Max needs to have at most five bananas.
scope ambiguity by QR?

- De re preference
(33) Alain is trying to find each comic book.
(34) Alain is seeking each comic book. ... according to:

ambiguous	ambiguous
unambiguous	ambiguous
Zimmermann (1993)	La,dD \& Lu

- '...] the correct idealization of the data is that full dausal complementation structures show both de dicto and de re readings, but with intensional transitives a matrix [...] construal is more accessible [...]. On our analysis this difference finds a natural analog in thedistinction between (79a) and (79b):
(79) a. Somejuror believes every defendant is guilty.
b. Somejuror believes every defendant to beguilty. '
(35) Alain is seeking a comic book.
de re preferred?
- Comparison and pseudo-intensionality
(36) Tom's horse resembles a unicorn.
(37) Arnim compares himself to a pig.

(38) Hercule Poirot was as smart as Sherlock Holmes.

\Leftrightarrow H.P.'s height exceeded S.H.'s height.
(39) Seymour resembles Max.
\Leftrightarrow S.'s (relevant) properties areM.'s (relevant) properties.
(40) Seymour resembles twin-Max.
\Leftrightarrow S.'s (relevant) properties areM.'s (relevant) properties.
For any adjective A:
(41) Seymour is $\left\{\begin{array}{c}\text { as A as } \\ \text { more A than } \\ \text { less A than }\end{array}\right\}$ Max.
\Leftrightarrow Seymour is $\left\{\begin{array}{c}\text { as } A \text { as } \\ \text { more } A \text { than } \\ \text { less } A \text { than }\end{array}\right\}$ twin-Max.

- [...] comparative constructions allow truth with nondenoting terms becausethey involvestanding in relation to something coarser-grained than referents. What appears to [be] true with comparatives is that terms contribute sets of properties.'
(La, dD, \& Lu, p. 33)
Implementation
1st try:
x [as tall as] y
$\{P \mid P$ is a heigt and x has $P\}=\{P \mid P$ is a heigt and x has $P\}\}$
To be sure: $[\mathbf{M a x}]=$ Max
- but then: [Hercule Poirot]= ???

So maybe (2nd try):
$[\operatorname{Max}]=\{P \mid$ Max has $P\}$
$[$ Hercule Poirot $]=\{P \mid$ according to thestory, H.P. has $P\}$
A as tall as $] B \Leftrightarrow$
$\{P \mid P$ is a height and $P \in A\}=\{P \mid P$ is a height and $P \in B\}$
A resembles $B \Leftrightarrow$
$\{P \mid P$ is relevant and $P \in A\}=\{P \mid P$ is relevant and $P \in B\}$

- but then:
[Tom's horse resembles a unicorn] is true
$\Leftrightarrow \quad$ (a unicorn: x)Tom's horse resembles $x \rrbracket$ is true
\Leftrightarrow for some unicorn u : $\{P \mid P$ is relevant and Tom' s horse has $P\}=\{P \mid P$ is relevant and u has $P\}$
i.e.: the specific reading.

To get the unspecific reading, we could try (2 1/2) :
$[$ a unicorn $]=\{P \mid$ some unicorn has $P\} \ldots=\{P \mid$ some married Catholic priest has $P\}$
So seem to need intensionality after all.

Free Choice Disjunction

1 The Problem
(1) You may take an apple or take a pear.
(1') $\mathrm{e}(a \vee p)$
(2) You may take an apple.
(2') $e a$
(3) You may take a pear.
(3') ep
Deontic Logic D (in the language of propositional logic plus ' u '; e $A=\neg u \neg A$)
Axioms
$I_{-} \mathrm{A}$
where A is an instance of a propositional tautology (e.g. 'u
$\mathrm{B} \leftrightarrow \neg \neg \mathrm{B} \mathrm{B}^{\prime}$
$\vdash_{D}(e(A \vee B) \rightarrow e A)$
where A and B are arbitrary formulae

Deduction Rules

$\left.\left.\left.\right|_{-_{D}}(\mathrm{~A} \rightarrow \mathrm{~B}) \&\right|_{D_{D}} \mathrm{~A} \Rightarrow\right|_{-} \mathrm{B}$
$I_{D}(\mathrm{~A} \leftrightarrow \mathrm{~B}) \Rightarrow I_{D}(\mathrm{u} \mathrm{A} \leftrightarrow \mathrm{uB})$
Let G be something good and let E be something evil; then:

1.	$\vdash^{-}(\neg \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}) \rightarrow \neg \mathrm{u} \neg \neg \mathrm{G})$	FC
2.	$\mathrm{I}_{\mathrm{D}}((\neg \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}) \rightarrow \neg \mathrm{u} \neg \neg \mathrm{G}) \rightarrow(\mathrm{u} \neg \neg \mathrm{G} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}))$)	PL: contraposition
3.	$I^{-}(\mathrm{u} \neg \neg \mathrm{G} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}))^{\text {a }}$	MP(2,1)
4.	$-_{D}(\neg \neg \mathrm{G} \leftrightarrow \mathrm{G})$	PL: doublenegation
5.	$I^{-}(\mathrm{u} \neg \neg \mathrm{G} \leftrightarrow \mathrm{uG})$	Sub(4)
6.	$\vdash^{D}((\mathrm{u} \neg \neg \mathrm{G} \leftrightarrow \mathrm{uG}) \rightarrow((\mathrm{u} \neg \neg \mathrm{G} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} v \neg \mathrm{E})) \rightarrow(\mathrm{uG} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} v \neg \mathrm{E}))$)	PL
7.	$I_{D}((\mathrm{u} \neg \neg \mathrm{G} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} v \neg \mathrm{E})) \rightarrow(\mathrm{uG} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} v \neg \mathrm{E}))$)	MP(6,5)
8.	$-_{D}(\mathrm{uG} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E})$)	MP(7,3)
9.	$-_{D}(\neg(\neg \mathrm{G} \vee \neg \mathrm{E}) \leftrightarrow(\mathrm{G} \wedge \mathrm{E}))$	PL: de Morgan
10.	$-_{D}(\mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}) \leftrightarrow \mathrm{u}(\mathrm{G} \wedge \mathrm{E}))$	Sub(9)
11.	L^{-}($(\mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E}) \leftrightarrow \mathrm{u}(\mathrm{G} \wedge \mathrm{E})) \rightarrow((\mathrm{uG} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E})) \rightarrow(\mathrm{uG} \rightarrow \mathrm{u}(\mathrm{G} \wedge \mathrm{E}))$) $)$	PL
12.	I^{-}($(\mathrm{uGG} \rightarrow \mathrm{u} \neg(\neg \mathrm{G} \vee \neg \mathrm{E})) \rightarrow(\mathrm{uG} \rightarrow \mathrm{u}(\mathrm{G} \wedge \mathrm{E}))$)	MP(11,10)
13.	$-_{D}(\mathrm{uG} \rightarrow \mathrm{u}(\mathrm{G} \wedge \mathrm{E})$)	MP(12,8)

Condusion: (FC) cannot be a principle of deontic logic!

2 The Pragmatics of Permissions Lewis (1975), Stalnaker (ms.)

Poss $_{c}=\left\{w \in W \mid w\right.$ is accessible from context world $\left.w_{c}\right\}$
$\operatorname{Per}_{c}=\{w \in W \mid$ addressee behaves in compliance with authority's demands in $c\}$
$c+\varphi=$ the context resulting after the athority 's utterance of φ in c
$\operatorname{Per}_{c+\text { te } \varphi}=\left(\operatorname{Per}_{c} \cup \llbracket \varphi \rrbracket\right) \cap \operatorname{Poss}_{c}$
Example
$\llbracket n^{\text {th }} \rrbracket=\left\{w \in W \mid\right.$ in w, the addressee is on the $n^{\text {th }}$ floor $\}$
Poss $_{c}=\llbracket 1^{\text {std }} \rrbracket \cup \llbracket 2^{\text {nd }} \rrbracket \cup \llbracket 3^{\text {rd }} \rrbracket \cup \llbracket 4^{\text {th }} \rrbracket$
$\left.\left.\llbracket 1^{\text {st }}\right] \| 2^{\text {nd }}\right]\left[3^{\text {rid }}\right]\left[4^{\text {th }}\right]$
$\operatorname{Per}_{c}=\llbracket-\mathbf{2}^{\mathrm{nd}} \rrbracket \cap \llbracket-\mathbf{3}^{\mathrm{rd}} \rrbracket \cap \llbracket-\mathbf{4}^{\mathrm{th}} \rrbracket$

Per $_{c+\mathrm{e}} \mathbf{2}^{\text {nd }}$
$=\left(\operatorname{Per}_{c} \cup \llbracket \mathbf{2}^{\text {nd }} \rrbracket\right) \cap$ Poss $_{c}$

$\left[\mathbf{1}^{\mathbf{s t}} \rrbracket\right.$			

| $\mathbf{2}^{\mathbf{n d}} \rrbracket$ | |
| :--- | :--- | :--- |

$=\quad\left(\left(\llbracket-2^{\text {nd }} \rrbracket \cap \llbracket-3^{\text {rd }} \rrbracket \cap \llbracket-\mathbf{4}^{\text {th }} \rrbracket\right) \cup \llbracket 2^{\text {nd }} \rrbracket\right) \cap\left(\llbracket 1^{\text {std }} \rrbracket \cup \llbracket 2^{\text {nd }} \rrbracket \cup \llbracket \mathbf{3}^{\text {rd }} \rrbracket \cup \llbracket 4^{\text {th }} \rrbracket\right)$
$=\quad \llbracket-\mathbf{3}^{\text {rd }} \rrbracket \cap \llbracket-\mathbf{4}^{\text {th }} \rrbracket \cap\left(\llbracket \mathbf{1}^{\text {std }} \rrbracket \cup \llbracket \mathbf{2}^{\text {nd }} \rrbracket \cup \llbracket \mathbf{3}^{\text {rd }} \rrbracket \cup \llbracket \mathbf{4}^{\text {th }} \rrbracket\right)$
$=\quad \llbracket-3^{\mathrm{rd}} \rrbracket \cap \llbracket-\mathbf{4}^{\mathrm{th}} \rrbracket$
$\operatorname{Per}_{c \text { te }}\left(\mathbf{2}^{\mathbf{n d}}{ }_{\mathbf{V} \mathbf{3}} \mathbf{r d}\right)=$

$=\quad\left(\left(\llbracket-\mathbf{2}^{\mathbf{n d}} \rrbracket \cap \llbracket \mathbf{3}^{\mathbf{r d}} \rrbracket \cap \llbracket-\mathbf{4}^{\text {th }} \rrbracket\right) \cup \llbracket \mathbf{2}^{\text {nd }} \rrbracket \cup \llbracket \mathbf{3}^{\mathbf{r d}} \rrbracket\right) \cap\left(\llbracket \mathbf{1}^{\text {std }} \rrbracket \cup \llbracket \mathbf{2}^{\text {nd }} \rrbracket \cup \llbracket \mathbf{3}^{\text {rd }} \rrbracket \cup \llbracket \mathbf{4}^{\text {th }} \rrbracket\right)$
$=\quad\left(\llbracket-2^{\text {nd }} \rrbracket \cap \llbracket-3^{\text {rd }} \rrbracket \cap \llbracket-4^{\text {th }} \rrbracket\right) \cup \llbracket 2^{\text {nd }} \rrbracket \cup \llbracket 3^{\text {rd }} \rrbracket$
$=\quad \llbracket-4^{\mathrm{th}} \rrbracket \cup \llbracket 2^{\mathrm{nd}} \rrbracket \cup \llbracket 3^{\mathrm{rd}} \rrbracket$
$=\llbracket 1 \mathrm{st} \rrbracket \cup \llbracket 2^{\mathrm{nd}} \rrbracket \cup \llbracket 3^{\mathrm{rd}} \rrbracket$
$\llbracket \mathbf{1}^{\mathbf{s t}} \rrbracket \llbracket \mathbf{2}^{\mathbf{n d}} \rrbracket \llbracket \mathbf{3}^{\mathbf{r d}} \rrbracket \square$

Counterexample

$\llbracket \mathbf{a} \rrbracket=\{w \in W \mid$ addressee takes an apple in $w\}$
$\llbracket \mathbf{b} \rrbracket=\{w \in W \mid$ addressee takes a banana in $w\}$
$\llbracket \mathbf{p} \rrbracket=\{w \in W \mid$ addressee takes a pear in $w\}$
$\llbracket \mathbf{s} \rrbracket=\{w \in W \mid$ addressee is starving in $w\}$
$\operatorname{Poss}_{c}=\llbracket \mathbf{a} \rrbracket \cup \llbracket \mathbf{b} \rrbracket \cup \llbracket \mathbf{p} \rrbracket \cup \llbracket \mathbf{s} \rrbracket$
$\operatorname{Per}_{c}=\llbracket-\mathbf{a} \rrbracket \cap \llbracket-\mathbf{b} \rrbracket \cap \llbracket-\mathbf{p} \rrbracket$
Per ${ }_{c+\mathrm{e}} \mathbf{p}$
$=\left(\operatorname{Per}_{c} \cup \llbracket \mathbf{p} \rrbracket\right) \cap$ Poss $_{c}$
$=((\llbracket-\mathbf{a} \rrbracket \cap \llbracket-\mathbf{b} \rrbracket \cap \llbracket-\mathbf{p} \rrbracket) \cup \llbracket \mathbf{p} \rrbracket) \cap(\llbracket \mathbf{a} \rrbracket \cup \llbracket \mathbf{b} \rrbracket \cup \llbracket \mathbf{p} \rrbracket \cup \llbracket \mathbf{s} \rrbracket)$
$=(\llbracket-\mathbf{a} \rrbracket \cap \llbracket-\mathbf{b} \rrbracket) \cup \llbracket \mathbf{p} \rrbracket \cap(\llbracket \mathbf{a} \rrbracket \cup \llbracket \mathbf{b} \rrbracket \cup \llbracket \mathbf{p} \rrbracket \cup \llbracket \mathbf{s} \rrbracket)$

Before[=c]...

$=\mathrm{Per}$
\ldots after $[=c+\mathbf{e p}]$
. In particular, the addressee is invited to have (a) an apple and (b) a banana provided that (s)he takes (p) a pear!

Solution: Spheres

Degrees of irreproachability
$P e r_{c}=\left(\text { Per }_{c}^{n}\right)_{n \in \omega}$
(slightly simplifying)
$\operatorname{Per}_{c+\mathrm{e} \varphi}^{0}=\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Per}_{c}^{1}\right)\right) \cap \operatorname{Poss}_{c} ?$
(first guess)

No:
$\varphi=$ You take exactly two pears $\Rightarrow \llbracket \varphi \rrbracket \cap P e r_{c}^{1}=\varnothing$!

Hence:
$\overline{\operatorname{Per}_{c+\mathrm{e} \varphi}^{0}}=\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Per}_{c}^{[c, \varphi]}\right)\right) \cap \operatorname{Poss}_{c}$, where $[c, \varphi]=\min \left\{n \mid \operatorname{Per}_{c}^{n} \cap \| \varphi \rrbracket \neq \varnothing\right\}$
[Aside: How about You may take an apple and a banana?]
Asymmetry problem:
$\varphi=$ You take an apple
$\psi=Y o u$ take two bananas
$P e r_{c+\mathrm{e}(\mathrm{\varphi} \psi)}^{0}$
$=\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \vee \psi \rrbracket \cap \operatorname{Per}_{c}^{[c, \varphi \vee \psi]}\right)\right) \cap$ Poss $_{c}$
$=\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \vee \psi \rrbracket \cap \operatorname{Per}_{c}^{1}\right)\right) \cap$ Poss $_{c}$
$=\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Per}_{c}^{1}\right)\right) \cap \operatorname{Poss}_{c}$
$\operatorname{Per}_{c}^{[c, \varphi \vee \psi]}=\operatorname{Per}_{c}^{[c, \varphi]}=1!$
... which is disjoint from $\llbracket \psi \rrbracket!$
$\llbracket \varphi \vee \psi \rrbracket \cap P e r_{c}^{1}=\llbracket \varphi \rrbracket \cap P e r_{c}^{1}!$

3 Solutions

3.1 Rescoping

You may take an apple or you may take a banana.
wide disjunction
Per $_{c+\mathrm{e} \varphi \text { ore\% }}^{0}$
$=\operatorname{Per}_{c+\mathrm{e} \psi}^{0} \cup \operatorname{Per}_{c+\mathrm{e} \psi}^{0} \quad$ speech act disjunction
$=\left(\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Per}_{c}^{[c, \varphi]}\right)\right) \cap \operatorname{Poss}_{c}\right) \cup\left(\left(\operatorname{Per}_{c}^{0} \cup\left(\llbracket \psi \rrbracket \cap \operatorname{Per}_{c}^{[c, \psi]}\right)\right) \cap \operatorname{Poss}_{c}\right)$
PRO Rescoping

- In general $[c, \varphi] \neq[c, \psi]$, which solves the asymmetry problem.
- Though or does not combine the propositions expressed by the disjunds, it is still propositional disjunction, i.e. it denotes (or a type-shifted variant of) the union operation over sets of worlds.

CONTRA Rescoping

- Syntactically implausible
- Explidt widescopedisjunctions do not producethe choice effect soeasily.
... but they do
- Semantics cannot be separated from pragmatics; in particular, pragmatics becomes recursive: in assertoric uses of free choice sentences (permission reports). $\llbracket \mathrm{e} \varphi \rrbracket^{c}=\left\{w \in W \mid\left(\exists c^{\prime}\right)\left[w_{c^{\prime}}=w \& P e r_{c^{\prime}+\varphi}^{0} \subseteq P e r_{c}^{0}\right]\right\}$.
This would al so befed into the interpretation of embedded permission reports:
Usually, you may only take an apple. So, if you may take an apple or take a pear, you should bloody well be pleased.
3.2 Brute Force
\llbracket MAY $(\varphi$ OR $\psi) \|^{c}=\left\{w \in W \mid\left(\exists c^{\prime}\right)\left[w_{c^{\prime}}=w \&\left(\llbracket \varphi \rrbracket \cap \operatorname{Per}_{c}^{0}\right) \neq \varnothing \neq\left(\llbracket \psi \rrbracket \cap \operatorname{Per}_{c}^{0}\right)\right]\right\}$

PRO Brute Force

- Nomixing of pragmatics and semantics.
- Choice effect preserved under embedding.

CONTRA Brute Force

- Non-compositional: bracketing is ok, but irrelevant; neither MAY nor OR have their ordinary meanings.
- One would still predid a non-choice reading obtained by compositionally combining may and or.
- Does not carry over to eqistemic choice (=or \sim and) effects, as in:

We may go to France or stay put next summer.

3.3 Grice

$\llbracket \mathrm{e} \varphi \rrbracket^{c}=\left\{w \in W \mid\left(\exists c^{\prime}\right)\left[w_{c^{\prime}}=w \& \llbracket \varphi \rrbracket^{c} \cap \operatorname{Per}_{c}^{0} \neq \varnothing\right]\right\}$
Deriving choice effect as a conversational implicature:

Peformativeuse

... as special case of assertoric use ('Saying so makes it so'):
Assume that A has authority over B and that this fact is common knowledge shared between A and B. Then B may be expected to react to A 's utterance: You make take an apple' with the reflection: It is up to A whether I may takean apple or not. Thereforehe knows what he says is trueor false It may be assumed moreover that he is not saying what he knows to befalse, as this would go against established prindiples of conversational propriety. Sol may condudethat I have the permission to take an apple. (Kamp 1978, 275)
... in the case of an utterance of (1), A may reason as follows:
Theremust be a reason why A used [(1)] rather than e.g. [(2)] or [(3)]. His use of [(1)] cannot but signify that while he allows me to satisfy [take an apple or take a pear] hehas left it undedided which of these disjunctsI shall satisfy; for if hehad decided this matter he could have used - and conversational propriety would in that case have demanded that he use- the simpler [(2)] or [(3)]. That he has left thequestion regarding which disjund I shall satisfy undedided could haveone of two reasons; it is either that he isn't yet in a position to make this decision (eg. because he doesn't yet possess all the relevant information); or else it is because he doesn't really care.' (Kamp 1978, 278)

PRO Grice

- No mixing of pragmatics and semantics.
- Noambiguity.

CONTRA Grice

- Freednoiceeffect in embedded permission sentences can only be obtained by assuming a frozen implicature.

References

Kamp, Hans: 'Free Choice Permission’. Proceedings of the Aristotelean Society, N.S. 74 (1973), 57-74.

- : 'Semantics versus Pragmatics'. In: F. Guenthner, S. J. Schmidt (eds.): Formal Semantics and Pragmatics for Natural Languages. Dordrecht 1978, pp. 255-287.
Karttunen, Lauri: 'Syntax and Semantics of Questions'. Linguistics and Philosophy 1 (1977), 3-44.
Lewis, David: 'A problem about permission'. In: E. Saarinen et al. (eds.), Essays in Honour of Jaakko Hintikka. Dordrecht 1975.
Stalnaker, Robert (ms.): 'Comments on Lewis's problem about permission'.

