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Chapter 0

Background

This is the accompanying material to an introductory course to linguistic
semantics – or, more precisely: to logical semantics. The general topic, the
central questions, as well as some basic considerations and concepts ought
be familiar from an introduction to linguistics. The current chapter briefly
sums up the most important background assumptions.1

0.1 Semantics and Pragmatics

The object of semantics is the literal meaning of linguistic expressions, which
include both individual words and, in particular, complex phrases, sentences
as well as texts and dialogues. Literal meaning is, as it were, what an
expression means all by itself – the meaning it has solely on account of
linguistic facts, not on account of its use in a particular context. While,
e.g., in WiIly Millowitsch’s utterance of (1a)2 the subject may refer to all of
mankind as in (1b), former local politician Rüther only talks about himself
and those close to him in his utterance of the same sentence, as in (1c):

(1) a. Wir sind alle kleine Sünderlein.
[≈ We are all little sinners.]

b. Die Menschen sind alle kleine Sünderlein.
[≈ People are all little sinners.]

c. Die Kölner SPD-Abgeordneten sind alle kleine Sünder-
lein.
[≈ The Cologne socialist deputies are all little sinners.]

Who is referring to whom by their utterance of the personal pronoun wir,
i.e., whether (1a) is understood as in (1b), (1c), or whatever, should be clear

1More detailed information may be found in the (German) semantics notes to the Frankfurt
undergraduate Intro to Linguistics: Link

2Willy Millowitsch was a German stage and TV actor. – For those who do not recall the
melody his one-time hit: Link
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0.1. SEMANTICS AND PRAGMATICS

from the circumstances of the utterances – the context – and is thus not
a question of semantics but of pragmatics, the study of linguistic use and
non-literal meaning. On the other hand, anyone who utters (1a) declares
himself a sinner – no matter which group he may refer to; for with wir
[≈ we] speakers must refer to themselves – this is demanded by the literal
meaning of wir (or we, for that matter). It is thus a semantic fact that the
speakers refer to themselves by (1a).

Unlike the popular actor’s utterance of (1a), the local politician’s utter-
ance is ironic, if by it he wants to express that the members of his Cologne
clique all by no means little sinners only. Aspects of irony, too, go beyond
the purely literal meaning of sentence (1a) and thus fall into the domain of
pragmatics. This also holds of other rhetorical figures of speech and stylistic
devices like litotes and metaphor. Among the central non-literal phenomena
treated in pragmatics are also the so-called (conversational) implicatures;
these are inferences beyond the literal meaning that a speaker invites the
hearer to draw in view of the circumstances or wording of the utterance. If,
e.g., a final report on a political scandal contains sentence (2a), the reader
gathers that at least not all deputies submitted receipts for fictional dona-
tions; for otherwise the report would hardly have left this unmentioned. One
thus infers the truth of (2b) from the (written) utterance of (2a):

(2) a. Mehrere Abgeordnete haben fingierte Spendenquittun-
gen eingereicht.
[≈ Several deputies submitted fake donation receipts.]

b. Nicht alle Abgeordneten haben fingierte Spendenquit-
tungen eingereicht.
[≈ Not all deputies submitted fake donation receipts.]

On the other hand, from the very wording of (2a) one cannot conclude that
even a single deputy has a clean record. For (2a) could, e.g., be part of
a newspaper article that disinterred the first cases of corruption. In this
case the reader should take good care not to conclude (2b) from (2a). And
if it later turns out that in fact all deputies had submitted fake receipts,
(2a) would in no way be refuted. It is only the special circumstances of a
comprehensive final report that suggest that (2a) be understood so as to
not concern all deputies. As in the case of (1a), the context in which the
utterance was made plays a crucial rôle for the inference from (2a) to (2b) –
a so-called scalar implicature. The exact interaction between literal meaning
and background knowledge is important for implicatures like these to arise
and thus make a large portion of pragmatics – but are outside the realm of
semantics.

Both the parliamentary report and the journalistic investigations are con-
cerned with tax receipts. But (2a) could just as well have been used in
connection with receipts for the financial office of parliament (assuming its
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CHAPTER 0. BACKGROUND

existence). Its literal meaning even leaves open whether all deputies men-
tioned submitted their receipts to the same institution. It may, after all, be
that some of them have cheated the tax office and others their parliament;
and it may be that (2a) describes these multiple allegations of deceit. Of
course, that said deputies submitted their receipts somewhere or to some
institution is clear by the very wording, the literal meaning of (2a) – but
it remains open where or to whom; this can at best be inferred from the
context.

The examples suggest the following demarcation criterion between literal
and non-literal meaning:

(3) Invariance
Whatever is part of the literal meaning of an expression needs to be
contextually invariant, i.e., is must not vary across contexts in which
the expression is uttered.

It is a contextually invariant part of the meaning of (1a) that the speaker
refers to a group (s)he belongs to. Which group the speaker refers to varies
from context to context and is thus not part of the literal meaning. It is
only part of the literal meaning of (2a) that more than one deputy submitted
receipts – to the tax office, to parliament, each to their own institution, etc.,
this being a matter of context again. And it is also a matter of context
whether the utterance is intended and may be understood as including (3b)
(or implicating (3b), to use the correct pragmatic term). Since the latter
inference and the implicit addressee of the receipt submissions vary with
context, they are not part of the literal meaning.

The criterion of Invariance turns out to be helpful when it comes to decid-
ing whether a particular aspect needs to be left out of semantic consideration;
we will at times use it for this purpose. But the criterion is vague and its
application is not always clear. (More about this in an exercise!) Moreover,
it is unidirectional. If an aspect of meaning varies from context to context,
then according to this criterion, it is not part of the literal meaning. From
this one cannot conclude that all invariant aspects are automatically part
of literal meaning; for the criterion says nothing about invariant aspects in
general. And there are indeed aspects of meaning that are stable across all
contexts without being counted as part of literal meaning. Thus a speaker
using the word Köter [≈ cur] thereby indicates that she is speaking about
(representatives of) a species that she personally dislikes. In this the noun
Köter [≈ cur] differs from the noun Hund [≈ dog]. And still such valu-
ations are usually not counted as part of literal meaning, the reason being
theory-internal: if speaker’s valuations are separated from literal meaning,
the relation between the two aspects can be explained better. We will briefly
return to this point in Chapter 8 [which is yet to be written].

One area in which drawing the border between literal and non-literal

3



0.2. LEXICAL AND LOGICAL SEMANTICS

meaning may be difficult is the domain of speech acts, and particularly of
illocutions (types of speech acts). To begin with, many sentences can only
be used in a restricted way:

(4) a. Du hast noch keine Pizza gegessen.
[≈ You still haven’t had any pizza.]

b. Wieso isst du keine Pizza?
[≈ Why don’t you eat pizza?]

c. Iss Pizza!
[≈ Eat pizza!]

By using (4a) one can make an assertion or claim; with (4b) one may inquire
for information; with (4c) one can order or advise someone to consume pizza.
Are these possibilities part of the literal meaning of the three sentences? One
can also understand (4a) as a demand and (4b) as a piece of advice, after
all. Still, even in those cases (4a) and (4b) may also be used assertorically or
inquisitively, respectively; demand and advice would then be indirect speech
acts. In any case, Invariance does not exclude that the use potential of a
sentence is part of its literal meaning.

Let us take stock. Semantics is only concerned with the literal meaning
of linguistic expressions. In particular, meaning aspects that vary with the
utterance context fall into the domain of pragmatics. Further phenomena
that are excluded from semantics are the speaker’s valuations associated with
the use of particular words as well as the range of possible uses of particular
sentence types.

0.2 Lexical and logical semantics

In the following the meanings of individual words will only concern us marginally.
They are the object of lexical semantics. The focus of this course, on the
other hand, are the meanings of complex expressions – i.e., those that consist
of more than one word. They are the object of logical semantics (aka com-
positional semantics). We will primarily be concerned with the question of
how the meanings of complex expressions emerge from their syntactic struc-
ture and the meanings of the words of which they consist. It will turn out
that, in general, the answer to this question does not require any detailed
knowledge of lexical semantics.

The difference between lexical and logical semantics shows both in the
range of phenomena typical for them and in the methods needed to investi-
gate them. To give a flavor of this difference, we will briefly address a few
questions of lexical semantics.

Word meanings are more readily studied if they are not regarded in iso-
lation but in relation to each other. As a case in point, a comparison of the
words Handwerker [≈ craftsman] and Maurer [≈ bricklayer] reveals that

4



CHAPTER 0. BACKGROUND

the latter has a more specific meaning than the former, whereas both are
more general than Polier [≈ site foreman], though less special than Person
[≈ person]. In this connection, the relation between more special and more
general is to be understood such that the more general designation applies
to everything to which the more special one applies, but not vice versa: if
someone is rightly described as Polier [≈ site foreman], one may also de-
scribe him by Maurer [≈ bricklayer]. In lexical semantics, this relation,
which rests on the (literal) meanings of the words so related, is called hy-
ponymy : Polier [≈ site foreman] is a hyponym of Maurer [≈ bricklayer],
which in turn is a hyponym of Handwerker [≈ craftsman], which in turn
is a hyponym of Person [≈ person]. Hyponymy is a sense relation, a re-
lation between expressions that holds solely in view of the literal meanings
of these expressions. Further examples for sense relations [and words that
stand in them] are: synonymy, which holds between words that have the
same literal meaning [obwohl [≈ though] : obgleich [≈ although]]; con-
verse, which holds between expressions that express relations in opposite
directions [Lehrer [≈ teacher]: Schüler [≈ pupil]]; incompatibility, which
holds between nouns that can never relate to the same object [Gedanke [≈
thought] : Buch[≈ book]].

Sense relations do not only hold between words. Complex expressions,
too, can be synonyms (5a), hyponyms (5b), converses (5c) of one another or
incompatible with each other (5d):

(5) a. lila Apfelsine : violette Orange
[≈ purple orange] : [≈ purple orange]

b. kleiner grüner Kaktus : grüner Kaktus
[≈ little green cactus] : [≈ green cactus]

c. zwei Jahre älter : zwei Jahre jünger
[≈ two years older] : [≈ two years younger]

d. nur sonntags : nur werktags und samstags
[≈ only on Sundays]: [≈ on only workdays and Saturdays]

The examples show that the sense relations between complex expressions do
not merely result from those between the words involved. The synonymy in
(5a) does not come about because all words of the left expression are synony-
mous with those of the right expression; for even though lila [≈ purple] and
violett [≈ purple] are synonyms, just like Orange [≈ orange] and Apfel-
sine [≈ orange]3 but not lila [≈ purple] andApfelsine [≈ orange]. But then

3This case is somewhat more complicated in that probably practically no one actively
uses lila [≈ purple] and violett [≈ purple]. (In my experience, Orange [≈ orange] and
Apfelsine [≈ orange] are different in this respect.) But normally speakers of German
understand both adjectives, at the same time assuming a difference between them though:
those who use lila [≈ purple] may, e.g., think that violett [≈ purple] refers to a brighter
color. However, empirical investigations suggest that both words are used to refer to the
same color by speakers who actively use them.

5
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the words in (5a) do stand in a pairwise synonymy relation. The hyponymy
in (5b) is different in this respect. For the only sense relation of note that
holds between the individual words, is again synonymy – as it trivially holds
between the two occurrences of grüner [≈ green] – but precisely this syn-
onymy does not carry over to the entire expressions; adding the adjective
klein [≈ little] turns the synonymy into a hyponymy. In the case of (5c), on
the other hand, the result of modifying each of the comparatives älter [≈
older] and jünger [≈ younger] by zwei Jahre [≈ two years] preserves the
relation of converse between them. Finally in (5d), the incompatibility is
obviously essentially created by the logical words nur [≈ only] and und [≈
and]; for sonntags [≈ on Sundays] on its own neither excludes werktags
[on workdays] nor samstags [≈ on Saturdays].

So the sense relations between complex expressions do not directly derive
from those between the words involved. Logical semantics has developed
methods to account for sense relations like those in in (5) as results of an
interaction of word meaning and syntactic constructions. As a result, or
a by-product, as it were, a natural classification of lexical sense relations
emerges. We will return to this at times during this course. At this point
it only needs to be noted that the representation of sense relations can be
transferred from the non-lexical to the lexical domain, but not vice-versa.

Another phenomenon frequently encountered in the lexical domain is
ambiguity, which occurs when single words or word forms carry more than
one meaning. The form weiß [≈ knows/white] may be a verb form or the
predicative form4 of an adjective. All forms of the noun Ball [≈ ball] (Balls,
Bällen etc.) can refer to spherical play utensils or to dance festivities. In
these case it is obvious that we are dealing with two different words that
happen to be pronounced and written in exactly the same way. In order
to distinguish them from one another, one may, for instance, use subscripts
(Ball1, weiß3.ps.sg.ind.pres.of wissen etc.). Each of these disambiguated words
has its own meaning specified in the lexicon.

The cases of lexical ambiguity just mentioned were all homonyms, i.e.,
words or word forms that have several unrelated – or not obviously related
– meanings. Not all ambiguous words are homonyms though. The phe-
nomenon of polysemy is encountered at least as frequently: ambiguous word
forms where it seems that one meaning is derived from the other one or
where both seem to have a common core:

• The noun Glas [≈ glass] can refer to a material as well as to a type of
drinking container, but then there is an obvious connection: typically

4The predicative form is that form that is used in sentences of the form ‘x ist ADJECTIVE’
– as opposed to an attributive form, which serves to modify a noun (weißes Tuch [≈
white cloth]).Unlike, e.g., French ones, German adjectives only have one predicative form
but usually several attributive ones. (The adjective lila [≈ purple] is an exception to this
rule.)

6



CHAPTER 0. BACKGROUND

containers referred to as Glas [≈ glass] are made of the material called
Glas [≈ glass]. Despite this tight connection we are dealing with two
distinct words (cf. the exercise).

• The adjective kurz [≈ short] can relate to spatial distances as well as to
temporal intervals, and again there is at least this plausible connection:
a short interval is one that can be represented in the spatial dimension
by a short distance.

• The adjective scharf [sharp/spicy] can be used as the opposite of (or
antonym to5) either mild [≈ mild] or stumpf [≈ blunt]. Again there
seems to be a connection even it is not so easy to pin down.

Calling objects made of some material by the name of the material is quite
common: Gips [≈ plaster], Papier [≈ paper], Leder [leather/chammy] etc.;
in lexical semantics this is called metonymic polysemy6 The connection be-
tween the readings of kurz, however, is metaphoric: space serves as a picture
of time. This type of frozen metaphor7 is extremely frequent, not only in
German [or English, for that matter]. Thus, e.g., many spatial prepositions
(in [≈ in|, vor [≈ before], zwischen [≈ between], . . . ) can also be used in
a temporal sense. But there are more metaphors that underly lexical am-
biguity: Untergang [≈ sinking/decline], Kreuzung [crossing/intersection]
Schmalz [lard/kitsch]. The third of the above examples rests on a transpo-
sition of the tactile sense to taste and thus illustrates synesthetic polysemy,
metaphor across dimensions of perception, as it can also be found in hell
[bright/high and clear] and rau [rough/hoarse].

Apart from the kinds of polysemy mentioned here there are more possible
connections between the readings of single words. This variety presents a
major problem to lexical semantics. In fact neither a comprehensive classi-
fication of types of polysemy nor a full theory of its occurrence have been
developed so far. It still seems clear that it is not a totally random phe-
nomenon; rather, there are – cross-linguistic – regularities in the diversifica-
tion of lexical meanings. Some of these regularities – especially in the area of
metonymic polysemy – are pretty well investigated. But a general theory of
polysemy still needs to be developed. Not even a clear-cut demarcation from
homonymy is known: is the ambiguity of treffen [≈ meet/hit] illustrated in
(6a) and (6b) a case of polysemy? This can hardly be decided in the absence
of a clear criterion.

5Antonymy is the sense relation that holds between degree adjectives whose comparatives
are converses of each other. Somewhat simplifyingly, antonyms always refer to the op-
posite poles of a scale: lang [≈ long] : kurz [≈ short]; groß [≈ big] : klein [≈ small];
heiß [≈ hot]: kalt [≈ cold]; etc.

6The term covers all kinds of polysemy where there is a factual connection between the
two readings – including the readings of Schule [≈ school] as a building or an institution.

7A frozen metaphor is one that has become part of common linguistic usage.

7
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(6) a. Der Gewährsmann trifft einen Beamten am Schalter.
[≈ The informant is meeting a civil servant at the counter.]

b. Die Gewehrkugel trifft einen Bekannten in der Schulter.
[≈ The bullet hits an acquaintance at the shoulder.]

We will not go into these problems within this course; and whenever dealing
with polysemous words, we will treat them like homonyms, only teasing
apart the distinct readings (e.g., by subscripts) without making a connection
between them.

0.3 Semantics and Syntax

Structural Ambiguity

Ambiguity not only exists in the lexicon. Complex expressions, too, may
be ambiguous. For a start, a complex expression may contain one or more
ambiguous words:

(7) EinWechsel der Bank bewirkt keinen Unterschied im Gehalt.

[≈ A change/cheque of the bank/bench does not make a difference in
salary/content.]

Three of the four nouns in (7) are ambiguous. So the sentence has at least
23 = 8 readings, some of which do not make much sense though. Apart from
this inheritance from lexical to complex expressions, there is a much more
interesting type of ambiguity – viz. structural ambiguity, which ensues when
the same (not necessarily ambiguous) word forms combine into the same
sequence of words in different ways:

(8) Der Bauer schlug einen Esel mit einer Rute.
[≈ The farmer beat a donkey with a cane.]

All the individual words are unambiguous,8 (8) is ambiguous. The following
paraphrases bring this out:

(9) a. Mit einer Rute schlug der Bauer einen Esel.
[≈ Using a cane, the farmer beat a donkey.]

b. Einen Esel mit einer Rute schlug der Bauer.
[≈ A donkey with a cane was beaten by the farmer.]

The second reading is less obvious – perhaps because without a particular

8More precisely, the lexical ambiguities in (8) are irrelevant in that they can be discarded
for syntactic reasons: the noun Bauer in the sense of birdcage does not occur in (8), be-
cause it would have called for the neutral article das in lieu of der. Something analogous
holds of the article der, which is ambiguous with respect to case and gender.

8
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context, one does not easily imagine donkeys with canes. But there is no
doubt that (8) may be construed in the sense of (9b). This in itself does
not prove that we are dealing with a true case of ambiguity, though; it
is conceivable, after all, that (8) is indeterminate as to who has the cane.
However, a counting test clears this up. For if (8) in the sense (9a) is true of
two different occasions, when may infer (8) . . . und zwar zweimal [≈ and
even twice]; the same is true if the farmer twice beat a be-caned donkey (and
not necessarily the same one). But if he first uses a cane to beat a caneless
donkey and then uses his hand to beat a donkey that does have a cane, the
corresponding continuation would not be justified. So one cannot add the
occasions at which (9) is true in the sense of (9a) to those at which (8) is
true in the sense of (9b).9

The ambiguity of (8) is due to the fact that the prepositional phrase mit
einer Rute [≈ with a cane] can either apply to the noun Esel [≈ donkey]10

or to the verb phrase schlug einen Esel [≈ beat a donkey]. (8) accordingly
has two different constituent structures (10a) and (10b), corresponding to
the two readings (9a) and (9b):

(10) a.

der Bauer

schlug
einen Esel

mit
einer Rute

9Here is an analogous case involving lexical ambiguity. Suppose Fritz first lives across the
street from a bank but there are no benches anywhere in the area. He then moves to
an apartment that is across the street from a park bench, though the nearest bank is
far away. In this case the sentence Zum zweiten Mal wohnt Fritz gegenüber einer
Bank [≈ For the second time Fritz lives across the street from a bank/bench] is not true
– no matter whether the form Bank [≈ bank/bench] is supposed to stand for benches or
banks; and one cannot (seriously) have it refer to both.

10. . . or to the determiner phrase einen Esel [≈ a donkey]:

der Bauer

schlug

einen Esel mit
einer Rute

However there are semantic reasons that speak against this structure; we will return to
this in Chapter 6.

9
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b.

der Bauer
schlug

einen
Esel

mit
einer Rute

Term evaluation

This type of ambiguity can also be found in mathematical terms or formulas;
to cope with it, bracketing has been invented, which makes a direct connec-
tion with the corresponding reading of the term. We will now take a closer
look at this connection; this will not only help us to get a better understand-
ing of the phenomenon of structural ambiguity but of the interpretation of
complex expressions in general. We will use an arithmetic example that
does not presuppose any semantic knowledge. Only from Chapter 2 onward
will we see how these considerations carry over from the ‘language’ of arith-
metic to natural language. No reason to be afraid of too much mathematics,
though: we will not be concerned with calculating numbers but with the
question how designations of numbers are understood.

First of all, one needs to notationally distinguish between numbers and
number designators – terms, for short. In analogy to natural language ex-
amples we will thus write terms in boldface when we talk (i.e., write) about
them, while we will refer to numbers with ordinary sequences of digits set
‘normally’. Thus, e.g., 9 and 32 are two distinct terms that both stand for
the number 9. The number for which a term stands will, from now on, be
called the value of that term. To refer it, we will put double brackets around
the term. Thus the value of 32 is: J32K = 9 = J9K, although, clearly, 9 6=
32; the terms are distinct but they stand for the same number.

In order to see how terms refer to numbers and which rôle the bracketing
plays, we will focus on power terms, i.e., terms of the form ab , where a and b
may themselves be power terms (!) or single digits: 0, 1 . . . ,9; sequences of
digits, like 99, will be ignored.11 Each of the ten digits stands for a number:

(11) Evaluation of simple terms
J0K = 0; J1K = 1; J2K = 2; . . . ; J7K = 7; J8K = 8; J9K = 9.

It is worth pondering the above equations for a moment. At first blush they
may appear circular, since they seem to say that boldface and normal digits
refer to the same number. However this impression is misguided! For the
equations only make a statement about what the boldface digits refer to.

11We will return to them in the exercises.
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The other digits are not talked about, they are only used to make reference
to the corresponding numbers Had we wished to talk about both types of
digits, we would have had to write the following instead of the first equation:

(12) J0K = J‘0’K

In (12) ‘0’ acts as a name for a digit that is used in the equations in (11),
where it refers to the number 0. As a statement about what the digit 0 refers
to, (12) is indeed circular. For, like boldface types, inverted commas are are
but a means to designate the number in question. Thus viewed, (12) says
the same as:

(12′) J0K = J0K

(12′′) J‘0’K = J‘0’K

On the other hand, the equations under (11) make a connection between
symbols (the digits) and objects for which these symbols stand (numbers).
What is confusing about this is merely that we are talking about the very
symbols that we are using. We have to deal with this kind of apparent
circularity all the time when we are talking about the meaning of German
expressions in German (as in the original version of these class notes, but
not this very translation though!).

Even if the equations in (11) are not circular, they are still pretty trivial.
The fact that 6 stands for the number 6, is known to everyone. How do we
know this? Because we have learnt it some time ago – usually in primary
school or shortly before that. And not only this: the digit 6 refers to the
number 6 by definition, so to speak, it is the common designation of that
number, and we do not know this symbol other than as a designation of that
number. In this sense the equation ‘J6K = 6’ is trivial. On the other hand
it does not express a compelling state of affairs. One may, after all, imagine
that the symbol 6 designates the number 5;12 and there is certainly nothing
contradictory in this idea. The trivial equations thus are not tautologies, i.e.,
statements that become contradictory when negated – like the equations in
(12′) and (12′′).

Let us now turn to the complex terms. In mathematics notations like
232 are avoided because they are ambiguous, and brackets are used instead:
232 can be disambiguated as (23)2 and then denote the number 64 [≈ 82];
or else the bracketing is 2(32), and we are dealing with the number 512 [≈
29]. Without the brackets, one would not know which of the two possibilities
is intended. What precisely does the bracketing indicate? This is easy: the
bracketing dissects a term into its parts, which themselves are terms and

12. . . just like the oldest decimal system, the North Indian Brahmi notation (3rd century
BC) uses practically the same symbol for the number 8 like the West Arabic Gobar
system (11th century AD) uses for 5 (viz. something like Q).

11



0.3. SEMANTICS AND SYNTAX

which themselves can be dissected into their parts (as long as they are not
single digits). When bracketed as 2(32), the term consists of the parts 2 and
32 (in this order); with the bracketing (23)2, on the other hand, it consists
of 23 and 2:

(13) a.
232

left part
2

right part
32

left part
3

right part
2

b.
232

left part
23

left part
2

right part
3

right part
2

If one wants to determine the number for which the whole term stands, i.e.,
its value, one follows the bracketing in that one first determines the values
of its parts. Thus in (13a) one first needs to find out what the terms 2 and
32 stand for, and for (13b) one needs the values of 23 and 2. Once this is
known on puts the value of the left term part (the base) to the power of the
value of the right one (the exponent):

(14) a. J2(32)K = J2KJ32K b. J(23)2K = J23KJ2K

(14a) and (14b) look complicated at a first glance and circular at a second.
Both impressions are deceptive. If one finds (14a) opaque, one should try
a verbalized version: The value of the term x ensues if the value of the left
term – i.e., the value of 2 (i.e., J2K) – is put to the power of the value of the
right term – i.e., the value of 32 (i.e., J32K), thus putting J2K to the power of
J32K. As an exercise one may immediately verbalize (14b) too! This ought
to help understand the two equations. But it is precisely then that one gets
the impression that they are completely void of content. To see that this is
not so, we may look at the general pattern underlying (14a) and (14b):13

(15) Evaluation of complex terms
If a and b are terms, the following holds: JabK = JaKJbK

The fact that superscripted terms are to be understood as in (15), is not
compelling in that it could have been otherwise. For instance, ab may also
have denoted the product of the number denoted by a with the value of b.
In that case one would have needed the following equation instead of (15):

(15′) JabK = JaK × JbK

13Question: Why are we using italics for terms in (15) and not boldface as elsewhere? –
Answer : Boldface is used to denote single terms whereas ‘a’ and ‘b’ are variables for
arbitrary terms. If we had used ‘a’ and ‘b’ instead, we would have said something about
the letters ‘a’ and ‘b’.

12
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It should be noted that the symbol ‘×’ in (15′) stands for an arithmetic
operation, viz. multiplication. Similarly, in (15) superscripting to the right
of the equality sign stands for the exponentiation of two numbers, viz. the
values of the terms a and b. Superscripting to the left of the equality sign,
on the other hand, stands for a configuration of symbols (the terms). No
arithmetical operation would make sense here, for they apply to numbers,
which can be multiplied, exponentiated, etc. Terms can only be written
next to each other, on top of each other, etc. The equation in (15) thus
says that a particular combination of number symbols – to wit, writing
them next to one another while superscripting the right one – corresponds
to a certain arithmetical operation – viz., exponentiation. And there is
nothing circular in this correspondence; rather, it is a common, but neither
necessary nor universal notational custom. Due to the prevalence of that
custom, (15) appears almost as natural as (11). That superscripting stands
for exponentiation – which is precisely what (15) says – is something we learnt
at school after all, though not quite as early as the interpretation of the digits.
And the seeming circularity of (15) is of the same ilk as the one perceived in
(11). Just as we referred to the numbers with the common (‘Arabic’) digits in
(11) that the equations were about, so in (15) the exponent is represented by
superscripting – which is the notation that the equation is about. The use of
superscripts to the right of the equality symbol is, of course, presupposed in
(15). Hence the equation can only be grasped by someone who already knows
this and thus knows what exponentiation is, i.e., which arithmetic operation
it is. So (15) is not a rule of computation, but merely an explanation of the
exponent notation, which such computational rules always presuppose.14

The equations in (11) and the pattern in (15) suffice to evaluate brack-
eted terms like (13a) and (13b). For according to (15), the values of the
complex terms are derived from the values of their parts, which themselves
are evaluated according to (15) (if they are complex) or (if they are digits)
have their values declared in (11). This term evaluation of (13a) and (13b)
can again be represented by way of a tree:

J(13a)K J2(32)K = J2KJ32K = 29 = 512

left part
J2K= 2

right part
J32K=J3KJ2K=32= 9

left part
J3K= 3

right part
J2K= 2

J(13b)K J(23)2K = J23KJ2K = 82 = 64

left part
J23K=J2KJ3K=23= 8

left part
J2K= 2

right part
J3K= 3

right part
J2K= 2

14The following rule is a case in point: nm = n · . . . · n︸ ︷︷ ︸
m-times

– or more precisely: n0 = 1;

nm+1 = n · (nm)
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The evaluations of (13a) and (13b) stepwise follow the bracketing – from the
smallest parts to ever larger ones. The values of the smallest parts are given
in advance in the equations (11); for compound terms the general rule (15)
comes into play. Obviously, arbitrarily complex terms can be evaluated in
this way – as long as their smallest parts are single digits and they are only
combined by superscripting.

Compositionality

The reason why we discussed the procedure of evaluating terms as illustrated
in (13a) and (13b) so extensively is that it plays such a central rôle in logical
semantics. In order to account for the meanings of complex linguistic ex-
pression, we will always assume that they come with brackets, so to speak,
i.e., that the are decomposable into parts and parts of parts. As a rule the
precise bracket structure is motivated syntactically, mostly coinciding with
a simplified surface structure – as in the case of (10a) and (10b) above. At
times, however, we need to apply a different, purely semantic bracketing, a
so-called Logical Form. We will make this explicit when we get to analyzing
pertinent examples. For the time being, we only note that the interpretation
of complex linguistic expressions always requires a decomposition into parts,
whatever the source of this decomposition may be.

The analogy between term evaluation and interpretation of natural lan-
guage expressions has its limits. After all, expressions normally do not stand
for numbers that one could apply arithmetical operations to. But the overall
procedure is the same. In semantic theory, this is captured by a method-
ological principle:15

(16) Principle of Compositionality
The meaning of a complex expression derives from the meanings of
its parts and the relevant syntactic construction.

This is supposed to mean that the interpretation of a sentence follows con-
stituent structure – just like the term evaluation in (13a) and (13b). So in
order to determine the meaning of (8), one first has to decide on one of its
two readings. In the case of (10a), then, the meaning of the predicate ensues
by combining the meaning of schlug einen Esel [≈ beat a donkey] with
that of mit einer Rute [≈ with a cane].

15The origins of this principle are unclear. It used to be called Frege’s Principle, after
the founder of logical semantics, but: “Frege selbst hat das Prinzip niemals ausdrücklich
aufgestellt, es wurde nur nach ihm benannt, weil es gut zu seinen sprachphilosophischen
Grundgedanken passt” [≈ Frege himself has never explicitly formulated the principle,
it was only named after him because it fits his basic ideas in philosophy of language
so well] (as Irene Heim put it in her 1977 Master’s Thesis). In its modern form as a
generalization of term evaluation the principle of compositionality (though not under
this name) appears in the essay Universal Grammar (1970) by Richard Montague.
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Unlike term evaluation, the Principle of Compositionality is not con-
cerned with numbers, but with linguistic meanings. We will see what these
meanings are as we go along. We already mentioned that meanings cannot
be combined by applying arithmetical operations – so exponentiation won’t
do it. But we will introduce semantic operations, which combine meanings
instead.

Apart from the parts of complex expressions and their meanings, the
Principle of Compositionality also makes reference to syntactic constructions.
These are of importance in that they determine just how the meanings of
the parts are to be combined. So far this is hard to see – we have not yet
come across any semantic operations after all. The following example might
still offer a glimpse:

(17) Fritz und Eike sind verheiratet.
[≈ Fritz and Eike are married.]

This sentence is ambiguous (cf. the exercise). Its two readings may be
paraphrased as follows:

(17′) Sowohl Fritz als auch Eike sind verheiratet.
[≈ Both Fritz and Eike are married.]

(17′′) Fritz und Eike sind miteinander verheiratet.
[≈ Fritz and Eike are married to one another.]

It is not entirely obvious what the source of the ambiguity should be. Does
the word und [≈ and] have two meanings? Or does the sentence (17) have
two syntactic structures? One reason that speaks against homonymy is that
this would have to occur a lot of languages: Englisch and, French et, He-
brew ve, . . . all trigger the ambiguity observed in (17). This can hardly be
accidental. But then homonymies are usually products of coincidence; and
that the same homonymy occurs in two unrelated languages is extremely im-
probable. Furthermore, the ambiguity in (17) can also be found with other
plural determiner phrases (like die beiden [≈ the two]) where it cannot be
explained in terms of an ambiguity of the word und [≈ and]. This in itself
does not speak in favor of structural ambiguity,16 but it lets it appear more
plausible. However, if (17) is structurally ambiguous, this is arguably due to
the way in which the subject Fritz und Eike [Fritz and Eike] is combined
with the predicate sind verheiratet [≈ are married]: according to one con-
struction, (17) is understood in the sense of (17′), according to the other one
it comes out in the sense of (17′′). The Principle of Compositionality then
says that in both cases the ‘input’, the meanings of subject and predicate,
is the same, but that the two constructions combine this input in different
ways.

16Systematic polysemy is another option.
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0.3. SEMANTICS AND SYNTAX

The Principle of Compositionality refers to the parts of complex expres-
sions. As in term evaluation, these are always supposed to be the immediate
parts – not the parts of parts. This is an important restriction. For without it
the principle would only say that the meanings of complex expressions can be
obtained from those of their parts and parts of parts as well as their syntactic
structure. Since among the parts of parts of a complex expressions are the
words that occur it it, this would boil down to saying that the word meanings
together with the syntactic structure determine the meaning of the overall
expression. This is certainly right, but far too little. Rather, composition-
ality means that the meaning of each and every expression emerges directly
from the meanings of its immediate parts (and the syntactic construction
they stand in). In this way the meaning of the whole can be determined step
by step, starting with the word meanings and all the way up to the complete
sentence. At this point the difference may appear minimal, but we will later
see that it must not be neglected.

As is well known, linguistic expressions are unlimited in their number
and complexity; and in principle, speakers know their meanings even if they
have never heard or read them before. The Principle of Compositionality
explains how this is at all possible: in order to understand a complex expres-
sion, one only needs to know what the words it contains mean and which
semantic operations correspond to the syntactic constructions it employs.
Though the number of words and of syntactic constructions is very large, it
is not unlimited. It is thus principally possible that one learnt each of them
individually and brings them into action in a compositional way. A glance at
the evaluation of terms again shows how one may conceive of the semantic
knowledge underlying linguistic understanding as coming in two parts. One
part consists of lexical rules, that say what the meaning of each word is –
like the equations in (11) define the value of each single digit; the other part
consists of grammatical rules, that say how each construction combines the
meanings of the expressions that undergo it – like the scheme (15) says that
the value of two terms written next to each other (where the second one is
superscripted) results by exponentiation of the values of these two terms.
Since this is a course on logical semantics, lexical rules will be largely ne-
glected. One cannot do totally without them though – compositionality has
got to start on something after all; but they will be mostly trivial, though
not quite as trivial as the equations in (11).

Since according to the Principle of Compositionality, the parts of expres-
sions only contribute their own meaning, they may always be substituted by
synonymous expressions without thereby affecting the meaning of the whole.
In semantics (and philosophy of language) this immediate consequence is
known as the:

16
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(18) Substitution Principle17

If one part of an expression is replaced by a synonymous expression,
the meaning of the whole expression does not change.

As we will see more often during this course, typical applications of the Sub-
stitution Principle are negative: if two supposedly synonymous expressions
cannot always be substituted for each other without changing the meaning
of the whole, they could not have been synonymous in the first place. Let
us illustrate this with an example. In view of sentences like (19a) and (19b)
one may at first suspect that the prepositional phrases in einer Woche [≈
in a week] and heute in einer Woche [≈ in a week from today] have the
same meaning:

(19) a. Kommen Sie in einer Woche noch mal vorbei.
[≈ Come back again in a week.]

b. Kommen Sie heute in einer Woche noch mal vorbei.
[≈ Come back again in a week from today.]

(19b) may be slightly more precise as an order, but obviously boils down to
(19a). In this case it appears that one expression may be replaced by the
other without changing the overall meaning.18 That the two sentences are
not synonymous after all, can be seen from the following substitution:

(20) a. Der Techniker bat mich, in einer Woche noch mal vor-
beizukommen.
[≈ The technician requested that I come back again in a week]

b. Der Techniker bat mich, heute in einer Woche noch mal
vorbeizukommen.
[≈ The technician requested that I come back again in a week
from today]

If said technician had told me (19a) or (19b) yesterday, (20a) would be a
correct account of his request – but (20b) would not. Thus (20a) and (20b)
cannot possibly have the same meaning.19 Bur since (20b) results from (20a)
by substitution of the singly underlined part by the doubly underlined one,
given the Substitution Principle they cannot be synonymous – contrary to

17The Substitution Principle already plays a central rôle in Gottlob Frege’s essay Über
Sinn und Bedeutung (1892).

18It may be noted that this comparison does not even make use of the Substitution Prin-
ciple, which makes no claim about substitutions in which the meaning of the entire
expression does not change. This may come as a surprise, but becomes clear by the
following reformulation of the principle (or contraposition, as logicians call it): If sub-
stitution of a part of an expression by another one changes the meaning of the whole
expression, the two parts are not synonymous.

19This argument also makes use of a very general principle that we will only encounter in
the next chapter: the Most Certain Principle.
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the first impression based on (19a) and (19b). So much for the illustration
of the Substitution Principle to which we will return shortly.

The Principle of Compositionality has proved extraordinarily helpful in
logical semantics – among other things because it helps finding out what
the meanings of linguistic expressions are. (More about this from Chapter
2 onward.) We will therefore adhere to it throughout this course and only
regard a semantic analysis as complete if it accounts for the meanings of the
expressions under scrutiny in a compositional way.

18
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0.4 Exercises for Chapter 0

A1 In what way do ambiguous expressions present a problem for the ap-
plication of the criterion of Invariance? And how can the problem be
solved?

A2 Though the verbs telefonieren [≈ make a phone call] and anrufen
[≈ call over the phone] describe similar activities, they do no have the
same meaning.

(a) What is the difference in meaning?

(b) Is one a hyponym of the other?

(c) In what way do the meanings of the verbs make a different con-
tribution when it comes to determining an unnamed partner of a
telephone conversation?

[Only look at the intransitive uses of these verbs!]

A3 In (5c) the converse relation between älter [≈ older] and jünger [≈
younger] survived an expansion by zwei Jahre [≈ two years]. Show
that not every modification of converses again leads to converses. Hint:
Consider nouns instead of comparatives!

A4 Show that the two uses of Glas [≈ glass] – material vs. container – do
constitute two readings, wich behave like two distinct words.

A5 Formulate a compositional term evaluation for arabic number terms
consisting of more than one digit. Assume a ‘left-branching’ bracketing
for the purpose – e.g., (((42)5)1) for 4251.
Extra question: What would be the problem with a right-branching
structuring like 4(2(51))?

A6 Formulate rules of term evaluation for multiplication and addition that
correctly accounts for terms like (5 · (3 + 2)) and ((0 · 6) + (2 +
3)).

A7 Show that the sentence Fritz und Eike sind verheiratet [≈ Fritz
and Eike are married] is ambiguous.
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Chapter 1

The Meanings of Sentences

According to the Principle of Compositionality the meanings of complex ex-
pressions are determined by the meanings of their parts, which are in turn
determined by the meanings of their parts, etc. – down to the smallest parts,
which are usually words. In order to account for the meaning of a complex
expression, one can start with the meanings of the words it contains, climb-
ing up compositionally to ever more complex parts until one finally reaches
the meanings of the immediate parts of the whole expression and combines
them to determine its meaning. We will later encounter this procedure in
many examples. However, before we get there, we need to find out just
what meanings are. In order to do so, the reverse strategy – from complex
expressions to words – is recommendable. More precisely, we will start by
identifying the meanings of complete sentences. This will be done by way
of examples, because in the beginning we only want to know what kind of
objets sentence meanings are, and not so much how the meaning of one ex-
amples differs from that of the next. Once we have a better grasp on the
meaning of sentences in general, we will, in the next chapter, address the
question how it is determined from the meanings of its parts and what those
meanings themselves are.

1.1 The Principal Principle of Semantics

One difference between someone who hears (or reads) a sentence like (1)
and understands it, and someone who does not understand it, is that it can
create a certain image, an inner picture, for the former:

(1) May maliit na batang babae na naglalaro.

(1) is a sentence of Tagalog,1 which more or less literally translates as:

1Tagalog (stress on the 2nd syllable), the official language of the Philippines since 1962,
is an Austronesian language that is spoken by some 40 million native speakers across
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(1′) Ein kleines Mädchen spielt.
[≈ A little girl is playing.]

As a reader of these notes you understand (1′) (or at least the gloss), whereas
you are probably at a loss with (1). And when you first read (1′), a certain
image may have entered your head. This may suggest the following answer to
the question what sentences mean: The meaning of a sentence is the idea it
creates. There are many reasons that speak against such a notion of meaning,
though. For the ideas associated with sentences are (a) too subjective to serve
as meanings, they are (b) restricted to few kinds of sentences, they are (c)
irrelevant for communication, and on top of that they are of a (d) private
nature:

(a) Different speakers associate different things with the same expressions,
which they still use in the same sense, with the same meaning.

(b) In the case of (1′), associated internal pictures may be conceivable
meanings, but how, e.g., could the meaning difference between Pizza
esse ich zweimal im Monat [≈ I eat pizza twice a month] and Pizza
esse ich jede Woche [≈ I eat pizza every week] be captured in inner
images?

(c) Due to personal experience, speakers may make all kinds of associa-
tions a sentence which do not affect the way they understand it or its
meaning.

(d) The ideas and associations of an individual are principally inaccessible
to other speakers, so how could they serve to communicate between
speakers?

Given these objections, it is advisable to look for a less naive notion of
meaning. The following observation turns out to be useful to this end. Let
us compare (1) with another sentence of Tagalog, the translation of which
will only be revealed later:

(2) May maliit na batang lalake na nagaawit ng awit.

As I am writing this, a little girl who is busy with a jigsaw, is sitting next to
me in the train. So sentence (1) was not chosen at random, but was actually
true at the time of writing. The same holds of (2). I put it down shortly
afterwards (when the girl was still playing), and it was also true to the facts.
But in the few seconds that have passed since then, this has changed: unlike
(1), (2) is no longer true.

the world – one of them being my former colleague Tim Fernando (now Trinity College,
Dublin), to whom I owe the examples.
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You do not know what (2) means, but one thing you do know now is this:
(1) and (2) do not mean the same. They cannot, for (1) is true in the given
circumstances, while (2) is not. We note this elementary conclusion as the:

(3) Most Certain Principle
If in the same circumstances, one of two sentences is true while the
other is not, then they do not have the same meaning.

We already employed this principle at the end of the preceding chapter. But
its relevance lies not so much in its actual application but in the fact that
it is an undisputed, even banal observation on a subject about which we
have almost no other secured pre-theoretic knowledge.2 However blurry and
opaque the phenomenon of meaning may appear, the connection made out
in the Most Certain Principle is quite obvious – and this connection holds
between the meaning of sentences and their truth. So whatever meanings
(at least of sentences) may be, they have something to do with truth.

The above example illustrates that truth is not absolute in that the same
sentence can be true or false (= not true), depending on what it relates to:
sentence (2) correctly describes the circumstances in which I had initially
been; in relation to the subsequent scene, however, it is false. In semantics,
the circumstances to which a sentence may relate are called situations of
which it is true (or false), to which it applies (or does not apply, as the
case may be). We had looked at two situations that differed with respect
to time3; and (1) and (2) were both true of the first, earlier situation, while
(2) was false of the second situation. It is worth noting that this situational
reference is implicit in that there is no part of the sentence that denotes the
situation.

According to the Most Certain Principle, two synonymous sentences must
have the same truth conditions, i.e., they must both be true or both be false
of any given situation. Following the tradition of logical semantics (aka as
truth-conditional semantics indeed), we will make no further assumptions
about sentence meaning and for the following (until further notice) only
investigate those meaning aspects of sentences that are reflected in their
truth conditions. We use content as a cover term for these aspects. The
content of a sentence thus comprises those parts of meaning that make up
its truth conditions and may thus be characterized as follows:4

(4) Principal Principle of Semantics

2The term (Most Certain Principle) is due to logician, semanticist, and philosopher of
language Maxwell J. Cresswell from New Zealand, who formulated the principle in his
essay The Autonomy of Semantics (1982).

3Even though they were set in the same train compartment, they also differed with respect
to space, since in the meantime the train had moved!

4The Principal Principle of Semantics ultimately goes back to the Tractatus logico-
philosophicus (1921) by the Austrian philosopher Ludwig Wittgenstein.
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That two sentences have the same content means that they apply to
exactly the same situations.

This formulation does not mention the situations of which the sentences in
question are false. In fact, this is not necessary. For if two sentences apply
to exactly the same situations, i.e., if they are true of the same situations,
then they are both false of all other situations.

The Principal Principle of Semantics merely regulates how the term con-
tent is to be used when applied to sentences. It only becomes effective by
restricting the analysis of sentence meaning to content. This restriction on
the description of sentence meaning has proved fruitful for semantic analysis.
Only in Chapters 8–10 [yet to be written] will we see where this method-
ology meets its limits. Until then we will content ourselves with analyzing
sentences so that it suffices for them to come out equivalent if they are both
true or false in arbitrary circumstances.

It follows from the Principal Principle of Semantics that two sentences
that differ in content cannot be true of exactly the same situations. Any
semantic difference between two sentences must therefore be reflected by (at
least) one situation to which only one of them applies. In the case of (1)
and (2), which indeed differ in meaning, we had taken the existence of such
a situation as indicating a difference in meaning5 The Principal Principle of
Semantics now forces us to come up with such evidence for any semantic
difference between two sentences. We will see that finding such evidence is
not always easy. But then the Principal Principle of Semantics turns out be
so useful that the search will always be worth the effort.

1.2 Propositions

According to the Principal Principle of Semantics the content of a sentence
only concerns which situations it applies to. One may thus identify the
content of a sentence with these situations. This is exactly what we will do.
The content of (5) thus consists of precisely the situations in which someone
is coughing:

(5) Jemand hustet.
[≈ Someone is coughing.]

If, e.g., Tom is sitting at his desk and suddenly needs to cough, then (5)
applies to this situation; if, however, the entire audience during a concert is
quiet, then this would be a situation to which (5) does not apply. Let us call
the first situation t and the second one k. Then according to our assumption
the content of (5) comprises the situation t, but not the situation k. It should
be noted that this is so whether or not (5) itself is uttered in the situations

5By the way, (2) says that a little boy is singing.
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at hand. The sentence need not be uttered at all and applies to t but not to
k. This is just a matter of its meaning, its content.

That the content of a sentence consists of situations is supposed to mean
that these situations as a whole form the content of the sentence. We will
thus conceive of the content of a sentence as a set, in the mathematical sense
of the term. The defining feature of a set is that it collects arbitrarily many
objects – in our case: situations – into one abstract whole. The objects
thus put together are called the elements of the set. Elementhood is thus a
relative concept: a thing, or a situation, is never an element per se, but can
only be an element of a given set. As a case in point, the above situation t
is an element of the content of (5), but not an element of the content of:

(6) Niemand hustet.
[≈ No one is coughing.]

What is a mathematical concept like set doing in logical semantics in the first
place? Wouldn’t it suffice to use a ‘naive’ concept of wholes when defining
the contents of sentences? Yes and no. As long as we are exclusively deal-
ing with sentence contents, mathematical modeling is rather pointless. But
we are going to find out how the meanings (i.e., the contents) of sentences
compositionally emerge from those of their parts. And for this, some ele-
mentary logical and mathematical tools turn out to be indispensable. This
will already become clear in the next chapter. Apart from this, the mathe-
matical account of the concept of meaning also introduces a certain amount
of precision that prevents difficult problems being talked away by flowery
style. Instead it makes it easier to formulate theoretical hypotheses that are
in principle testable. But before we get to this, we need to understand some
of the necessary mathematical tools, starting with the concept of a set. For
even though we will not present an introduction to set theory here – this
won’t be necessary for our purposes anyway – a minimum of background
knowledge is mandatory. For the beginning, we will content ourselves with
a crucial property of sets that we will again formulate in terms of a general
principle. It says that a set is defined solely by the objects that are collected
in it:

(7) Principle of Extensionality
If a set A has exactly the same elements as a set B, then A = B.

The gist of the Principle of Extensionality is best seen by way of an exam-
ple. If one collects all German towns with over a million inhabitants into
one abstract whole, one obtains a set with four elements. We can write this
set as ‘{Berlin, Hamburg, Munich, Cologne}’, listing its elements in curly
brackets.6 In this case we ordered the elements by their number of inhabi-
6Of course, it is not the elements themselves that are listed, but denominations of these
elements, in this case names of cities. Incidentally it is not the kind of denomination that
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tants. We could just as well have presented them in a different order, e.g.
as ‘{Hamburg, Cologne, Berlin, Munich}’. According to the Principle of Ex-
tensionality this must be the same set. For the same reason, some (or all)
elements could be listed more than once without any effect on the set itself.
So we have: {Berlin, Hamburg, Munich, Cologne} = {Hamburg, Cologne,
Berlin, Munich, Berlin, Hamburg, Cologne}. In particular, from the length
of the list in curly brackets one cannot deduce the number of elements of the
it represents.

The Principle of Extensionality can neither be proved nor refuted. Rather,
it is a conceptual assumption: the concept of a set, i.e., the concept of a col-
lection of objects into one abstract whole, is to be understood so as satisfy
this principle. Should it turn out that two objects A and B have the same
elements without being the same – i.e. A 6= B – then A and B could not
be sets in the set-theoretic sense (and one should thus not have talked of
elements in the first place).

The Principle of Extensionality guarantees that the Principal Principle
of Semantics can be cashed in by regarding sentence contents as sets of
situations: according to the Principle of Extensionality, the sets of situations
of which two sentences are true, coincide just in case the two sentences apply
to exactly the same situations, i.e., if they have the same content according to
the Principal Principle. We will come across further set-theoretic principles
during the next chapter.

The contents of sentences are sets whose elements are exclusively situ-
ations. In semantics such sets are called propositions, and it is said that
a sentence expresses the proposition that is its content.7 We follow this
terminology here and record this in the form of terminological regulations
(definitions):

D1.1 A proposition is a set of situations – i.e., a set all of whose elements
are situations.

D1.2 That a sentence S expresses a proposition p, means that p is the
content of S.

Warning: not every proposition needs to be the content of a sentence! As one
can imagine, contents of sentences are usually rather large sets of situations.
Thus, e.g., the above situation t is only one of the many situations of which
(5) is true. On the other hand, sets of situations can be arbitrarily small
and thus, e.g., only have one or two elements. As the exercises will bring

counts as long as the same object is denominated. The above set could also have been
written as ‘{Berlin, Hanseatic City of Hamburg, Bavaria’s capital, Willy Millowitsch’s
birthplace}’.

7It should be noted that, according to D1.2 sentences, i.e., linguistic expressions, express
something; in a different manner of speaking, mainly used and to be defined in pragmatics,
it is speakers that express something by using expressions.
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out though, there does not seem to be any sentence whose content is such
a small set of situations. To put it shortly: the concept of a proposition
is more general than that of sentence content in that sentence contents are
always propositions but not every proposition is the content of a sentence.

1.3 Situations

We have seen that a sentence can relate to a concretely given situation.
By uttering the sentence the situation is characterized as an element of the
proposition the sentence expresses. This characterization may serve different
purposes – to answer a question, to clear up a misunderstanding, or merely
to inform the audience of a state of affairs. How the proposition expressed
by a sentence is brought into use in communication is a question of prag-
matics that we are not concerned with here. It is also a question of language
use which situation the speaker refers to when he says something about it.
Usually it is a situation in which the speaker himself is currently in. If at the
beginning of a concert Hans expresses his surprise by whispering (6) to the
woman sitting next to him, he may thereby refer to the first few minutes of
the concert. And he may be right, even though at the same time a cloakroom
attendant is coughing in the foyer. The foyer then simply does not belong to
the situation Hans is talking about. Though there is a larger situation that
also includes the foyer, that would not be the situation Hans is referring to.
To be sure, he is in both situations but he only refers to one of them, the
smaller one.

We thus assume that situations come in different sizes, both spatially and
temporally. It is therefore natural to identify situations with spatiotemporal
regions. We will do so indeed – though only until the end of Chapter 9 [which
is yet to be written]. More exactly, we define:

D1.3 A situation is an arbitrary connected spatiotemporal region.

Though not much hinges on this precisification (or reconstruction) of the
common notion of a situation, it helps making the building blocks of sen-
tence meanings more tangible; at times we will also call them in to decide
problematic cases.

As spatiotemporal complexes, situations may not just differ in size but
also include or overlap each other. Thus the above-mentioned extended
concert-cum-foyer situation includes the situation to which Hans refers in
our example. Since he is in both situations, i would not make much sense to
say that Hans is talking about the situation that he and his seat neighbor
are in. In fact, they both are in a lot situations together and at the same
time: in the concert hall during the first five minutes; in Row 17 during all of
the concert; in the Amsterdam Concertgebouw during the first movement of
the Alpine Symphony; in early 21st century Europe; etc. All these situations
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overlap, and in some of them (5) is true, while (6) is true in others. But
only one of them is what Hans refers to with his whispered utterance of
(6). Which situation this is depends on his intentions. If he wants to be
understood by his neighbor, it better be obvious to her what he refers to.
Thus if Hans had earlier expressed his fear that too many coughs may spoil
the concert for him and now five minutes have passed since its beginning,
it is indeed natural to interpret Hans’s utterance of (6) as relating to the
situation in the concert hall during these first five minutes. Under different
circumstances though – perhaps if his neighbor had just enquired about the
health state of his family – he may have referred to a different situation.

It is again a general question of pragmatics how speakers manage to
make situational reference comprehensible to their audience. In many cases,
though, it is not really important precisely which situation the speaker means
to talk about, as long as it is within reasonable bounds. Whether Hans refers
to the first five minutes or the first four and a half minutes, to the entire
music hall or the front stalls only – these details are obviously irrelevant for
communication and are not even noticed by speaker or hearer.8 Moreover,
the content of the sentence uttered, the proposition it expresses, may largely
neutralize situational reference. Sentence (8) is a case in point: for – contrary
to the first impression it may create – it does not matter to which place it
is meant to relate:

(8) In den USA gibt es in jedem Bundesstaat eine Stadt namens
Springfield.
[≈ There is a place called Springfield in every US state.]

Unlike (6), where implicit reference is made to the spatial location of the
situation, (8) explicitly mentions a particular place, viz. the USA. Let us
suppose that Hans utters (8) while waiting for the tram after the concert.
One may perhaps think that he is thereby talking about a distant, spatially
quite extensive situation. But this need not be so. After all, what is said by
(8) is that, at some, not explicitly mentioned, time, each US-state contains a
Springfield. As in (5) and (6), the time to which Hans’s utterance relates is
again that of the situation about which Hans is talking – the ten minutes at
the Amsterdam tram stop maybe. In (8) no further reference to this situation
is made. In particular, its spatial location is not referred to. There is a place
that gets mentioned, but this is independent of the situation (the utterance
of) the sentence is about. Reference to the place of the situation has been
neutralized by the use of the explicit local specification in den USA [≈
in the USA]: (8) is equally true (or equally false) of any situation that is
temporally located within the 10 minutes mentioned as it is true (or false)

8This vagueness of what is meant is again to be accounted for in pragmatic analysis, which
is not at all easy.
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of the utterance situation.9 Hans may have uttered (8) after the concert to
say something about a situation in which he and the person he is talking to
happen to be. What he would have said then, would have been that this
situation is located at a time at wich any US-state contains a place called
Springfield . Since the situation expressed by (8) consists of all situations
that satisfy the underlined condition, the situation Hans is talking about
would even be in this set if it only contained the first two stall rows in the
concert building – as long as there are only enough Springfields in the USA
(which there aren’t, by the way). Quite generally, the sentence (8) is true
of every situation that temporally coincides with some situation to which it
applies. In this sense the spatial aspect of the situation a speaker uttering
(8) refers to is neutralized – which in turn means that the hearer need not
know down to the smallest (spatial) detail to which situation the speaker is
referring to.

What is true of space, also applies to time. It too may be largely neu-
tralized:

(9) Am 22. April 2002 haben insgesamt fünfzehn Leute angerufen.
[≈ On April 22, 2002, altogether fifteen people called.]

The sentence can be true of quite different situations: my office, my elder
son’s room, the complaint department of a computer dealer, etc. But if it is
true of such a situation, time practically plays no rôle.10 Let us consider my
younger son Tom’s room on April 23, 2002. If (9) applied to this situation
t (this spatiotemporal environment, that is), this means that a day before
fifteen people had called Tom; but then (9) is also true of the situation t ′

that starts a day later and ends two weeks thereafter; for it would also hold
of this situation that fifteen people had called there – at Tom’s place – on
April 22, 2002.

We end the section with a general characterization of the concepts of
neutrality introduced here, even though they will hardly come back to it in
what follows:11

D1.4 A proposition p is spatially [or temporally ] neutral iff for all sit-

9For factual reasons the temporal restriction need not be taken too narrow; for place
names and country borders do not change that often. It thus does not matter whether
the situation to which the utterance of (8) is supposed to relate, takes a few minutes (or
days) longer.

10. . . with a minor qualification that will be addressed in an exercise. – Incidentally,
(9) is (structurally) ambiguous. In its co-called individual-related reading the sentence
says that fifteen different persons called during the day in question (and no matter how
many times each of them called), whereas the event-related reading, which we are going
to ignore here, only requires there to have been fifteen phone calls, at least some of
which may have been made by the same person.

11From now on we will frequently make use of the common abbreviation ‘iff’ for ‘if, and
only if,’ – which means that if the one is true, then so is the other, and vice-versa.
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uations s and s ′ the following holds: if s and s ′ only differ with
respect to their spatial [or temporal] position, then either s∈p and
s ′ ∈p – or else: s /∈p and s ′ /∈p.

1.4 Logical Space

According to the Principal Principle, any semantic difference between two
sentences must be demonstrable by way of some situation (or more), which
does not have to be contemporary though:

(10) Ein Archaeopterix hebt ab.
[≈ An archaeopterix is taking off.]

(11) Ein Flugsaurier setzt zur Landung an.
[≈ A pterosaurian is preparing for landing.]

Of course, (10) and (11) do not mean the same, even though both of them
are false of any present situation. One may still assume that there are past
situations of which only one of the sentences is true. The fact that such
situations are in the past and without any human observer has no effect on
the very existence of such situations. The situations mentioned in the Prin-
cipal Principle thus have to be taken in a temporally highly inclusive sense.
They also include any future situations that may, e.g., serve to differentiate
between (12) and (13):

(12) Ein Astronaut landet auf dem Mars.
[≈ An astronaut is landing on Mars.]

(13) Ein Astronaut landet auf der Venus.
[≈ An astronaut is landing on Venus.]

As soon as, in the far future, an astronaut is flying to Mars, this voyage
– which is a spatiotemporal segment after all (and thus a situation) – will
make sentence (12) true, but not (13). Hence – assuming that such a voyage
will take place – there are indeed situations with which (12) and (13) can be
distinguished in the sense of the Principal Principle of Semantics.

But even if one took all situations, large and small, close by and far away,
past, present, and future, they would not suffice to instantiate all differences
in content. In fact, (12) and (13) could not be distinguished if no one ever
flew further than the moon. For in that case both sentence would be false
of any situation – and hence, in particular, true of the very same situations.
According to the Principal Principle of Semantics, they would thus have to
coincide in content, which is of course absurd.

We need not speculate about the future of space travel to find examples
of this kind. The following two sentence also obviously do not mean the
same, though they are true of the same situations:
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(14) Der Entdecker der X-Strahlen starb in München.
[≈ The discoverer of X-radiation died in Munich.]

(15) Der erste Physik-Nobelpreisträger starb in München.
[≈ The first Nobel laureate in physics died in Munich]

X-radiation (vulgo: X-rays) is a form of electromagnetic radiation first dis-
covered by Wilhelm Conrad Röntgen, the first Nobel laureate in physics,
who died in Munich in 1923. Given this, there is no situation to which (14)
applies but (15) does not – so that by the Principal Principle one would have
to conclude that (14) and (15) have the same content. The principle thus
seems to prove untenable.

However, we will not give up that easily. For even if there is actually no
situation of which, say, (14) is true but (15) is not, such a situation could
well have existed. If, e.g., it had not been Röntgen who received the first
Nobel Prize in physics but Thomas Alva Edison, who died in West Orange
(New Jersey), (14) would be true here and now, but (15) would be false –
and we would have a proof at hand differentiating between the contents of
(14) and (15), as demanded by the Principal Principle. That we do not seem
to, is apparently due to the fact that – at least so far – by “situations” we
have always meant actual situations. However, if we extend the notion of
a situation to such possible situations like the one just described, examples
like (14) and (15) could not touch the Principal Principle of Semantics. And
it is precisely this extension of the notion of a situation that we herewith
perform. So if, here and in what follows, we mention situations, we are not
just referring to scenarios that are actually taking place, or took place at
some time, or will take place at some time, but to all possible situations
whatsoever.

The totality of all possible situations, to which the actual situations be-
long too, is called Logical Space.12 We assume that it is a – very large – set.
Since all elements of this set are situations, Logical Space is a proposition; an
exercise will show that it is also a sentence content. But let us first get clear
about its elements, the possible situations themselves, and its structure, the
relations between its elements!

Like actual situations, possible situations are spatiotemporal regions that
may also be arbitrarily extended, both in time and in space. Yet unlike
actual situations not all possible situations are segments of reality. Rather
– if they are not real – they are segments of other realities or, as we will
say (following a philosophical tradition): segments of other possible worlds.
Just as our world from Big Bang until the end of the universe is a gigantic,
all-embracing situation, so is the above scenario with Nobel laureate Edison
part of another gigantic, all-embracing situation, a different possible world.

12The term is from the work mentioned in fn. 23. It is, of course, a metaphor; in particular,
Logical Space is not a spatiotemporal region.
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Possible worlds thus are situations that are maximal in that they are not
themselves parts of larger spatiotemporal regions.

As we have seen, actual situations, i.e., segments of reality, can stand
in a variety of relations to one another: one may be included in the other
or temporally precede it, they may spatially overlap or be far distant from
each other, etc. The same is true of counterfactual situations, i.e., segments
of a non-actual world: every possible world consists of an enormous number
of situational parts, which stand in various spatiotemporal relations to one
another. And every possible situation, i.e., every element of Logical Space,
is part of one possible world and thus part of a spatiotemporal web of rela-
tions. Any one of these situations is a quite concrete, specific spatiotemporal
segment. Just like the actual situation that I am in consists of innumerable
details that I do not have a clue about – from the serial number of the lap-
top on my left knee via the speed of the train that I am traveling in up to
the exact time – so any situation of Logical Space is specified down to the
tiniest concrete detail. And since possible worlds are situations too, this is
also true of them. A possible world in Logical Space is thus quite different
from the world of a novel. For while, e.g., the world of Effi Briest leaves it
open whether Innstetten has a mole under his armpit – Fontane did seem to
not care about this – the possible worlds of Logical Space are totally spec-
ified even with respect to such details. Logical Space therefore hosts many
possible worlds that match Fontane’s novel, many Effi-Briest-worlds, which
only differ from each other in details that have been left open by the novel;
and none of these worlds could claim to be the world of Effi Briest. Only in
their totality do they correspond to the content of the novel. Thus viewed,
the world of a novel in the everyday sense is a proposition in the sense of
Logical Space.

We will not impose any limits to the diversity of Logical Space. No
conceivable situation, be it ever so outlandish, is going to be excluded from
it. We thereby make sure that the contents of arbitrary sentence can be
distinguished by the Principal Principle of Semantics, as long it is conceivable
tat one of them is true and the other is not. But despite the diversity of
Logical Space, a possible situation that separates two given sentences cannot
always be found. Thus, e.g., the following two sentences are true of the very
same situations – for if one is true, the other one cannot really be false:

(16) Ein Esel wird von einem Bauern gekauft.
[≈ A donkey is bought by a farmer.]

(17) Ein Bauer kauft einen Esel.
[≈ A farmer buys a donkey.]

According to the Principal Principle of Semantics (16) and (17) thus coincide
in context – which is good. For the two sentences obviously do say the same
thing.
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1.5 Sense Relations in Logical Space

To the extent that content corresponds to meaning, the equality in content
observed for (16) and (17) corresponds to a sense relation mentioned in
Section 0.2 – synonymy. In this section we will look at further sense relations
that may hold between (declarative) sentences. The focus will be on the
question of how these sense relations among sentence are reflected in the
propositions they express.

Let us start with a case of incompatibility. We had only defined this
sense relation for nouns, but it naturally carries over to sentences. For just
like Gedanke [≈ thought] and Buch [≈ book] can never relate to the same
object – no thought is a book and vice-versa – so (17) and (18) can never
apply to the same situation:

(18) Niemand kauft ein Tier.
[≈ Nobody is buying an animal]

Denoting the proposition expressed by a sentence S by ‘‖S‖’ – as we will
from now on do –, there cannot be any situation s for which it holds that:
s∈‖Niemand kauft ein Tier‖ and s∈‖Ein Bauer kauft einen Esel‖. For
if s were such a situation, then in s – since (17) is true – there would have
to be some farmer who buys a donkey; but then in this situation someone
(viz., said farmer) buys an animal (viz., said donkey), whereby (18) would be
false as a statement about s – contrary to our assumption. The relation be-
tween (17) and (18) can be visualized by a so-called Venn diagram, in which
sets are represented by regions: In Figure 1.1 the outer rectangle represents

∅ ‖(18)‖‖(17)‖

Figure 1.1: Incompatibility of (17) and (18)

the Logical Space of all possible situations. The situations of which (17)
and (18) are true, are encircled; for brevity, we put their numbers between
double lines instead of the sentences themselves, to denote the propositions
they express. The region of situations that are covered by both ‖(17)‖ and
‖(18)‖ is the intersection of the two propositions – in set-theoretic notation:
‖(17)‖∩‖(18)‖. Here the mere overlap of the circles does not imply that
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the two sets have any elements in common. Actually they do not; for as we
just saw, there are no such situations of which both (17) and (18) are true.
In Figure 1.1 the overlapping area of ‖(17)‖ and ‖(18)‖ has been marked
by the symbol ‘Ø’, which stands for the empty set – the only set without
elements.13

The incompatibility of (17) and (18) shows in the non-overlap relation
between ‖(17)‖ and ‖(18)‖ represented in 1.1: ‖(17)‖∩‖(18)‖ = Ø. In set
theory two sets that have no element in common are called disjoint (of each
other). The example thus shows that the disjointness between propositions
comes out as the incompatibility of sentences that express those propositions.

There are more sense relations between sentences that match simple set-
theoretic relations between the propositions they express. Let us consider:

(19) Niemand kauft eine Kuh.
[≈ Nobody is buying a cow.]

(18) obviously implies (19), i.e., if (18) is true, so is (19). In relation to
Logical Space this means that any possible situation of which (18) is true,
is one of which (19) is true. In other words, there is no possible situation to
which (18) applies without (19) also applying to it. This state of affairs can
again be represented by a Venn diagram: see 1.214

So each element of the proposition ‖(18)‖ is also an element of ‖(19)‖.
In set-theoretic terms, ‖(18)‖ thus is a subset of ‖(19)‖ – symbolically:
‖(18)‖⊆‖(19)‖. Just like the incompatibility between sentences boils down
to a set-theoretic disjunction, implication thus corresponds to subsethood.

If one knows that (18) is true (of a given situation), one knows more
than if one only knew that (19) is true (of this situation). In general, if a
sentence implies another one, the former contains more, or more detailed,
information than the latter. Since implication boils down to subsethood, this
13One could also have drawn the two circles so that they do not overlap:

‖(18)‖‖(17)‖

That Ø is the only set void of elements is due to the Principle of Extensionality: if L
contains no element, then in particular, L and Ø contain the same elements, i.e., L is
the set Ø.

14An alternative representation is:
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∅ ‖(19)‖‖(18)‖

Figure 1.2: Implication between (18) and (19)

means: the more informative a sentence is, the smaller is the proposition it
expresses.15 This seemingly paradox connection becomes clearer once one
considers that the more informative sentence excludes more situations than
the less informative one. Thus, e.g., (19) does not exclude that someone is
buying a duck; for (19) contains situations in which Fritz is buying a duck
(though nobody is buying a cow). Such situations are excluded by (18), i.e.,
they are not elements of ‖(18)‖. So ‖(18)‖ is more selective – and hence
smaller.

Implication, too, is related to a sense relation that we have already come
across in the nominal and adjectival domain: hyponymy. For just like (18)
can only apply to a situation to which (19) applies, so the hyponymKatze [≈
cat] can only apply to an individual to which the hypernym Tier [≈ animal]
applies. The exact relation between hyponymy and implication cannot be
addressed before Chapter 3 though, when we have the semantic analysis of
nouns at our disposal.

‖(19)‖‖(18)‖

15The smaller set is just the less inclusive one, it does not necessarily have fewer elements:
as a rule, propositions are infinite, and so one can be a subset of another one without
having fewer elements. This paradox of infinity may be elucidated by a mathematical
analogy: the set of even numbers {2,4,6, . . . } is a subset of the positive natural numbers
{1,2,3,4, . . . }, but the two sets have equally many elements in that they can be mapped
onto each other in a one-one fashion.
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1.6 Coordinating Sentences

The set-theoretic analysis of sentence contents as propositions sheds a light
on the meaning of coordinating conjunctions like und [≈ and] and oder [≈
or] as they are used in the following sentences:

(20) Alain spielt Klavier, und Tom hat das Radio eingeschaltet.
[≈ Alain is playing the piano and Tom has turned the radio on.]

(21) Alain spielt Klavier, oder Tom hat das Radio eingeschaltet.
[≈ Alain is playing the piano or Tom has turned the radio on.]

(20) und (21) can be interpreted compositionally. To do so, we will underlay
a ternary (= three-way) bracketing:

(20′)

Alain spielt Klavier und Tom hat das Radio
eingeschaltet

(21′)

Alain spielt Klavier oder Tom hat das Radio
eingeschaltet

According to the Principle of Compositionality, the meaning of sentence (20)
is obtained by combining the meanings of its immediate parts. According to
(20′), (20) has three parts, viz.:

(22) a. Alain spielt Klavier
[≈ Alain is playing the piano.]

b. und
[≈ and]

c. Tom hat das Radio eingeschaltet
[≈ Tom has turned the radio on.]

Two of the three parts of (20) are sentences. Hence their contents, ‖(22a)‖
and ‖(22c)‖, are propositions. ‖(22a)‖ is the set of situations in which Alain
is playing the piano, ‖(22c)‖ consists of the situations in which Tom has
turned on the radio. Of course, there are also situations in which both is
the case; these are obviously just the situations to which (20) applies. As
illustrated in figure 1.3, ‖(20)‖ thus is the intersection of the propositions
expressed by the sentential parts of ‖(20)‖: ‖(20)‖ = ‖(22a)‖∩‖(22c)‖.

Before going into the question of how the content of (20) is determined
compositionally, let us first take a look at (21): which situations does the
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‖(22a)‖ ‖(22c)‖

‖(20)‖

Figure 1.3: ‖(20)‖, ‖(22a)‖ and ‖(22c)‖

sentence apply to? First of all, ‖(21)‖ contains all situations in ‖(22a)‖; for
as soon as Alain plays the piano, (21) is true. Likewise ‖(21)‖ comprises all
situations in ‖(22c)‖; for if Tom has turned the radio on, (21) is true, too.
In situations that lie outside both ‖(22a)‖ and ‖(22c)‖, Tom has neither
turned on the radio, nor is Alain playing the piano. (21) does not apply to
such situations, but it does apply to all others. As a consequence, ‖(21)‖
is the union of ‖(22a)‖ and ‖(22c)‖. In set-theoretic notation: ‖(21)‖ =
‖(22a)‖∪‖(22c)‖ – and graphically:

‖(22a)‖ ‖(22c)‖

‖(21)‖

Figure 1.4: ‖(21)‖, ‖(22a)‖ or ‖(22c)‖

Following the Principle of Compositionality, ‖(20)‖ must be obtained from
‖(22a)‖, ‖(22c)‖, and the content of und [≈ and]; analogously, ‖(21)‖ is
obtained from ‖(22a)‖, ‖(22c)‖, and the content of oder [≈ or]. Abstracting
from the accidental feature of the example, the following interpretation of
und and oder-connections emerges – or conjunctions and disjunctions, as
they are called in logical semantics:16

16The terms conjunction and disjunction are also used for the words und [≈ and] and
oder [≈ or] themselves, as well as for the meanings of these words. The terminology
is somewhat unfortunate in that a conjunction in the syntactic sense is a particular
category (part of speech), to which both und [≈ and] and oder [≈ or] belong. But the
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(23) Semantics of conjunction
If S and S ′ are declarative sentences, the following holds:
‖S und S′‖ = ‖S‖ ∩ ‖S′‖.

(24) Semantics of disjunction
If S and S ′ are declarative sentences, the following holds:
‖S oder S′‖ = ‖S‖ ∪ ‖S′‖

The general format of (23) and (24) is reminiscent of rule (15) [Evaluation
of Complex Terms] from the preceding chapter, where [juxtaposition and]
superscripting was interpreted as expressing an arithmetical operation – ex-
ponentiation. In a similar vein, (23) and (24) interpret conjunction and
disjunction – the combination with und or oder – by set-theoretic opera-
tions, viz. intersection (∩) and union (∪). However, the analogy is false given
that superscripting is doubtlessly a kind of combination of terms and thus a
syntactic construction of the language of mathematical formulae. But con-
junction and disjunction are no constructions on their own. They are rather
applications of the same construction called coordination, which is the com-
bination of two sentences by a coordinating conjunction. If conjunction and
disjunction are to be interpreted as special cases of coordination, then the
words und and oder, too, need to have their own lexical content, which can
then be combined with the contents of the sentences conjoined. It is now
natural to regard the set-theoretic operations themselves as these lexical
contents:17

(25) Lexical Semantics of Conjunction and Disjunction
‖und‖ = ∩; ‖oder‖ = ∪.

Unlike (23) and (24) in its general format, (25) is like the Evaluation of Sim-
ple Terms (11) from the preceding chapter, putting, e.g., J5K = 5. (25), too,
lists the values for certain simple, lexical expressions. But then (25) appears
anything but trivial; for that the word und [≈ and] expresses intersection of
propositions is not part of general school education (unfortunately!). In what
follows we will be assuming that (25) is part of the semantics of German.

Instead of treating conjunction and disjunction as distinct constructions,
as in (23) and (24), it appears more adequate to assume a single construction
and trace back the difference to a difference in word content. In (25) it is
laid down what the latter is. But what is still missing indeed, is a reduction
of the content of sentences like (20) and (21) to the meanings of the words
und [≈ and] and oder [≈ or]. This is done by the following general rule:

(26) Semantics of sentence coordination
If S and S ′ are (declarative) sentences and K is a coordinating con-

context makes it usually clear what is meant.
17In (i) the symbols ‘∩’ and ‘∪’ must be interpreted as operations on propositions, not on
sets in general; for in the latter sense intersection and union are no set-theoretic objects.
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junction, then the following holds:
‖S K S′‖ = ‖S‖ ‖K‖ ‖S′‖.

The notation used in the above equation may be irritating. But then it
only exploits the fact that the content of a coordinating conjunction is a
set-theoretic operation and the schematic ‘‖K‖’ in each case can be replaced
by (the symbol for) such an operation – i.e., by ‘∩’, ‘∪’, etc. As a case in
point, for the case that K = oder, (26) ultimately yields the same result as
in (24):

(27) ‖S K S′‖
= ‖S‖ ‖K‖ ‖S′‖ following (26)
= ‖S‖ ‖oder‖ ‖S′‖ if K=oder
= ‖S‖ ∪ ‖S′‖ due to (25)

In (24) we had thought of, and interpreted, disjunction as a construction of
its own; the meaning of this construction was a semantic operation, to wit, set
union (restricted to propositions), which takes two propositions p and q at a
time and ‘merges’ them into a third one, the union p ∪ q. In (27), however, we
had been assuming that disjunction is a special case of sentence coordination;
the content of a disjunction like (21) then results from an interaction of the
word content of oder [≈ or] and the interpretation of sentence coordination
as given in (26). The latter is a semantic operation that ‘merges’ three
contents at a time – two propositions p and q and a set-theoretic operation
O – into a single proposition p O q. In semantics, this abstract operation
is known as functional application; for, mathematically speaking, it has a
function (the set-theoretic operation expressed by the conjunction, in this
case) apply to its arguments (the propositions expressed by the resulting
coordinated sentence). We will come across functional application again and
again during the course; the concept of a function itself will be addressed in
the following section.

Let us end the section with a digression on the pragmatics of disjunction.
According to figure 1.4 – and the interpretation of oder [≈ or] given in (25) –
(27) also applies to situations in which Alain is hammering on the piano and
Tom lets his radio drone. This may appear dubious at first sight: doesn’t
(21) say that either (22a) or (22c) is true, but not both? Not necessarily.
If I use (21) as an explanation and an apology for the high level of noise
toward my guest, the latter can hardly blame me for lying or being wrong
should it turn out that the acoustic disturbance was due to my two sons’
joint activities. The proposition expressed by my utterance thus covers all
situations in ‖(22a)‖ and ‖(22c)‖, including those in the intersection. The
opposite impression may at best arise if the latter situations are somewhat
less likely for speaker and hearer than the other possibilities in‖(21)‖. But
what speaker and hearer are thinking about while communicating, is not
necessarily relevant to linguistic meaning; we had already mentioned that in
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Section 1.1.
In many cases, though, a disjunction actually excludes the corresponding

conjunction. Someone who utters a sentence like (28), thereby does not mean
that (29) might be the case:18

(28) Fritz ist in der Uni oder [er ist] noch unterwegs [zur Uni].
[≈ Fritz is a the university or [he is] still on his way [to university]]

(29) Fritz ist in der Uni und [er ist] noch unterwegs [zur Uni].
[≈ Fritz is a the university and [he is] still on his way [to university]]

This is no reason to believe that (28) is a different, ‘exclusive’ type of dis-
junction though. For the the two clauses connected by oder [≈ or] express
disjoint propositions in the first place: the entire Logical Space does not
contain a single situation in which Fritz is both at the university and on his
way to university – for the latter presupposes that he has not (yet) arrived at
his goal. It is precisely for this reason, however, that (28) can be interpreted
as union in the style of (27); though the intersection of the propositions ex-
pressed by the two clauses is covered by ‖(28)‖, this intersection is empty
anyway. The fact that an utterance of (28) excludes the truth of (29), then,
has nothing to do with the meaning or the content of oder [≈ or].

Not in every case where a disjunction excludes the truth of the corre-
sponding conjunction, is this due to the impossibility of the latter; it suffices
that the falsity of the conjunction may be assumed as known. Thus (30)
per se does not preclude that Eric brings two kids along; but if speaker and
hearer know that Eric has only one child, the second option is out for both:

(30) Eric bringt heute seinen Sohn oder [er bringt heute] seine
Tochter mit.
[≈ Today Eric is bringing his son along or [he is bringing] his daugh-
ter [along]]

(31) Eric bringt heute seinen Sohn und [er bringt heute] seine
Tochter mit.
[≈ Today Eric is bringing his son along and [he is bringing] his
daughter [along]]

In this case, then, the truth of the conjunction (31) is not excluded by Logi-
cal Space but by the conversational background, the knowledge presupposed
as common to speaker and hearer for communicative purposes. The exact re-
lation between the conversational background and the proposition expressed
as well as the interaction between them is studied in pragmatics.19 At least
18These sentences are more idiomatic if the bracketed parts are omitted, but then the fact
they are sentence coordinations (in Logical Form) gets clouded; we will return to these
matters in Chapter 6.

19In this connection the fact will have to be addressed that in the circumstances described,
(30) is only adequate if the gender of Eric’s (only) child is unknown to the speaker.
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for cases like (30) the impression of an exclusive reading can be dispelled by
relatively easy means. Whether this is always possible is an open question
though. If not, two homophonous conjunctions would have to underly the
surface form oder [≈ or] and (25) would have to be adapted accordingly.
We shun this complication and assume for the following that oder [≈ or] is
neither homonymous nor polysemous and (25) fully captures the content of
its use as a sentence coordinator.

1.7 Extension and Intension

The chapter ends with a formal variant of the notion of a proposition that
the rest of these notes will be based on. Other than the set-based concept
introduced above, this variant approaches the content of a sentence on the
background of Logical Space, which is partitioned into a YES-area (= the
situations to which the sentence applies) and a NO-area (= those to which
it doesn’t apply):
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Figure 1.5: The content of a sentence as a bipartition of Logical Space

Using the (random) example Es regnet [≈ It is raining] as a model, figure
1.5 shows how the content of a sentence divides Logical Space, by assessing
each (possible) situation according to whether the sentence is true of it.
Using, as is customary in logic,20 the truth values 1 and 0 as indicators for
the correctness (YES) and incorrectness (NO) of a sentence, the partition
of Logical Space represented in figure 1.5 can also be written in the form of
a table:

20. . . since George Boole’s The Mathematical Analysis of Logic (Cambridge 1847); the
term ‘truth value’ [German ‘Wahrheitswert’] goes back to Frege.

41



1.7. EXTENSION AND INTENSION

Situation Truth Value
s0 1
s1 1
s2 0
s3 0
s4 1
s5 1
s6 0
s7 0
. . .

Table 1.1: Table representing a bipartition of Logical Space

In Table 1.1 the individual situations are assigned their truth value according
to the bipartition of Logical Space in figure 1.5. Mathematically speaking,
this bipartition thus comes out as a function. The situations listed in the left
column of the table, those to which the function assigns something, are called
the arguments of the function; we are assuming that any possible situation of
Logical Space can serve as an argument of the function represented in Table
1.1. The object the function assigns to an argument is called the [functional]
value for this argument. Each argument may only be assigned one value;
this is the main characteristic of a function. If f is a function and x an
argument, its functional value is written: ‘f (x )’. The set of all arguments
of a function f is also called its domain – for short: dom(f ). The set of all
values is also called the range – for short: rge(f ). These mathematical terms
are quite general and will from now on be used whenever we are dealing with
functions.

Functions may be construed as particular sets whose elements are so-
called ordered pairs. As the name suggests, an ordered pair always consists
of two objects, its first and its second component. We will write ‘(x, y)’ for
a pair with first component x and second component y.21 It is important
to notice that the pair (x, y) differs from the set {x, y} in that the order
of the components is vital: if x and y are two distinct objects, then (x, y)
and (y, x ) are also distinct (whereas {x, y} = {y, x}, as we already saw in
Section 1.2 in connection with the Extensionality Principle). And what is
more: a pair (x, y) uniquely determines its first and second components in
that there are not supposed to be any other objects x ′ and y ′, that are the
first and second components of the same pair. On the other and, one can also
construct the pair of an object x with itself – and this pair (x, x ) then neither
coincides with x itself nor with the singleton set {x} (whereas {x, x} = {x},
as we had seen too). Given these difference, it is quite surprising that it is in
principle possible to reduce the concept of a pair to that of a set. Since this

21Another common notation for ordered pairs (x, y) is by angular brackets: ‘〈x, y〉’.
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reduction does not play any rôle here, we are hiding it in an exercise though.
In what follows we will simply assume that pairs are asymmetric objects in
that swapping the first and second components results in a different pair –
unless the two components are identical.

In mathematics functions are commonly identified with sets of ordered
pairs whose first components are the arguments and whose second compo-
nents are the corresponding values. Thus the function f is the set of all
pairs (x, f(x)), where x is any argument. But beware: not every set of or-
dered pairs is a function!22 Rather, it has to meet a uniqueness condition
(aka functionality) to the effect that no argument must have more than one
value: if a pair (x, y) is in the function f (and thus f(x) = y), then the same
function must not contain another pair (x, z), for which it holds that y 6= z;
otherwise we would have: y = f(x) = z, contradicting the assumption that
y 6= z. In the case of the function represented in Table 1.1 this means that
the content of the sentence Es regnet [≈ It is raining] is not both true and
false of any situation, which is something we are indeed taking for granted,
following a venerable principle of logic.23

Clearly, then, the bipartition of Logical Space by the content of a sentence
can be represented by a function that assigns to any situation a truth value,
i.e., 0 or 1. Function and sentence content correspond to each other in
that one can be derived from the other. The function corresponding to
the content of a sentence assigns the truth value 1 to each element of the
content, and 0 to all another situations; seen as a set, this function thus
consists of all pairs (s, 1) where s is an element of the content, plus all pairs
(s, 0) where s is not an element of the content (but still a possible situation
from Logical Space). Inversely, one may start with a bipartition of Logical

22Sets of ordered pairs in general are called (binary) relations; hence functions are special
relations.

23The Law of Non-Contradiction, which has already been formulated in classic antiquity,
says that a sentence and its negation – Es regnet [≈ It is raining] and Es regnet nicht
[≈ It isn’t raining], in the case at hand – cannot be true at the same time, i.e., relating
to the same situation. Concerning situations in which it is drizzling very lightly, one
may be tempted to say that it is on the one hand raining in them, and on the other hand
not really – depending on the standard for ‘proper’ rain. This illustrates the general
semantic-pragmatic phenomenon of vagueness, which we are ignoring throughout these
notes. Instead we are assuming that vague concepts are to be made precise for purposes
of semantic analysis, e.g., by introducing artificial imaginary standards. More about
the topic of vagueness can be found in Chapter 2 of Mark Sainsbury’s Paradoxes (2nd

ed.,1995). – A further reason for violating the Law of Non-Contradiction may be seen
in the size of certain situations: in World War II it sometimes rained in some places,
and sometimes it didn’t rain in some places. Does the sentence Es regnet [≈ It is
raining] as relating to the war situations have two truth values, then? No, because we
may assume that the truth value is 1 because it had been raining in (at least) one of
its situational parts after all. This assumption ought to fall out of a lexical analysis of
Es regnet [≈ It is raining], expressing a persistent proposition, one whose truth carries
over from small situations to larger ones containing them. We must leave such finesses
of lexical analysis out of account here.
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Space represented by a function and form a corresponding proposition by
including all (and only those) situations to which the function assigns the
value 1. This correspondence between sets and functions whose arguments
are assigned truth values is quite general: if U (6= ∅) is some (non-empty)
set, then the subsets of U match the functions whose domain is U and whose
values are always truth values.24 These functions are said to characterise the
corresponding sets and are thus called characteristic functions:

D1.5 The characteristic function of a set M (relative to a set U) is a
function f with domain U such that for any x ∈ U it holds: f(x) =
1 iff x ∈M , and f(x) = 0 iff x /∈M .

In the case at hand, U is Logical Space, and the sets characterized are the
propositions. Further examples of characteristic functions will be encoun-
tered later in the course. Their domain will not always coincide with Logical
Space.

The characteristic function of the content of a sentence S is called the
Intension of S. From now on we will write it as ‘JSK’. The truth value the
intension assigns to a situation s is called the extension of the sentence S
(at the situation s). Traditionally – and here, too – it is written with the
argument as a superscript: ‘JSKs’.

D1.6 The intension JSK of a (declarative) sentence S is the characteristic
function of its content (relative to Logical Space), i.e., that function
f with domain Logical Space and such that for every situation s
the following holds:

f(s) =

{
1, if s ∈ ‖S‖
0, if s /∈ ‖S‖

}
D1.7 The extension JSKs of a (declarative) sentence S at a given situation

s is the value its intension assigns to s: JSKs = JSK(s).

Given this notation, a simple connection between contents of sentences and
their extensions can be formulated that will be of importance later:25

(32) For any situation s of Logical Space and any sentence S the following
holds:
a. s ∈ ‖S‖ iff JSKs = 1.
b. s /∈ ‖S‖ iff JSKs = 0.

The conceptual pair extension/intension will accompany us throughout the

24This means that the range is a subset of {0, 1}. It does not have to coincide with this
set, because the function might always assign the same value; in this case its range only
contains one element of {0, 1}.

25The second observation in (32) of course follows from the assumption that JSK is a
characteristic function.
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course.26 More specifically, we will try to define both extensions and inten-
sions for all kinds of linguistic expressions – nouns, verbs, articles, preposi-
tions, . . . . Intensions will more or less correspond to the literal meanings
of the expressions. The extension, on the other hand, always connects the
intension with a situation: the extension indicates what the expression re-
lates to in a given situation, it determines its reference; thus extensions are
always situation-dependent. In the case of sentences – the only expressions
for which we have defined extensions so far – this connection is admittedly
somewhat indirect. If a sentence S is true of a (possible) situation s, one
may take s itself to be the object to which S refers. If, however, S does not
apply to a situation s, the sentence does not refer to anything in s. In this
sense the extension of a sentence at a situation s always indicates what S
refers to: if JSKs = 1, S refers to s; if, on the other hand, JSKs = 0, S has
no (actual) referent.

As the extensions of sentences, truth values have a surprising property
that will help us to transfer the notion of extension to the clausal conjunc-
tions und [≈ and] and oder [≈ or] considered in the preceding section. Let
us first observe that the extension of a coordination is determined by the
extensions of the parts coordinated:

(33) JS und S′Ks = 1
iff s ∈ ‖S und S′‖ by (32)
iff s ∈ ‖S‖ ∩ ‖S′‖ by (23)
iff s ∈ ‖S‖ and s ∈ ‖S′‖ by def. of ‘∩’
iff JSKs = 1 and JS′Ks = 1 by (32)

(34) JS oder S′Ks = 1
iff s ∈ ‖S oder S′‖ by (32)
iff s ∈ ‖S‖ ∪ ‖S′‖ by (24)
iff s ∈ ‖S‖ or s ∈ ‖S′‖ by def. of ‘∪’
iff JSKs = 1 or JS′Ks = 1 by (32)

In (33) and (34) the truth value of a coordination is traced back to the truth
values of the coordinated clauses. The extensions of coordinations thus turn
out to be compositional. This becomes even clearer if one takes into account
that truth values are ultimately numbers and one may in principle calculate
with them.27 As one readily verifies, the conditions given in (33) and (34)
amount to simple arithmetical combinations. The conditions given in (33)
and (34) thus turn out to be parallel to the compositional accounts of the

26The method of extension and intension, originating with Rudolf Carnap’s book Meaning
and Necessity (1947), is a modification of Frege’s approach in Über Sinn und Bedeutung
(1892) and owes its current form to American logician Richard Montague’s work men-
tioned in footnote 15 of Chapter 0.

27There are, by the way, logical and mathematical reasons for identifying the extensions
of sentences with the numbers 0 and 1, which we cannot go into here now.
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contents of coordination given in (23) and (24) above:

(35) a. ‖S und S′‖ = ‖S‖ ∩ ‖S′‖ cf. (23)
b. JS und S′Ks = JSKs × JS′Ks (33) + mental arithmetic

(36) a. ‖S oder S′‖ = ‖S‖ ∪ ‖S′‖ cf. (24)
b. JS oder S′Ks = JSKs + ‖S′‖ − JSKs × JS′Ks

(34) + mental arithmetic

Multiplication is to the extensions of conjunctions what intersection is to
their contents; and the difference of product and sum is to the extensions
of disjunction what union is to their contents. It is thus natural to carry
over the general compositional analysis (26) of coordinations from contents
to extensions:

(37) a. ‖S K S′‖ = ‖S‖ ‖K‖ ‖S′‖ cf. (26)
b. JS K S′Ks = JSKs JKKs JS′Ks

(37b) can be read in full analogy to (37a): the extensions of the two clauses S
and S′ are combined by the extension of the conjunction K and the result is
the extension of the coordination, i.e., the truth value of the entire sentence.
(37b) presupposes that the extension of a coordinating conjunction combines
two truth value into a truth value again – just like union and intersection
have a proposition emerge from two propositions. The extension of und
[≈ and] would thus have to be the multiplication of truth values; and the
extension of oder [≈ or] would be the operation described in (36b). Both
may be represented in tabular form – by so-called truth tables:

left truth value right truth value result
1 1 1
1 0 0
0 1 0
0 0 0

Table 1.2: Tabular representation of the extension of und [≈ and] (at an
arbitrary situation)

left truth value right truth value result
1 1 1
1 0 1
0 1 1
0 0 0

Table 1.3: Tabular representation of the extension of oder [≈ or] (at an
arbitrary situation)
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It should be noted that Tables 1.2 and 1.3 give the extensions of und [≈ and]
and oder [≈ or] for an arbitrary situation s. This brings out a characteristic
of so-called ‘logical’ words, viz. that they do not really relate to a situation:
their contribution is always the same, no matter to which situation they may
relate. But they can, of course, help a sentence in which they occur refer to
a situation; for the latter is reflected in its – usually situation-dependent –
truth value determined by the relevant truth table.

The intensions of the conjunctions und [≈ and] and oder [≈ or] are
defined in analogy to sentence intensions, viz., as functions that assign to
each situation s the corresponding extension at s. So the domain of JundK
and JoderK is Logical Space – which is so for intensions in general, as we
will see later. Since the extension of und [≈ and] is always the function
described in Table 1.2, the range of JundK only contains one element, viz.
precisely this function; and the same holds for JoderK. The two extensions
are thus constant functions, meaning that they assign the same value to
every argument in their domain:

(38) a. JundK = that function f with domain LS (= Logical Space)
such that, for any s ∈ LS it holds: f (s) = JundKs.

b. JoderK =that function f with domain LS (= Logical Space)
such that, for any s ∈ LS it holds: f (s) = JoderKs.

In a way, (38) defines the intensions of the conjunctions und [≈ and] and
oder [≈ or] by reference to their extensions (given in tables 1.2 and 1.3).
We will do the same in the future: no matter for which expression, we will
first determine their extensions (as depending on a given situation) and then
characterise the intension as that function that assigns to each situation s the
extension at s. The extensions themselves will be determined independently,
largely by compositionality considerations. In the next chapter we will begin
to illustrate this general strategy by very simple examples.
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1.8 Exercises for Chapter 1

A1 Explain how one can show that two sentences are not synonymous
by appealing to the Principal Principle of Semantics. Pick your own
example for illustration.

A2 What are the contents of the following sentences?

I Keiner lacht.
[≈ Nobody is laughing.]

II Politik ist Politik.
[≈ Politics is politics.]

III Politik ist nicht Politik.
[≈ Politics is not politics.]

IV Tim Fernando kam am 23.10.2008 zu Besuch.
[≈ Tim Fernando came visiting on October 23, 2008.]

V Es gibt keine Universität in Frankfurt am Main.
[≈ There is no university in Frankfurt/Main.]

A3 Use your own examples to discuss what speaks against the assumption
that there are sentences that only apply to one or two situations.

A4 The following sentences obviously state the exact opposite of each
other; one negates the other:

I Ein Bauer kauft einen Esel.
[≈ A farmer is buying a donkey.]

II Kein Bauer kauft einen Esel.
[≈ No farmer is buying a donkey.]

(a) How does the sense relation of negation differ from incompatibility?

(b) Use a Venn diagram to represent the set-theoretic relation between I
and II.

A5 Illustrate each of the following sense relations by two sentences of your
own and describe how their contents relate to each other.

I Incompatibility

II Synonymy

III Logical implication

A6 Like the Logical Space LR of all possible situations, the empty set Ø
is a proposition: both sets exclusively consist of (possible) situations.

(a) Find a sentence that expresses Ø (as a proposition).
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(b) Find a sentence that expresses LR (as a proposition).

A7 Assume – for the sake of this exercise only – that the negation nicht
[≈ not] may modify entire sentences, as in:

es regnet
nicht

[≈ It is not raining.]

Heinz
kennt Gaby

nicht

[Heinz does not know Gaby.] , etc.

Use Venn diagrams to describe the meaning of nicht [≈ not]. Try to
make your presentation as parallel as possible to the above analysis of
coordinating conjunctions.

A8 Why isn’t every set of ordered pairs a function (example)?

A9 Briefly explain the relation between the contents and the intensions of
sentences in your own words.

A10 Show that the intersection of two distinct characteristic functions (rel-
ative to a given set) is not a characteristic function (relative to that
set).

A11 If x and y are arbitrary (not necessarily distinct) objects, the Kura-
towski pair of x and y28 is the set {{x, y},{x}}. Show that this set
meets anything one might expect from a pair (x,y):

(a) if {{x,y},{x}} = {{x ′,y ′}, {x ′}}, then x = x ′ and y = y ′;

(b) if x 6= y, then {{x,y},{x}} 6= {{y,x},{y}} ;

(c) {{x,x},{x}} 6= {x}.

Hint: Apart from the Extensionality Principle, (c) also relies on the
Foundation Principle, according to which (among other things) no set
can be its own element.

28named after its inventor, the Polish logician Kazimierz Kuratowski [1896–1980]
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Chapter 2

Predication and Abstraction

Having become sufficiently clear on what sentences as a whole mean, we now
turn to their parts. As announced above, we will use a top-down strategy,
concluding from the meanings of entire sentences to the meanings of their
immediate parts, then to the meanings of the immediate parts of the latter
etc. – until we ultimately arrive at the word meanings. To this end, we
will extend the concepts introduced in connection with sentence meanings
to arbitrary parts and equate meanings with intensions – functions that for a
given situation determine an extension, which in turn supplies the reference
of the expression for that situation. Moreover, we will (until further notice)
assume that these extensions behave compositionally so that the extensions
of complex expressions can be determined from those of their immediate
parts; in the preceding chapter, we had already come across this procedure
by way of an example: the interpretation of sentence coordination. In the
chapter at hand, too, we will first cut up sentences into their immediate parts
and then define extensions for them that can be combined so as to result in
the truth values of the sentences.

We will start from the sentence extensions introduced in the preceding
chapter – the truth values – which we will try to determine from the parts
of the sentence. Whatever the extensions of the parts of a given complex
expression may be, the Principle of Compositionality demands that they
have to ‘add up’ to the extension of the entire expression. As we will soon
see, this simple pre-theoretic observation will become highly fruitful, because
in many cases it will allow extensions to be defined by taking differences. In
Section 2.2 we will see how this works in detail. Before that, we still need
to find a suitable starting point. This will be the simplest construction
from a semantic point of view (apart of the above sentence coordination):
(elementary) predication.
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2.1 Proper Names

We start with the following, maximally simple example (by semantic stan-
dards):

(1) Olaf hat Husten.
[≈ Olaf has a cough.]

What makes sentence (1) so simple is the fact that one of its immediate parts
– the subject – is a proper name. Such sentences will be called (subject)
predications.1 Complex sentences like (2) are predications, too. (3) and (4),
on the other hand, are not predications even though they contain proper
names, but not as immediate parts.

(2) Erna trifft einen Bekannten, den sie lange nicht mehr gese-
hen hat.
[≈ Erna is meeting an old acquaintance that she has not seen for a
long time.]

(3) Jeder kennt Otto.
[≈ Everyone knows Otto.]

(4) Heinz schläft, und Gaby arbeitet.
[≈ Heinz is sleeping and Gaby is working.]

Dissecting (1) and (2) into their immediate parts is straightforward:

(1′)
Olaf hat Husten

(2′)

Erna trifft einen Bekannten,
den sie lange nicht
mehr gesehen hat

From a semantic point of view, (1) and (2) are only slightly different: they
are both predications, i.e., they consist of a predicate and a proper name
as their subject. Following the Principle of Compositionality, the sentence
extension must be obtained from the extensions of subject and predicate in
the same way in both cases. As long as we are only interested in predication,
nothing is lost if we concentrate on the shorter sentence (1). The analysis
of (2) proceeds in a fully analogous fashion; sentences like (3), on the other
hand, will only be scrutinized in the next chapter.

According to the Principle of Compositionality, some combination of ex-
tensions that corresponds to predication (as a construction) needs to ‘merge’
the following two ingredients into the sentence extension – i.e., truth value
of (1) – in an arbitrary situation s∗:

1The term comes from logic, where it is used in a slightly wider sense and defined in purely
semantic terms.
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• JOlafKs∗ , the extension of the subject Olaf (in s∗)

• Jhat HustenKs∗ , the extension of the predicate hat Husten (in s∗)

Though we know what the result of the interaction of these ingredients is,
viz. J(1)Ks∗ ,2 but the ingredients themselves are still as unknown to us as the
semantic operation that merges them. The latter will more or less fall out
once we have found the ingredients to be combined. We may illustrate the
deplorable state of our current knowledge of the compositional interpretation
of (1) as follows:

(1′′) JOlaf hat HustenKs∗

JOlafKs∗

= ?1

Jhat HustenKs∗

= ?2

We will eliminate both question marks in the course of this chapter, stating
with the left one, ?1. Once the first question mark has been removed, we
will introduce a method that allows to systematically derive the predicate
extension, which will happen in the next section.

A simple plausibility consideration immediately leads to a ‘minimalist’
answer to the question of what the extension of Olaf is. Since the extension
ought to be that object that corresponds to the reference of an expression,
it is natural to identify the extension of a name with its bearer :

(5) a. JOlafKs∗ = Olaf;
b. JMariaKs∗ = Maria;
c. JBerlinKs∗ = Berlin;
etc.

In (5), s∗ is an arbitrary situation in Logical Space, on which the above
extensions of proper names do not really depend though. In this respect
proper names are thus like the logical words und [≈ and] and oder [≈
or] and different from most sentences whose truth values usually depend
on the situation they are taken to describe. This situational independence
assumed in (5) may appear problematic at first since in different situations
different individuals (persons, cities, . . . ) may be the bearers of a given
proper name. But this impression is misleading. For on the one hand, we
assume that any name can only have one bearer. Of course, there a lot
persons called Hans or Hans Müller, and of course there is more than one

2More precisely, we know that the extension of (1) is the truth value of (1) in s∗; this
knowledge suffices for the following semantic considerations. Just which truth value it
is – 1 or 0 – is only known to us if we are sufficiently familiar with the details of the
situation s∗, which in turn depends on how s∗ is given to us – by description, memory,
observation etc.
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place called Berlin or Frankfurt. But for these case we assume that the
names are ambiguous forms (homonyms) that would strictly be differentiated
– by subscripts, say. In that sense the name Frankfurt in the reading
FrankfurtMain has only one bearer per situation. On the other hand, the fact
that there are counterfactual situations s∗ in which, say, my sons’ Christian
names had been swapped, is irrelevant for determining the extension of the
two names. For the extension is that object to which we actually refer by the
name when talking of said situation s∗. What language is spoken in s∗, or if
any language is spoken at all, plays no rôle: if, say, in such a counterfactual
s∗, Alain is calling his brother, then he could do so by utterance the phonetic
form Alain! and Tom may respond with an unnerved Was ist denn,
Tom? [≈ What’s up, Tom?]. The underlined occurrences of the two names
show that we are referring to the two by their actual names – despite the
name swap in s∗; accordingly, it is their actual bearers that constitute the
extensions of the (actual) names in s∗.3

In (5) we have listed the extensions of some sample proper names NN
for any given situation s∗: NN = Olaf, NN = Maria, NN = Berlin, etc.
As is the case with every expression, the intension of the name now assigns
to each situation the corresponding extension:

Situation Extension
s0 JNNKs0
s1 JNNKs1
s2 JNNKs2
. . . . . .

Table 2.1: Tabular representation of the intension JNNK of a proper name
NN

We just saw that extension of a proper name is independent of the situation
considered – which is why the values in the right column of Table 2.1 are all
the same: JNNKs0 = JNNKs1 = JNNKs2 = . . . . Represented as a table, the
intension of the name Olaf accordingly looks as in Table 2.2.

As in the case of logical words, the independence of the extension of
a proper name from the situation at hand results in its intension being a
3Strictly speaking we have only shown (or made at least plausible) that it is irrelevant
for the identification of the extension of a name in a counterfactual situation who bears
the name in that situation. This does not imply that it is instead the actual bearer
that matters: perhaps there are quite different criteria for determining the extension of
a name for a counterfactual situation. In fact, Frege had assumed this (in a notorious
footnote of his essay Über Sinn und Bedeutung). Roughly, Frege had taken it for granted
that what matters are the criteria that a speaker uses for identifying the bearer of the
name. Frege’s assumption is commonly thought to be problematic; we have been taking
the popular counter-stance instead, as formulated by Saul Kripke in his work Naming
and Necessity (1972).
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Situation Extension
s0 Olaf
s1 Olaf
s2 Olaf
. . . . . .

Table 2.2: Tabular representation of JOlafK

constant function, one that assigns the same value to every point in Logical
Space, viz., the (actual) bearer of the name:

(6) a. JOlafK = that function f with domain LS such that for any s∈LS
it holds that f (s) = JOlafKs = Olaf;

b. JMariaK = that function f with domain LS such that for any
s∈LS it holds that f (s) = JMariaKs = Maria;

c. JBerlinK = that function f with domain LS such that for any
s∈LS it holds that f (s) = JBerlinKs = Berlin;

etc.

Just like the equations (38) for interpreting the conjunctions und [≈ and]
and oder [≈ or] given in the preceding chapter, (6) is to be understood
as a partial specification of the lexical semantics of German. The semantic
rules proper are the equations that give the intension for each name. The
preceding explanation that the extension is the bearer of the name, is only
supposed to help the intuitive understanding. It is not a semantic rule; for –
like reference in general – who or what bears the name should flow from the
intension of the name, which is being defined in this rule. Any definitional
reduction of the intension to the bearer would thus be hopelessly circular.
It is still common to replace the equations in (6) by a general clause to
the effect that the extension of a name is its bearer, thereby sparing the
seemingly redundant equations.

2.2 Subject-Predication

(6) certainly reduces the gap in our knowledge about the compositional in-
terpretation of (1):

(7) JOlaf hat HustenKs∗

= v

JOlafKs∗

= Olaf
Jhat HustenKs∗

= ?2

In (7) v is the truth value of (1) in situation s∗ ∈LS : v = 1 iff Olaf has a cough
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in s∗. In order to eliminate the remaining question mark, we will assume the
Principle of Compositionality and apply it backwards, as it were. According
to the Principle of Compositionality, the truth value v results by combining
the extension of the subject with the extension of the predicate. To determine
the latter we will follow the same procedure as in the determination of the
extensions of coordinating conjunctions in the preceding chapter. Using the
above notation, the starting point at the time may be represented as follows:

(8) JAlain spielt Klavier und Tom hört RadioKs∗

= v1&2

JAlain spielt KlavierKs∗

= v1

JundKs∗

= ?
JTom hört RadioKs∗

= v2

The solution was to first capture the systematic dependence of the value
v1&2 of the values v1 and v2. To identify this dependence, we abstracted
from the concrete values for given sentences in given situations and looked at
arbitrary alternative extensions for the clauses – which was not particularly
hard, since per clause only the two truth values 0 and 1 were to be considered
as alternative extensions. For each of of the four combinations of these two
extensions – (v1,v2) = (0,0), (0,1,), (1,0), or (1,1) – a separate truth value
ensues: v1&2 = 0, 0, 0, and 1, respectively. Since this functional dependence
of the overall extension is obviously contributed by the conjunction und [≈
and], the obvious move was to consider it its extensions, i.e., the function that
assigns to the extensions of the remaining two parts the resulting extension
of the entire sentence. The same procedure also helps finding out which
extension the question mark may represent in the case of (7): here, too,
the extension of the entire expression – the truth value of the sentence –
depends on what the extension of the other part is – i.e., who is the bearer
of the name in subject position. For if this bearer happens to have a cough
in the situation s∗ under scrutiny, the sentence is true and thus has 1 as its
extension (in s∗); otherwise its extension is 0. Again the dependence of the
truth value on the bearer of the name in subject position can be represented
by way of a table. What exactly this table looks like depends on the details
of the situation s∗ under consideration. Assuming, for concreteness, that
Olaf and his sister Maria do have a cough in s∗ whereas Fritz doesn’t, we
obtain the following functional dependence:
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bearer of name truth value
Maria 1
Fritz 0
Olaf 1
. . . . . .

Table 2.3: J(1)Ks∗ as depending on the extension of the subject

It can be gleaned from Table 2.3 how the extension of a sentence of the form
NN hat Husten [≈ NN has a cough] in situation s∗ depends on the extension
of the subject. So if the latter is known, one can determine the former from
it. The table is thus suited to represent the extension of the predicate, which
is, after all, supposed to determine the sentence extension together with the
subject extension – according to the Principle of Compositionality, that is.
Accordingly, the extension of the predicated (in s∗) comes out as a function
f that assigns a truth value f(x) to each bearer x of a name – depending on
whether x has a cough (in s∗):

(9) a. Jhat HustenKs∗(x) =
{

1, if x has a cough in s∗;
0 otherwise

For each bearer x of a name, (9a) declares the functional value the predicate
extension assigns to x. We assume that any person, any place, any object
etc. – any individual, for short – may in principle have a name and could
thus play the rôle of x. The schematic equation (9a) thus defines a function
whose domain consists of all individuals and whose values are always one
of the two truth values, i.e., 0 or 1. The extension of the predicate hat
Husten [≈ has a cough] thus turns out to be the characteristic function of
a set M. Since this function assigns 1 to an argument x just in case x has
a cough in situation s∗, the elements of M are precisely the persons that
have a cough in s∗. According to our assumptions about s∗ this means, in
particular, that Maria ∈ M, Olaf ∈M, but Fritz /∈ M. Written as a list, M
thus comes out as: {Maria, Olaf, . . . }. Just how the three dots have to be
filled in, depends on the details of s∗ ab, which we do not know (because
we have not specified them). There is, however, an equally common way of
denoting sets with which we can characterize M precisely, viz. as: {x | x has
a cough in s∗}. Instead of the list notation used so far, this notation makes
use of the so-called set abstraction, which also puts curly brackets around
the set denotation but instead of listing of its elements has an abstracted
variable and a condition (separated by a horizontal stroke). More generally:

D2.1 {x | . . . x . . . } is that set whose elements are precisely the x for
which . . . x . . . holds.

The notation defined in D2.1 is to be understood as schematic and must be
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undone in any particular case where it is clear what the dots stand for. In
our case ‘. . . x . . . ’ stands for: ‘x has a cough in s∗’.

In case the condition ‘. . . x . . . ’ has the form ‘x∈A’ (where A is some set),
D2.1 immediately implies that the set defined by this abstraction coincides
with the set A; for according to 2.1, x∈{x | x∈A} holds for any x iff x∈A,
which means that {x | x∈A} = A, by the Principle of Extensionality. This
elementary fact, which we will sometimes exploit, has a name:

(10) Comprehension Principle
For all sets A it holds: {x |x ∈ A} = A.

The above determination of the predicate extension obviously does not de-
pend on our specific example; quite generally, predicate extensions are char-
acteristic functions. Thus, given a situation, the extension of ist eine Insel
[≈ is an island] characterizes the set of islands in that situation; the ex-
tension of schläft [≈ is sleeping] is the characteristic function of the set of
individuals that are asleep in the given situation, etc.:

(9) b. Jist eine InselKs∗(x) =
{

1, if x is an island in s∗;
0 otherwise

c. JschläftKs∗(x) =
{

1, if x is sleeping in s∗;
0 otherwise

A notational trick helps avoiding the case distinctions in the equations (9)
by directly referring to the truth value of a given statement:4

D2.2 If ϕ is a statement, then `ϕa is the truth value of ϕ; i.e.:
• `ϕa = 1 if ϕ is the case; and
• `ϕa = 0 otherwise.

Using this notation, the equations in (9) can be simplified as follows:

(11) a. Jhat HustenKs∗(x) = `x has a cough in s∗a;
b. Jist eine InselKs∗(x) = `x is an island in s∗a
c. JschläftKs∗(x) = `x is sleeping in s∗a

Since sets of individuals and their characteristic functions stand in a one-one
relation to each other, we will sometimes talk of the extension of a predicate
taken as a set and use a special notation for this:

(12) a. ↓Jhat HustenKs∗ = {x | x has a cough in s∗};
b. ↓Jist eine InselKs∗ = {x | x is an island in s∗};
c. ↓JschläftKs∗ = {x | x is sleeping in s∗}.

For the general case, the notation used in (12) can be defined as follows:

4In other words: `ϕa is that truth value that is identical with 1 iff ϕ.
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D2.3 If f is a characteristic function, then ‘↓f ’ denotes the set charac-
terized by f :
↓f = {x | f(x) = 1}.

Clearly, the equations (9), (11) and (12) carry over from the random situation
s∗ ∈ LS to arbitrary such situations. This also fixes the intensions of the
predicates, which assign to arbitrary situations the extensions determined in
analogy to (11). As a case in point, applying Jhat HustenK – the intension
of the predicate hat Husten [≈ has a cough] – to a situation s∈LS, the
functional value is a function which, again by (or in analogy to) the equation
(11a), assigns to every individual x the truth value 1 iff x has a cough in s.
Generalising to arbitrary situations s and individuals x we get:

(13) a. Jhat HustenK(s)(x) = `x has a cough in sa;
b. Jist eine InselK(s)(x) = `x is an island in sa;
c. JschläftK(s)(x) = `x is sleeping in sa.

According to (13c), e.g., the intension of schläft [≈ is sleeping] is a function
f that assigns to each s a function f ′ that assigns to each x a certain truth
value – namely, 1 if x is sleeping in s, and 0 otherwise: f(s) = f ′, and f ′(x) =
`x is sleeping in s∗a. This fixes the functional values for each argument
s ∈ LS of our three sample-predicates – and thereby their intensions.5

With (11a) the question mark in (7) can be eliminated, identifying the
unknown predicate extension as a (characteristic) function. This also answers
the question how the extension of the whole sentence is obtained from the
extensions of its immediate parts: the function contributed by the predicate
is applied to the argument contributed by the subject, and the resulting
functional value is the extension of the sentence. We thus have another case
of functional application, which had already been the pertinent combination
in the case of sentence coordination: JSKs∗ = JP Ks∗(JNNKs∗).6 And again
this equation carries over from the originally fixed situation s∗ to all of
Logical Space:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, then for all s∈LS the following holds:
JSKs∗ = JP Ks∗(JNNKs∗)

From (13) one may derive how the proposition expressed by the sentence

5Quite generally any function can be fully characterized by its argument-value-pairs. This
follows from the set-theoretic definition of a function and the Principle of Extensionality.

6Unlike predicate extensions, the relevant set-theoretic functions (intersection and union)
are binary though, i.e., their arguments are ordered pairs (of propositions, in the case at
hand). Thence the notational difference: the value of intersection for the pair consisting
of the propositions p and q is traditionally written as ‘p ∩ q ’ – instead of ‘∩ (p, q)’, in
analogy to other (binary) functions.
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– i.e., its intension (taken as a set) – is obtained from the intensions of its
parts. This will be done at the end of the chapter.

2.3 Abstraction

In order to determine the extension of the predicate, it did not suffice to
just look at the contribution of the bearer of the name in subject position.
In Table 2.3 we had instead called in alternatives to Olaf – bearers of other
names – and determined their contribution to the resulting truth value. This
procedure may be summarized in the following schema:

(15) Identification of the Predicate Extension

• Starting Point
HAVE : Extension of sentence and subject; WANT : predicate extension:

JMaria hat HustenKs∗

= 1

JMariaKs∗

= Maria
Jhat HustenKs∗

= ?

, JFritz hat HustenKs∗

= 0

JFritzKs∗

= Fritz
Jhat HustenKs∗

= ?

,

JOlaf hat HustenKs∗

= 1

JOlafKs∗

= Olaf
Jhat HustenKs∗

= ?

, . . .

• Construction
Replace ? by the function that assigns to any subject extension the corre-
sponding sentence extension:

[Sentence extension]

[Subject extension] Maria 1
Fritz 0
Olaf 1
. . . . . .

In this way one not only obtains a unified predicate extension for all predi-
cations involving the predicate hat Husten [≈ has a cough]. The extension
of the sentence also comes out compositionally – by functional application –
from the subject extensions and this common predicate extension.
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The procedure for determining the predicate extension applied in (15) is
very general and cannot only be applied to predications with arbitrary pred-
icates but also to a host of other constructions. We will always resort to it
whenever we are dealing with a grammatical construction that combines two
expressions, where both the extensions of the whole expression and those of
one of its parts are known – i.e., the left part or the right part, as the case
may be. The procedure laid out in (15) then normally allows to construct
the extension of the remaining, unanalyzed part:

(16) Identification of Unknown Extensions of Parts of Expressions

• Starting Point
HAVE (X): Extensions of the whole expressions and their left parts;
WANT (?): Extension of the right part:

JWhole Expression1Ks X

JLeft Part1Ks X JRight PartKs ?

, JWhole Expression2Ks X

JLeft Part2Ks X JRight PartKs ?

,

. . .

• Construction
Replace ? by the function that assigns to the known extensions of the
left part the corresponding extensions of the whole expression:

JWhole ExpressionnKs

JLeft PartnKss JLeft Part1Ks JWhole Expression1Ks

JLeft Part2Ks JWhole Expression2Ks

. . . . . .

JLeft PartnKs JWhole ExpressionnKs

. . . . . .

The procedure can, of course, also be applied if it happens to be the left
part whose extension is unknown; in the next section we will encounter such
a case. And it can also be applied if more than two parts are involved
in the grammatical construction – as long as there is only one part whose
extension is still unknown.7 Thus in the preceding chapter we had analyzed
sentence coordination as a ternary construction, and presupposed that, like
the whole expression, two of its three parts had truth values as extensions.

7. . . in the sense that it is not known what kind of object makes the compositional contri-
bution to the extension of the whole expression. As native speakers, the meanings are,
of course, known and familiar to us in that we have implicit mastery over them.
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In retrospect the analysis of the conjunctions und [≈ and] and oder [≈ or]
thus turns out to be a variant of the abstraction procedure in (15).

In formal logic the construction given in (15) and (16) is called functional
abstraction, because the unknown extension so constructed abstracs from the
concrete contributions of the individual parts already analyzed – the proper
names in (15) – and reduces them to a common pattern, the function so con-
structed. In a sense, functional abstraction reverses functional application:
if application is a kind of addition of extensions, then abstraction amounts to
subtraction. This kind of subtraction of functional abstraction is one of the
most important analytic tools of logical semantics. It is primarily its flexibil-
ity that motivates the top-down direction of analysis pursued here, starting
with the sentence, going down to its immediate parts and their immediate
parts, and all the way down to the words.8

2.4 Object-Predication

It is an advantage of the strategy described in (16) that it can also be em-
ployed if the extensions known at Starting Point have themselves been ob-
tained by functional abstraction. Once it is known that predicate extensions
are certain (characteristic) functions, this knowledge can be exploited to
derive the extensions of complex predicates. Here is a case in point:

(17) Fritz küsst Eike.
[≈ Fritz is kissing Eike]

We take it that Fritz is the subject and hence (17) is a predication. Decom-
posing (17) into its parts and parts of parts is again straightforward:

(18)
Fritz

küsst Eike

We already know the extensions of the whole sentence and its immediate
parts:

(19) a. J(17)Ks∗ = `Fritz is kissing Eike in s∗a
b. JFritzKs∗ =Fritz

8The strategy ultimately goes back to Gottlob Frege’s essay Funktion und Begriff [≈
Function and Concept] (1891) and extends the Context Principle from Frege’sGrundlagen
der Arithmetik [≈ Foundations of Arithmetic] (1884), according to which the meaning of
an expression is construed as its contribution to sentence meaning.
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c. Jküsst EikeKs∗ =

Fritz `Fritz is kissing Eike in s∗a
Maria `Maria is kissing Eike in s∗a
Eike `Eike is kissing herself in s∗a
. . . . . .

x `x is kissing Eike in s∗a

.

Since the predicate is a complex expression, its extension ought emerge com-
positionally from the extensions of its immediate parts. One of these exten-
sions is already known to us: that of the proper name Eike; for we assume
that this extension is independent of whether the name is in subject or object
position:

(20) JEikeKs∗ =Eike

However, we do not yet know the extension of the transitive verb küsst [≈ is
kissing]. But since we do know both the extension (19c) of the whole pred-
icate and the extension (20) of the object, we may now perform functional
abstraction:

(21) Jküsst EikeKs∗ X

JküsstKs∗ ? JEikeKs∗ X

For a start, we need to consider alternative expressions again, where the
part that has already been analyzed – the object Eike – is replaced by other
expressions of the same kind that have also been analyzed – other proper
names, that is. As in (19c), we then obtain functions that may be represented
by way of tables:

(22) Jküsst FritzKs∗ =

Fritz `Fritz is kissing himself in s∗a
Maria `Maria is kissing Fritz in s∗a
Eike `Eike is kissing Fritz in s∗a
. . . . . .

y `y is kissing Fritz in s∗a

Jküsst MariaKs∗ =

Fritz `Fritz is kissing Maria in s∗a
Maria `Maria is kissing herself in s∗a
Eike `Eike is kissing Maria in s∗a
. . . . . .

y `y is kissing Maria in s∗a

Jküsst EikeKs∗ =

Fritz `Fritz is kissing Eike in s∗a
Maria `Maria is kissing Eike in s∗a
Eike `Eike is kissing herself in s∗a
. . . . . .

y `y is kissing Eike in s∗a
. . .
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JküsstNNKs∗ =

Fritz `Fritz is kissing NN in s∗a
Maria `Maria is kissing NN in s∗a
Eike `Eike is kissing NN in s∗a
. . . . . .

y `y is kissing NN in s∗a

By the general method (16), one may now construct a function that assigns to
the extensions of the objects – the bearers of the names – the corresponding
predicate extensions in (22); and this function is then the extension of the
transitive verb küsst [≈ is kissing]:

(23)

JküsstKs∗ =

Fritz

Fritz `Fritz is kissing himself in s∗a
Maria `Maria is kissing Fritz in s∗a
Eike `Eike is kissing Fritz in s∗a
. . . . . .

y `y is kissing Fritz in s∗a

Maria

Fritz `Fritz is kissing Maria in s∗a
Maria `Maria is kissing herself in s∗a
Eike `Eike is kissing Maria in s∗a
. . . . . .

y `y is kissing Maria in s∗a

Eike

Fritz `Fritz is kissing Eike in s∗a
Maria `Maria is kissing Eike in s∗a
Eike `Eike is kissing herself in s∗a
. . . . . .

y `y is kissing Eike in s∗a
. . .

x

Fritz `Fritz is kissing x in s∗a
Maria `Maria is kissing x in s∗a
Eike `Eike is kissing x in s∗a
. . . . . .

y `y is kissing x in s∗a
. . .

y

Fritz `Fritz is kissing y in s∗a
Maria `Maria is kissing y in s∗a
Eike `Eike is kissing y in s∗a
. . . . . .

y `y is self-kissing in s∗a
. . .

The table may appear confusing, but it is constructed by a simple principle.
In the leftmost column one finds the possible object extensions that are each
assigned corresponding the predicate extension to their right. And again, the
semantic combination that combines the function represented in (23) with
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the extension of the object is is functional application:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s ∈LS the following holds:
JP Ks = JV Ks(JNNKs).

Using the extension of küsst [≈ is kissing] in (23) and the combination
(24), the extension of a sentence like Maria küsst Fritz [≈ Maria is kissing
Fritz] can now be derived compositionally on the basis of the interpretation
of subject-predication as developed in Section 2.2:

(25) JMaria küsst FritzKs∗

(14)
= Jküsst FritzKs∗(JMariaKs∗)
(5)
= Jküsst FritzKs∗(Maria)
(24)
= JküsstKs∗(JFritzKs∗)(Maria)
(5)
= JküsstKs∗(Fritz)(Maria)
(23)
= `Maria is kissing Fritz in s∗a

The last line of these equations holds because the function represented in
(23) assigns to the bearer of the name Fritz – i.e., Fritz – a function which
applied to Maria (the bearer of the pertinent name) yields said truth value
(in the second line). It should be noted that the derivation in (25) only
makes use of the equations (5) [for the proper names Fritz and Maria]
and (23) [for the verb küsst] as well as the compositional rules (14) [for
the subject-predication] and (24) [for the object-predication]. This explains
how the truth value of a the sentence emerges from the extensions of its
lexical parts and the grammatical construction solely on the basis of general
principles.

The strategy employed for identifying the extensions of predicates and
transitive verbs can also be applied to verbs that take more than one ob-
ject. Thus one may derive the extension of the ditransitive verb zeigen [≈
show] by functional abstraction, using examples like (26) and assuming the
structure (27).

(26) Fritz zeigt Eike Rom.
[≈ Fritz is showing Rome to Eike.]

(27)

Fritz

zeigt Eike
Rom
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Since the complex verb zeigt Eike [≈ is showing Eike] behaves like a tran-
sitive verb in that it may form a predicate with an (accusative) object, we
may assume that, like the extension of küsst [≈ is kissing] represented in
(23), its extension is a function that assigns predicate extensions to arbitrary
individuals. Accordingly the method (16) for determining extensions can be
applied to this expression; for apart from the extension of the whole expres-
sion, the extension of the object Eike is known, too. As a result one obtains
a function whose tabular representation should really be forbidden for rea-
sons of space and transparency; but the section relevant for the example
looks like this:

(28) JzeigtKs∗ =

. . . . . .

Eike

. . . . . .

Rome
. . . . . .

Fritz ` in s∗ Fritz is showing Rome to Eikea
. . . . . .

. . . . . .

. . . . . .

2.5 Lambda-Terms

The idea behind the analyses (21) and (27) of transitive and ditransitive verbs
generalizes to verbs with arbitrarily many (nominal) objects. As the number
of objects increases though, the tabular representation of the extension of
the verb gets more involved and confusing. But despite this monstrous ex-
pansion, the structure of the tables remains straightforward; we had already
remarked this in connection with (23). (28) is no different in this respect,
as one may verify by going through a single ‘line’ from left to right, finally
arriving at the truth value in the innermost box: the outermost column cor-
responds to the indirect object (MM), and once the indirect object has been
fixed, the second column to the left of the outermost box matches the direct
object (LL), etc.; at the end the truth value of a sentence of the form ‘NN
zeigt MM LL’ [≈ NN shows LL to MM] in s∗ emerges.

The simple structure of tables like (23) and (28) can be exploited to
arrive at a much more compact representation of functions than the table
format. This representation may first be applied to predicate extensions and
then adapted to more complex cases. Above we had given an analysis of
the predicate hat Husten [≈ has a cough] that we repeat here in a slightly
more detailed form:
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(29) Jhat HustenKs∗ =

Maria 1 [= `Maria has a cough in s∗a]
Fritz 0 [= `Fritz has a cough in s∗a]
Olaf 1 [= `Olaf has a cough in s∗a]
. . . . . .

x `x has a cough in s∗a
. . . . . .

The individual called x in the highlighted line is the bearer of an arbitrary
name. Due to this arbitrariness, the marked line covers all other lines: the
first three lines are special cases of the marked line; for the variable ‘x ’
stands in for arbitrary bearers of names, thus including Fritz, Maria, and
Olaf. And what is right for the first three lines of the table in (29), also
holds for all other lines: they are already accounted for by the marked line.
It thus suffices to write down – instead of the whole table – the marked line
only, which in turn has two parts: the variable that stands for arbitrary
arguments of the function and the description the truth value that depends
on the individual denoted by the variable. In semantics a peculiar notation
has become common for this, where a small Greek letter Lambda (like left)
indicates the argument and is separated from the functional value by a dot:9

(30) Jhat HustenKs∗ = λx.`x has a cough in s∗a

We will from now on use such lambda-terms as in (30) to describe func-
tions. A brief comparison of (29) and (30) already shows that not only space
is saved, but transparency is gained too, by using this representation; for
the lambda-term summarizes exactly what the various lines in (29) have in
common and thus reflects the construction principle underlying the table.

More complex functions, too, may be described by lambda-terms. Since
each of the functional values of the extension of küsst [≈ is kissing] defined
in (23) is itself a function, the table may first be simplified like this:

(31) JküsstKs∗ =

Eike λx.`x is kissing Eike in s∗a
Fritz λx.`x is kissing Fritz in s∗a
Maria λx.`x is kissing Maria in s∗a
. . . . . .

The result is again a function, whose typical line is of the following form:10

9The representation of functions by terms can already be found in Frege’s ‘Über Funktion
und Begriff’ [≈ On Function and Concept] (1891), where a different notation is used.
Lambda-terms have been introduced by the US logicians Alonzo Church and Stephen
Kleene in the 1930s.

10It should be noted that we need to use a different variable (‘y ’) to denote the extension
of the object, so as to avoid a conflict with the variable for the subject extension (‘x ’).
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(32)
. . . . . .

y λx.`x is kissing y in s∗a
. . . . . .

Hence the whole extension of küsst [≈ is kissing] can be accounted for by a
single lambda-term:

(33) JküsstKs∗ = λy.λx.`x is kissing y in s∗a

In (33) the two lambda-prefixes now take the place of the embedded tables
in (23). In a similar way, even more deeply embedded tables like the one
indicated in (28) can be reduced to a single line consisting of a lambda-term
– as will be shown in an exercise.

Lambda-terms are (meta-linguistic) expressions denoting functions whose
use is fixed by a notational convention:

D2.4 An expression of the form ‘λx. . . . x . . . ’ stands for a function f
that assigns to any arguments x the value f(x) = . . . x . . . .

D2.4 is schematic in that any concrete instance of the convention depends
on what the part following the prefix ‘λx.’ is – the so-called matrix of the
lambda-term. The dots are meant to indicate that it is some description
that makes use of the variable ‘x’ bound in the prefix. This variable may, of
course, occur arbitrarily many times – once, twice, . . . – or even not at all.
(This last case will be addressed in an exercise.) According to D2.4, then,
both ‘λx.2x’ and ‘λx.x+ x’ stand for the function of doubling a number.

D2.4 leaves open what the domain of a function denoted by a lambda-
term is: what does ‘x’ stand for? In actual practice this will usually be clear
from the context in which the lambda-term is used. In Chapter 5 we will
introduce a somewhat more precise notation that will be unambiguous in
this respect.

Describing functions by lambda-terms not only saves place and creates
clarity vis-à-vis tabular representations, it also simplifies the compositional
account of extensions of complex terms by functional application. This is
best seen by way of an example. In the last step of the above derivation (25)
of the extensions of Maria küsst Fritz [≈ Maria is kissing Fritz] (in s∗) we
applied the function JküsstKs∗ to Fritz and then the result to Maria:

(25)
. . . JküsstKs∗(Fritz)(Maria)
(23)
= `Maria is kissing Fritz in s∗a

This transition simply relies on the table (23) that gives the extension of
küsst [≈ kissing[ (in s∗), which can be applied to Fritz to give a function
that yields the resulting truth value when applied to Maria. The compact
representation by lambda-terms now allows for the function to be denoted
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directly. Plugging in the lambda-term from (33) (and bracketing it, for
readability), the penultimate line of (25) comes out like this:

(25′) [λy.λx.`x is kissing y in s∗a](Fritz)(Maria)

The function denoted by the lambda-term is first applied to Fritz. The
intermediate result thus obtained is again a function that can be represented
by a lambda-term:

(25′′) [λy.λx.`x is kissing y in s∗a](Fritz)(Maria)
= [λx.`x is kissing Fritz in s∗a](Maria)

Finally this function is applied to the subject-extension – with the familiar
result. All in all, the derivation (25) looks like this when done with lambda-
terms:

(25′′′) JMaria küsst FritzKs∗

(14)
= Jküsst FritzKs∗(JMariaKs∗)
(5)
= Jküsst FritzKs∗(Maria)
(24)
= JküsstKs∗(JFritzKs∗)(Maria)
(5)
= JküsstKs∗(Fritz)(Maria)
= [λy.λx.`x is kissing y in s∗a](Fritz)(Maria)
= [λx.`x is kissing Fritz in s∗a](Maria)
= `Maria is kissing Fritz in s∗a

The striking feature of the last two transitions is that each time one lambda-
prefix was eliminated while the corresponding variable in the remainder of
the lambda-term was replaced by the argument. First ‘λy’ disappears while
‘Fritz’ takes the place of ‘y’; then ‘λx’ disappears and ‘Maria’ replaces ‘x’.11

This is not accidental. In the lambda-term the variable mentioned in the
prefix precisely stands in for an arbitrary argument. So if the function de-
noted by a lambda-term is applied to a specific argument, the result may
be described by having the designation of the argument occupy the place of
the variable; and of course, the lambda-prefix vanishes, since the result is a
functional value – i.e., that which is described to the right of the dot. This
elimination of lambda-prefixes with a subsequent insertion of arguments is
usually called λ-conversion.12 Schematically (and somewhat sloppily) it may
be captured as follows:

11We put the names ‘Fritz’ and ‘Maria’ in quotes because it is not the persons that take
the place of variables after all; the discussion, then, is meta-metalinguistic!

12This is the term most common in semantics. In logic (and computer science) one rather
speaks of β-conversion or – if only one direction of the reformulation is meant – β-
reduction.
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(34) λ-Conversion
[λx. . . . x . . . ](a) = . . . a . . .

We will give a more precise formulation of the principle in Chapter 5. λ-
conversion plays a crucial rôle in semantic practice. For it makes it possi-
ble to compute compositional derivations in a quasi-mechanical way. This
largely simplifies testing semantic analyses by concrete examples: by erasing
lambda-prefixes and inserting arguments one may determine which extension
a given analysis predicts for a given complex expression (in a given situa-
tion) and then compare it to the native understanding of the expression.
The construction and evaluation of lambda-terms make a large part of se-
manticists’ everyday work. Thence the (serious) autobiographic confession
of the American semanticist Barbara Partee: Lambdas changed my life.

There is a certain relation between the notational conventions introduced
in D2.1, D2.3, and D2.4, which shows in lambda-terms for characteristic
functions like the one in (30):

(35) λx. ` x has a cough in s∗ a

The term in (35) describes the extension of the predicate hat Husten [≈
has a cough] (in s∗). As we saw in (11a), this extension is the characteristic
function of the set (of individuals) given in (36):

(36) {x | x has a cough in s∗}

The lambda-term in (35) thus denotes the characteristic function of the set
defined by set abstraction in (36); and the condition used there happens
to be the matrix of the lambda term. This connection is perfectly general:
whenever a lambda-term denotes a characteristic function, the set character-
ized by the latter can be defined by set abstraction, using the same variable
and the matrix as the condition:

(37) ↓ [λx.` . . . x . . .a] = {x | . . . x . . . }

The connection (37) makes between the notations defined in D2.1, D2.3, and
D2.4 is readily seen. For according to D2.1, any object a is a member of the
set {x | . . . x . . . } if, and only if, . . . a . . . holds. But then according to D2.3,
a is an element of ↓ [λx.` . . . x . . .a] just in case [λx.` . . . x . . .a](a) = 1 –
which, by λ-conversion means precisely: ` . . . a . . .a = 1, i.e., that . . . a . . .
holds. So for any a : a ∈ {x | . . . x . . . } iff a ∈ ↓ [λx.` . . . x . . .a] – from
which (37) follows, in view of the Principle of Extensionality.

Disregarding the difference between sets and their characteristic func-
tions, (37) shows that set abstractions are a kind of notational variant of
lambda-terms. It has to be noticed, though, that the equation (37) only
holds for lambda-terms that denote characteristic functions in the first place;
for other terms, the notion of the set characterized, indicated by the down-
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arrow defined in D2.2, does not make any sense in the first place. Thus any
set abstraction can be ‘mimicked’ by a corresponding lambda-term, but the
reverse does not hold; for not every lambda-term denotes a characteristic
function. As a case in point, the values assigned by the extensions of transi-
tive and ditransitive verbs represented by lambda-terms in (38) are of course
functions themselves – and not truth values:

(38) a. JküsstK = λy.λx.`x is kissing y in s∗a
b. JzeigtK = λz.λy.λx.`x is showing y to z in s∗a

2.6 Compositionality of Intensions

At the end of Section 2.2 we claimed that the intensions introduced before
behave compositionally; lambda-terms are of great help in establishing this
observation, which is what we will do now. Since the intension is the exten-
sion in its functional dependence on the situation, it may also be represented
by a lambda-term. We thus have, for any expression A:

(39) a. JAK = λs.JAKs

(39a) implies an elementary fact, which is nevertheless crucial for what fol-
lows:13

(39) b. JAK(s) = JAKs, for all situations s ∈ LS.

Let us first recall what the various intensions defined in this chapter look
like by listing some of the expressions analyzed above in this notation:

(40) a. JOlafK = λs.Olaf
b. Jhat HustenK = λs.λx.`x has a cough in sa
c. JküsstK = λs.λy.λx.`x is kissing y in sa
d. JzeigtK = λs.λz.λy.λx.`x is showing y to z in sa

As has become clear in the first section, in the case of proper names we
are dealing with constant functions. The lambda-term (40a) brings this out
clearly: the bound variable ‘s’ does not even occur in its matrix, which is
why the value cannot depend on the argument it denotes. The extension
of predicates, on the other hand, does normally vary across Logical Space:
who has a cough depends on the circumstances, the situation, and thus the
extensions of the predicate hat Husten [≈ has a cough] frequently (though
not always) characterizes different sets of individuals in different situations.

13In fact, (39a) and (39b) are logically equivalent: due to λ-conversion, any situation
s∗ ∈ LS satisfies: [λs.JAKs](s∗) = JAKs

∗
. Thus (39b) expresses that JAK coincides with

[λs.JAKs] on all arguments s ∈ LS and is thus the same function (due to the Principle
of Extensionality) – as claimed in (39a).
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The same holds for other types of verbs: who is kissing whom; who is showing
what to whom; etc. all depends on the situation at hand.

A simple example should now make clear how the intensions given in
(40) determine the intensions of the complex expressions in which they occur,
viz., solely due to the above compositional combinations of the corresponding
extensions. The following sentence is a case in point:

(41) Olaf küsst Maria.
[≈ Olaf is kissing Maria]

The intension of (41) is a function that assigns to every situation s∈LS the
extension of (41) in s. The latter may in turn be determined by the general
compositional rule (14) from Section 2.2:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, the for all s∈LS the following holds:
JSKs = JP Ks(JNNKs)

From (14) and (39a) we conclude:

(42) JOlaf küsst MariaK
= λs.JOlaf küsst MariaKs

= λs.Jküsst MariaKs(JOlafKs)

The extensions of the predicate (for arbitrary situations s) mentioned in the
last line may in turn be determined from the extensions of the verb and the
object, following the compositional rule (24) from Section 2.4:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s ∈LS the following holds:
JP Ks = JV Ks(JNNKs).

(24) can now be used to extend the chain of equations in (42):

(42′) JOlaf küsst MariaK
= . . .
= λs.JküsstKs(JMariaKs)(JOlafKs)
= λs.JküsstK(s)(JMariaK(s))(JOlafK(s))

The final transition is due to (39b). Now the equations (40) apply; for clarity
we rename the variables (whose names are arbitrary anyway) and add a few
brackets:

(42′′) JOlaf küsst MariaK
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= . . .
= λs.[λt.λy.λx.`x is kissing y in sa](s)([λu.Maria](s))([λv.Olaf](s))

The confusingly many lambdas in (42′′) may now be largely eliminated by
a series of lambda-conversions; in converting the term prefixed with ‘λt’, we
replace the argument by ‘s’, whereas only the (constant) matrix remains of
the other two terms, prefixed with ‘Maria’ bzw. ‘Olaf’; for variables that do
not occur need not be replaced:

(42∗)
= . . .
= λs.[λy.λx.`x is kissing y in sa](Maria)(Olaf)

Now the lambda-term beginning with ‘λy’ with the argument ‘Maria’ can be
converted:

(43) JOlaf küsst MariaK
= . . .
= λs.[λx.`x is kissing Maria in sa](Olaf)
= λs.`Olaf is kissing Maria in sa]

The final step in (43) converts the ‘λx’-term. The result is a description of
the intension of the whole sentence that – correctly – turns out to be the
characteristic function of the set of situations in which Olaf is kissing Maria.

The derivation of (43) is solely based on the equations in (40) and the
pertinent compositional rules (14) and (24) for the extensions. Under the
(simplifying) assumption that the expressions analyzed in (40) are lexical,
one may regard the information captured in the equations as part of the
(German) lexicon and thus implicitly known to competent speakers.14 The
example illustrates that, for a systematic derivation of the intension of the
entire sentence, it suffices to know how extensions combine compositionally.
The speakers, who ought to know the intensions – but not necessarily the
extensions – of all expressions, can determine them solely from the (largely
unsystematic) lexical intensions and the rules of extensional combination.
This connection does not only hold for the predication constructions consid-
ered above but can be shown for all constructions in which the extensions
can be determined compositionally. In the following we will not point this
out explicitly and content ourselves with extensional principles of composi-
tionality, trusting that this implies the compositionality of intensions, which
is crucial to an explanation of systematic linguistic knowledge.

14Of the four equations in (40), only (40a) is clearly lexical, though only part of the
idiolects of those speakers that use the proper name Olaf in the reading here assumed.
(38b–d) are not lexical in view of the inflectional morphology, which we are neglecting
here.
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2.7 Exercises for Chapter 2

A1 Show that the analysis of the conjunctions und [≈ and] and oder
[≈ or] given in the previous chapter is a variant of the abstraction
procedure (16) for finding unknown extensions.

A2 Find the extensions of the parts and parts of parts of the following
sentences by applying the abstraction method. Assume only the ex-
tensions of the occurring names and the entire sentences as known.
Construct the extensions first with the help of tables, and then derive
the corresponding lambda-terms.

I Kevin schläft.
[≈ Kevin is sleeping.]

II Marcel sieht Kevin.
[≈ Marcel is seeing Kevin.]

III Marcel haut Jacqueline.
[≈ Marcel is beating Jacqueline.]

IV Jacqueline zeigt Marcel Kevin. [Jacqueline is showing Kevin
to Marcel.]

A3 Define the intensions of every expression in A2 .

A4 Reduce the list notation for sets to set abstraction by showing that, for
any definition of a setM by listing its members there is a representation
of M in terms of set abstraction (but without listing).

A5 Determine the extension of Michel überstellt Alfred Ida [≈ Michel
is handing over Ida to Alfred] for an arbitrary situation s∗ in the style
of (25′′′). In doing so, formulate a rule (along the lines of (24)) for
compositionally determining the extensions of predicates with direct
and indirect objects.

A6 Show that the intension of Michel überstellt Alfred Ida [≈Michel is
handing over Ida to Alfred] results compositionally form the intensions
of its parts.
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Chapter 3

Quantification

3.1 Quantifying Noun Phrases

In the preceding chapter we had only considered sentences whose subject
positions were occupied by proper names. On the background of our findings
there, we now turn to the interpretation of other subjects.

(1) Niemand hustet.
[≈ Nobody is coughing.]

It is clear that niemand [≈ nobody] is not a proper name, and it certainly
does not refer to a single individual. So the above semantics does not apply
to this kind of noun phrase. We will instead try to construct its exten-
sion using the abstraction method. First of all we convince ourselves that
all preconditions are fulfilled: on the one hand, we know the extension of
the whole sentence – its truth value; on the other hand, we also know the
extension of the other constituent, for we just identified the extensions of
predicates: the extension of hustet [≈ is coughing] came out as a function
that assigns truth values to individuals – thus the characteristic function of a
set of individuals. According to the abstraction procedure this should suffice
to identify the extension of niemand [≈ nobody]. We just need to consider
arbitrary variants of (1) that only differ in their predicates, and then pair off
the extensions of the latter with the corresponding resulting truth values:

(1′) Niemand schläft.
[≈ Nobody is sleeping.]

(1′′) Niemand ist eine Insel.
[≈ Nobody is an island.]

The predicate extensions can again be given by lambda-terms:

(2) JhustetKs∗ = λx.`x is coughing in s∗a
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(2′) JschläftKs∗ = λx.`x is sleeping in s∗a

(2′′) Jist eine InselKs∗ = λx.`x is an island in s∗a

The equations (2)–(2′′) hold for any possible situation s∗ ∈ LS. To study
the interaction of the various extensions in detail, let us consider a specific
situation s∗ – a day with the Müller family at the beach of Palma: everybody
is in good health, the parents Horst and Gaby are asleep, while the kids Max
and Susi are busy with the construction of a sand castle. Let us suppose
that the function defined in (2) yields the value 0 for any individual in s∗ –
the members of the Müller family, the other beachgoers, their basket chairs,
the grains of sand, etc. – because everyone is so healthy. The value of the
extension of schläft [≈ is sleeping] defined in (2′), though, equals 1 for at
least two arguments: Horst and Gaby Müller; for simplicity we assume that
the two are the only sleepers in s∗. Finally, Mallorca is the only island around
– and thus the only object for which the value of the extension in (2′′) is the
truth value 1. Given these assumptions about s∗, the sets characterized by
(2)–(2′′) are:

(3) ↓ JhustetKs∗ = ∅

(3′) ↓ JschläftKs∗ = {Gaby,Horst}

(3′′) ↓ Jist eine InselKs∗ = {Mallorca}

So much for the predicate extensions. The extensions of the sentences (1)–
(1′′), their truth values in the same situation s∗, are obvious:

(4) J(1)Ks∗ = JNiemand hustetKs∗ = 1;

(4′) J(1′)Ks∗ = JNiemand schläftKs∗ = 0;

(4′′) J(1′′)Ks∗ = JNiemand ist eine InselKs∗ = 1.

By pairing off predicate extensions with the corresponding sentence exten-
sions, we obtain the following table, which according to the abstraction pro-
cedure, should represent the extension of the subject:

(5) JniemandKs∗ =

λx.`x is coughing in s∗a[= JhustetKs∗ ] = 1[= J(1)Ks∗ ]
λx.`x is sleeping in s∗a[= JschläftKs∗ ] = 0[= J(1′)Ks∗ ]
λx.`x is an island in s∗a[= Jist eine InselKs∗ ] = 1[= J(1′′)Ks∗ ]
. . . . . .

An inspection of each of the sets (3)–(3′′) characterized by the corresponding
predicate extensions makes the construction principle underlying table (5)
apparent: a sentence with niemand [≈ nobody] as its subject is true just
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in case this set does not contain any person.1 Thus if X is a predicate
extension, JniemandKs∗ assigns to X the truth value 1 just in case the set
characterized by X does not overlap with the set Pers∗ of persons in s∗:

(6) JniemandKs∗(X) = 1 iff ↓X ∩ Pers∗ = ∅

Given the lambda-notation, the equation (6), which holds for any predicate
extension X and situation s∗, can be reformulated thusly:2

(7) JniemandKs∗ = λX.`↓X ∩ Pers∗ = ∅a

Since the extension of niemand [≈ nobody] has been constructed by ab-
straction, the compositionality of the extensions is once more guaranteed:
the truth value of a sentence S formed by putting a quantifying noun phrase
in subject position derives from applying the extension of the subject QN to
the extension of the predicate P, i.e., by functional application:

(8) Compositional Determination of the Extension of Subject-Quantifications
If S is a sentence with a predicate P and a quantifying noun phrase
QN as its subject, then the following holds for all s ∈ LS:
JSKs = JQNKs(JP Ks).

It should be noted that the direction of functional application has been
reversed vis-à-vis the subject-predications analyzed in the preceding chapter
(under (37)); for there it was the predicate extension that was applied to
the extension of the subject, wheres in quantifications it is the other way
round. This difference is grammatically conditioned in the sense that we
assume (like many syntacticians) that predication and quantification are
distinct constructions. At the end of the chapter we will, however, present
an alternative analysis that does without assuming such a difference.

Given (8), the intension niemand [≈ nobody] is now fixed too; for ob-
viously (7) applies independently of the specific situation s∗:

(9) JniemandK = λs.λX.`↓X ∩ Pers = ∅a

There are quite a few noun phrases whose semantic extensions and intension
can be constructed in a similar way as that of niemand [≈ nobody]. We
only look at one example and leave further cases to an exercise and later
sections:

1Maybe pets should sometimes count as persons, too, since (1′) may appear false if only
the dog is sleeping; but then perhaps this is a case of a meaning shift to be explained in
pragmatic terms. We leave this interesting question open.

2One should recall that the notation introduced in D2.3 does not indicate the domain of
a function denoted by a lambda-term. In this case it is understood that ‘X ’ stands for
predicate extensions.

77



3.1. QUANTIFYING NOUN PHRASES

(10) Zwei Personen husten.
[≈ Two persons are coughing.]

As in the case of (1), the focus of our analysis of the subject of (10) is the
extension. With respect to the above holiday situation s∗ and in analogy
to (5), we get the following dependence of the truth value on the predicate
extension:

(11) Jzwei PersonenKs∗ =

JhustenKs∗ 0

JschlafenKs∗ 1

Jsind eine InselKs∗ 0

. . . . . .

In (11) the alternatives to husten [≈ are coughing] have been listed in their
plural form; we will be assuming that this has no impact on their extensions:
JhustetKs∗ [≈ is coughing] = JhustenKs∗ [≈ are coughing], etc. As in the
case of niemand [≈ nobody] the pattern behind (11) seems easy to make
out if one remembers which set is characterized by the predicate extension:
↓ JschlafenKs∗ contains two persons, all other sets are free of persons. As
a first shot, we may characterize the extension of zwei Personen [≈ two
persons] as follows:

(12) Jzwei PersonenKs∗ = λX.`↓X ∩ Pers∗ contains two elementsa

The formulation (12) is unclear in that it leaves open what happens if the
extension of the predicate (taken as a set) contains more than two persons.
Does it then contain two persons, in particular, or does it not contain two
persons? Does ‘two’ in (12) mean ‘at least two’ or does it mean ‘exactly
two’? In the first case (13b) an adequate account of (12), otherwise (13a) is:

(13) a. Jzwei PersonenKs∗ = λX.`↓X ∩ Pers∗ = 2a
b. Jzwei PersonenKs∗ = λX.`↓X ∩ Pers∗ ≥ 2a

The notation ‘M’ abbreviates – from now on – the cardinality of a set M,
i.e., the number of its elements.3 So what is the correct analysis of the noun
phrase two persons? An adequate answer to this question ought to account
for the actual truth values of the relevant sentences. Thus if, in situation s∗,
the Müller family are the only Germans around, would then (14) be true or
not?

(14) Zwei Personen sind Deutsche.
[≈ Two persons are German.]

3This only applies to finite sets. The set-theoretic concept of cardinality is more general
than that of the number of elements in that it also applies to infinite sets, for which it was
even developed. We need not go into the notion of cardinality for infinite sets though,
for which one may consult any textbook on set theory.
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As a partial answer to the question of how many persons at the beach are
of which nationality, (14) is false – which speaks in favor of interpretation
(13a). On the other hand, an Austrian who had just met Horst and Gaby
and, apart from them, only seen Englishmen at the beach, may not neces-
sarily be called a liar if he gives (14) as an answer to the question whether
there any Germans on the beach at all. This difference in evaluation might
indicate an ambiguity in the noun phrase zwei Personen [≈ two persons];
but then it may also be due to pragmatic factors. As a matter of fact, this
question has not been fully resolved in semantics. Even though (apparently)
the majority of semanticists currently tend to favor a pragmatic reading with
an underlying literal meaning (13b), alternative analyses have also been de-
fended, according to which, say, the reading (13a) is the underlying one and
the other interpretations are due to pragmatics or structural ambiguity. We
would like to leave the question open here and only provisionally decide for
one of the solutions by making out an ambiguity in the numeral zwei [≈
two]; we will return to this in the next section.

From the two alternative extensions given in (13) one may again derive
corresponding intensions – simply by abstracting from the given situation
s∗, thus passing over to arbitrary situations s∈LS :

(15) a. Jzwei PersonenK = λs.λX.`↓X ∩ Pers = 2a
b. Jzwei PersonenK = λs.λX.`↓X ∩ Pers ≥ 2a

3.2 Determiners

Unlike zwei Personen [≈ two persons], the quantified noun phrase nie-
mand [≈ nobody] forms an exception in that it consists of a single word4

and does not decompose into a determiner (or article) and a (possibly mod-
ified) noun: zwei + Personen, eine + Person, jede + Person, keine
+ Person, die meisten + Personen etc.5 We will now take a closer
look at such ‘normal’ noun phrases and dissect them into their parts using
the abstraction procedure. First of all we must, however, concede that this
method does not immediately apply. For though we know the extension of,
say, the (entire) expression keine Person [≈ no person] in a given situation
s∗ ∈LS – viz. JniemandKs∗ , we have not yet come across the extension of
the determiner kein [≈ no] or that of the noun Person [≈ person]:

4There are actually good reasons for assuming that niemand [≈ nobody] is not an un-
structured expression but consists of three parts, roughly corresponding to the (near)
paraphrase nicht eine Person [≈ not a person]. Evidence for this lexical decomposition
of niemand [≈ nobody] will be presented in Chapters 5 and 6; in the meantime, we will
assume that it is a‘monolithic’ word.

5We assume this bracketing because the structure ‘die + meisten + Personen’ cannot
be interpreted in terms of the strategy followed in this chapter.
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(16) Jkeine PersonKs∗

= JniemandKs∗

JkeineKs∗

= ?1
JPersonKs∗

= ?2

The situation visualized in (16) is similar to the starting point of the preced-
ing chapter, where we tried to put together the truth value of predications
by combining the extensions of subject and predicate. And we will find a
similar way out and determine the noun’s contribution to the extension of
the whole expression by comparing its alternatives:

(17) a. Keine Person schläft.
[≈ No person is sleeping.]

b. Kein Kind schläft.
[≈ No child is sleeping.]

c. Keine Frau schläft.
[≈ No woman is sleeping.]

Considerations like the one about the Müllers in the above situation s∗ show
that in the subjects of (17b) and (17c), the rôle Pers∗ plays in the extension
of niemand [≈ nobody] is played, respectively, by the sets Kids∗ andWoms∗

of the children and women in s∗. Thus, e.g., (17b) is true in s∗ because only
Herr and Frau Müller are asleep and thus the set of kids does not overlap
with the extension of the predicate (taken as a set); and since Frau Müller
is an element of the intersection of Fras∗ and the predicate extension (taken
as a set), (17c) is false in s∗. We thus conclude:

(18) a. JKeine PersonKs∗ = λX.`↓X ∩ Pers∗ = ∅a
b. JKein KindKs∗ = λX.`↓X ∩Kids∗ = ∅a
c. JKeine FrauKs∗ = λX.`↓X ∩ Fras∗ = ∅a

The contribution a noun N makes to the extension of a quantified (subject)
noun phrase of the form ‘kein N ’ [≈ no N ], then, obviously consists in a set
of individuals that needs to be disjoint of the predicate extension (taken as a
set) if the whole sentence is to come out as true. Since the extensions of noun
and predicate each contribute a set of individuals to the whole sentence, it
is natural to assimilate them:

(19) a. JPersonKs∗ = λx.`x ∈ Pers∗a = Jis a PersonKs
∗

b. JKindKs∗ = λx.`x ∈ Kids∗a = Jis a childKs
∗

c. JFrauKs∗ = λx.`x ∈Woms∗a = Jis a womanKs
∗

According to (19a), any individual u satisfies: JPersonKs∗(u) = 1 iff u ∈
Pers∗ . Hence the extension of Person[≈ person] (in s∗) characterizes the
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set Pers∗ of persons (in s∗):

↓ JPersonKs∗

= ↓ λx.`x ∈ Pers∗a by (19a)
= {x | x ∈ Pers∗} by (37), Chapter 2
= Pers∗ Comprehension Principle

And similarly for the other two equations in (19) and the sets Kids∗ and
Woms∗ . We could have taken these sets themselves as noun extensions, but
then in view of the one-one-relation between sets and their characteristic
functions we prefer the parallelism between noun and predicate extensions
as defined in (19).

The equations in (19) can, of course, also be formulated without reference
to the sets characterized:

(20) a. JPersonKs∗ = λx.`x is a person in s∗a
b. JKindKs∗ = λx.`x is a child in s∗a
c. JFrauKs∗ = λx.`x is a woman in s∗a

(20a) rests on the fact that Pers∗ is the set of persons in s∗, so that (any
arbitrary) x is a person in s∗ just in case x∈Pers∗ .

Since obviously nothing in the equations (19) hinges on the peculiarities
of the situation s∗, they carry over to arbitrary s∈LS ; this then fixes the
extensions of these nouns:

(21) a. JPersonK = λs.λx.`x ∈ Persa
b. JKindK = λs.λx.`x ∈ Kidsa
c. JFrauK = λs.λx.`x ∈ Kidsa

So according to (19) and (21) a noun like Person [≈ person] has the same
extension and intension as the predicate ist eine Person [≈ is a person].
This semantic parallelism of nouns and predicates has a long tradition, going
back to Aristotle at least, but presumably cannot be upheld in the light of
more recent semantic findings. In order to avoid unnecessary complications,
we will still apply it here since it turns out to be sufficient for our purposes
– the analysis of quantifying noun phrases. It should be noted, though,
that not all nouns can be interpreted in this fashion, but only those that
can be completed to a full nominal constituent by adding a determinator.6

Such nouns are also called sortals. (21) may thus be taken as a schema for
determining the intensions of sortal nouns. Given this schema, the situation

6What is excluded are so-called mass nouns like Milch [≈ milk], which (as a rule) can
do without a determiner (and do not form a plural either), as well as so-called relational
nouns (like Oberfläche [≈ surface]), which need a (possibly implicit) complement – . . .
des Tischs [≈ of the table], say. Note that Kind [≈ child] and Frau [≈ [woman/wife]
have relational readings – if they are used in the sense of direct offspring and wife,
respectively – which we are however ignoring here.
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dramatically improves vis-à-vis (16):

(22) Jkeine PersonKs∗

= JniemandKs∗

JkeineKs∗

= ?1
JPersonKs∗

= λx.`x ∈ Pers∗a

(22) describes a typical starting point for an application of the abstraction
procedure, according to which the missing extensions of kein[e] [≈ no] is now
a function that assigns to every noun extension a corresponding quantifier
extension. From the observations in (18) and (19) we may first construct the
following table:7

(23) Jkein-Ks∗ =

λx.`x ∈ Pers∗a λX.`↓X ∩ Pers∗ = ∅a
λx.`x ∈ Kins∗a λX.`↓X ∩Kids∗ = ∅a
λx.`x ∈ Fras∗a λX.`↓X ∩Woms∗ = ∅a
. . . . . .

The left column of table (23) contains the extensions of our three token nouns
according to (19); in the right column they get assigned the corresponding
quantifier extensions according to (18). Since the sets Pers∗ , Kins∗ and Fras∗
mentioned on the right hand side are just the sets characterized by the noun
extensions on the left, the values in the right column may be represented as
depending on the corresponding arguments to their left:

(24) Jkein-Ks∗ =

JPersonKs∗ λX.`↓X∩ ↓ JPersonKs∗ = ∅a
JKindKs∗ λX.`↓X∩ ↓ JKindKs∗ = ∅a
JFrauKs∗ λX.`↓X∩ ↓ JFrauKs∗ = ∅a
. . . . . .

Y λX.`↓X ∩ ↓Y = ∅a
. . . . . .

Unlike table (23), (24) now also contains a typical line that shows the effect
of an arbitrary noun extension Y on the extension of the whole quantified
noun phrase. Starting from this typical line, the extension of the determiner
kein- [≈ no] can now be compressed into a lambda-term:

(25) Jkein-Ks∗ = λY.λX.`↓X ∩ ↓Y = ∅a

The formula may appear complicated; but it only expresses that the contri-

7The hyphen in ‘kein-’ [≈ no] is merely supposed to indicate that it is not a particular
word form that is at stake but the lexeme with all its forms: kein [≈ no] in kein Mensch
[≈ no human being] has the same meaning (intension) as keine [≈ no] in no person,
etc.
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bution the determiner kein- [≈ no] makes to the extension of the sentence
consists in a condition it imposes after successive application to the exten-
sion of noun (Y ) and predicate (X ) – viz. disjointness (of the sets they
characterize).

The extensions of other determiners may now be derived following this
model. In each case we only need to know the extensions of quantifying noun
phrases they introduce. Let us start with:

(26) Jede Seminarteilnehmerin hat das Skript gelesen.
[≈ Every female seminar participant has read the class notes.]

The extension of the subject of (26) is readily identified applying the method
of the previous section. If we use ‘Sems∗ ’ to denote the set of female seminar
participants in a situation s∗, (26) applies to s∗ if every element in this set
is an element of the extension of the predicate Jhat das Skript gelesenKs∗

(taken as a set). Varying the predicate again, we find that in general a
sentence with jede Seminarteilnehmerin [≈ Every female seminar partic-
ipant] as its subject is true of situations s∗ in which every element of Sems∗

appears in the predicate extension (taken as a set). Set-theoretically put,
then, for such a sentence to apply to s∗, Sems∗ needs to be a subset of the set
characterized by the extension of the predicate. In analogy to the equations
for quantifying noun phrases of the form ‘kein- N ’ [≈ ‘no N ’] given in (18),
we thus arrive at the following analysis:

(27) Jjede SeminarteilnehmerinKs∗ = λX.`Sems∗ ⊆ ↓ Xa

Using the extensions of our sample sortals in (19) and (20) we can again
determine the contribution of the determiner jed- [≈ every] to the quantifier
extension in (27) by the abstraction procedure – in close analogy to (24):

(28) Jjed-Ks∗ =

JPersonKs∗ λX.` ↓ JPersonKs∗ ⊆ ↓Xa
JKindKs∗ λX.` ↓ JKindKs∗ ⊆ ↓Xa
JFrauKs∗ λX.` ↓ JFrauKs∗ ⊆ ↓Xa
JSeminarteilnehmerinKs∗ λX.` ↓ JSeminarteilnehmerinKs∗ ⊆ ↓Xa
. . . . . .

Y λX.`↓Y ⊆ ↓Xa
. . . . . .

Again, we finally isolate the typical line of table (28) to represent the exten-
sion of jed- [≈ every] by a lambda-term – as in (25):

(29) Jjed-Ks∗ = λY.λX.`↓Y ⊆ ↓Xa

According to (29) the subset relation plays the same role for jed- [≈ every]
as does disjointness in the case of kein- [≈ no]: if the quantified noun phrase
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in question occurs in subject position, the determiner relates the extensions
of noun and predicate (taken as sets).

Underlying the extension of the indefinite determiner, there is a simple
relation between sets, too.

(30) Ein Kind schläft.
[≈ A/one child is sleeping.]

First of all, though, we need to acknowledge that there are several ways of
reading (30):

(i) It may express that children in general are asleep – e.g., if (30) is used
as an answer to the question Was macht ein Kind in der Nacht?
[≈ What does a child do at night?.]

(ii) On another, less obvious way of understanding (30), the sentence is
false if two or more children are asleep. This is how the sentence
comes across if it is used to answer the question Wie viele Kinder
schlafen? [≈ How many children are asleep?].

(iii) Finally, (30) may just express the opposite of Kein Kind schläft [≈
No child is sleeping.] – e.g., if one continues with: . . . und vielleicht
schlafen alle [≈ . . . and maybe all of them are.].

In the case of (i) we have a so-called generic reading, which we will ignore,
because it cannot (or not easily) be captured by our interpretation of quan-
tified noun phrases; we will briefly return to them in Chapter 10 [to be
written]. The difference between (ii) and (iii) is that between numeral and
indefinite article, as it is expressed in English by one vs. a[n]. It is, however,
not obvious that German also has two distinct words (i.e., readings with the
same surface forms) . The situation is reminiscent of the noun phrase zwei
Personen [≈ two persons] analyzed in the previous section: it may be that
the different interpretations of ein- [≈ a/one] are due to different uses of
one word with one meaning. We will not pursue this question here; for in
principle both uses can be accounted for in analogy to kein- [≈ no] again.
As long as only one of them corresponds to the literal meaning of ein- [≈
a/one], it can again be captured by the abstraction procedure. In the case
of the indefinite article, this is particularly easy: it merely expresses the
opposite of the disjointness expressed by kein- [≈ no]:

(31) Jein-indefKs
∗
= λY.λX.`↓X ∩ ↓Y 6= ∅a

The numeral ein- [≈ one], too, appears to say something about the relation
between noun and predicate extension: on this reading, (30) is true of a
situation s∗ if the intersection of the extension of Kind [≈ child] in s∗ –
taken as a set ↓ JKindKs∗ – has exactly 1 element – nor more and no less
– in common with the extension of schläft [≈ sleeps] in s∗ – also taken as
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a set ↓ JschläftKs∗ . This obviously neither excludes that there are further
children nor that, apart from this one child, any other individuals are asleep.
Generalizing from this case, we are thus led to the following analysis of the
numeral ein- [≈ one]:

(32) a. Jein-NumKs∗ = λY.λX.`↓X ∩ ↓Y = 1a

As we just said, we will leave it open whether the difference between (31) and
(32a) is a matter of semantics or whether it is a difference in use. Moreover,
unless stated otherwise, if used without subscript, ‘ein-’ will, in what follows,
be understood as the indefinite article as analyzed in (31).

The other numerals may now be interpreted along the lines of (32a):

(32) b. Jzwei-NumKs∗ = λY.λX.`↓X ∩ ↓Y = 2a
c. Jdrei-NumKs∗ = λY.λX.`↓X ∩ ↓Y = 3a

According to analysis (32b), the above quantifying noun phrase zwei Per-
sonen [≈ two persons] is interpreted as in (13a); the alternative reading
(13b) is obtained by a lexical reading as in (33a), which also generalizes to
all other numerals:

(13a) Jzwei PersonenKs∗ = λX.`↓X ∩ Pers∗ = 2a

(13b) Jzwei PersonenKs∗ = λX.`↓X ∩ Pers∗ ≥ 2a

(33) a. Jzwei-NumKs∗ = λY.λX.`↓X ∩ ↓Y ≥ 2a
b. Jdrei-NumKs∗ = λY.λX.`↓X ∩ ↓X ≥ 3a

The disambiguating subscripts used in (33a) and (33b) are supposed to indi-
cate that the extensions are analogous to the extension (31) of the indefinite
article. (How so? Exercise!) As already mentioned, we will leave it at this
and assume a lexical ambiguity without forgetting that there is something
arbitrary about this decision.

In (34), too, the noun extension is related to the predicate extension:

(34) Die meisten Kinder schlafen.
[≈ Most children are sleeping.]

Assuming that the plural form Kinder [≈ children] has the same meaning
as the singular form Kind [≈ child],8 the situations described in (34) can be

8This assumption may appear weird: does the plural not make its contribution by al-
lowing for reference to several objects? Matters are not that simple. In a sense, the
singular noun Kind [≈ child], too, refers to several individuals in that its (changing)
extension covers all children (in a situation); without this reference, quantifications like
jedes Kind [≈ every child] and kein Kind [≈ no child] would not be possible. On the
other hand, there are in fact uses of plural noun phrases that require reference to groups
of individuals; the so-called collective predication Fritz und Eike sind [miteinander]
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described as those in which there are more sleeping children than children
that are awake. The sleeping children form the intersection S of the extension
of Kind [≈ child] and that of schläft [≈ is sleeping] (both taken as sets);
the children that are awake form the difference D of these sets, i.e., the
extension of Kind [≈ child] without (‘\’) the intersection of schläft [≈ is
asleep]:9 – graphically:

(35)
D S

Kids∗ JschlafenKs∗

The intersection S obviously needs to contain more elements than D if (34)
is to be true of a situation s∗, i.e., the cardinality of S must be larger than
that of D :

(36) S > D ,
i.e.: Kids∗∩ ↓ JschlafenKs∗ > Kids∗\ ↓ JschlafenKs∗

In (35) the size of the areas is meant to – exceptionally – represent the
relative sizes of the sets represented. (35) thus stands for a typical situation
to which (34) applies.

As before we can now glean the extension of the determiner from the
concrete case. To do so, we only need to replace the specific noun and
predicate extensions mentioned in (36) by variables for arguments to which
the extension to be determined can be successively applied. We thus arrive
at the following analysis:

(37) Jdie meistenKs∗ = λY.λX.`↓Y ∩ ↓X > ↓Y \↓Xa

We end this semantic tour of the land of determiners with a visit to the

verheiratet [≈ Fritz and Eike are married (to each another)] from Chapter 0 is a case
in point. In such cases, plural marking carries meaning. But (34) is not necessarily
such a case; for – with the right bracketing – the sentence may be construed as ordinary
quantification. Unfortunately, this course will not address the semantics of plural and
collectivity. Godehard Link’s handbook article ‘Plural’ (in A. von Stechow, D. Wun-
derlich (Hrsg.), Semantik/Semantics. Berlin 1991, S. 418–440) is recommended as an
excellent source.

9The difference A\B is defined as the set of elements of the set A that are not at the same
time elements of the set B : A\B := {x ∈ A|x /∈ B}.
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definite article d- (= der/die/das) [≈ the]. Whether it can be adequately
interpreted along the lines of the other determiners is a subject of heavy
debate among semanticists. But it is clear that at least certain uses can be
captured. Let us look at an example:

(38) Die türkische Kursteilnehmerin sitzt in der zweiten Reihe.
[≈ The female Turkish course participant is sitting in the second
row.]

What situations does s∗ (38) apply to? First of all (ii.), in s∗ there needs to
be a female Turkish course participant who is sitting in the second row. But
this alone does not suffice in that (38) cannot really be related to courses in
which two or more Turkish women participate: a further condition on s∗ is
(i.) that there is precisely one female Turkish course participant. We thus
have, for any situation s∗: J(38)Ks∗ = 1 iff the following two conditions are
met:

i. there is precisely one female Turkish course participant in s∗;

ii. there is a Turkish course participant in s∗ who, in s∗, is sitting in the
second row.

Both conditions can again be reformulated as statements about the exten-
sions of noun and predicate, which fits in with a compositional interpreta-
tion of the definite article. For i. is about the cardinality of the extension of
türkische Kursteilnehmerin [≈ female Turkish course participant] (taken
as a set); and ii. relates this extension to that of the predicate:

(i.′) ↓ Jtürkische KursteilnehmerinKs∗ = 1;

(ii.′) ↓ Jtürkische KursteilnehmerinKs∗∩ ↓ Jsitzt in der 2. ReiheKs∗ 6=
∅

The two conditions are reminiscent of the alternative analyses (31) and (32a)
of ein- [≈ a/one]. And (ii.′) does indeed give the truth condition of (39) (for
situation s∗) if eine is interpreted as an indefinite determiner in the sense
of (31):

(39) Eine türkische Kursteilnehmerin sitzt in der zweiten Reihe.
[≈ A female Turkish course participant is sitting in the second row.]

On the other hand (i.′) does not match the reading (39) according to which
the determiner of the subject is the numeral interpreted as in (32a); for the
latter comes with the following truth condition:

(40) ↓ Jtürkische KursteilnehmerinKs∗∩ ↓ Jsitzt in der 2. ReiheKs∗ =
1
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Whereas (40) does not exclude that there is more than one female Turkish
course participant (as long as only one is sitting in the second row), the
condition given in (i′.) says that there is only one female Turkish course
participant (no matter where she may be sitting). The truth conditions
of (38) thus do not coincide with those of (39), in whichever reading the
sentence may be construed.

The conditions (i.′) and (ii.′) can be given in several equivalent ways. For
instance, (ii.′) can be reformulated as a condition on the number of elements
in the intersection of noun and predicate extension. Alternatively, (ii.′) may
be replaced by a subset condition; for (ii.′) boils down to (i.′′) in the presence
of the condition (i.′), as will be shown in an exercise:

(ii.′′) ↓ Jtürkische KursteilnehmerinKs∗

⊆ ↓ Jsitzt in der zweiten ReiheKs∗

(i.′), too, can be reformulated; it may, e.g., be split into two parts:

(i.′′) a. ↓ Jtürkische KursteilnehmerinKs∗ 6= ∅
b. ↓ Jtürkische KursteilnehmerinKs∗ ≤ 1

(i.′′a) says that there is a female Turkish course participant at all, thus
guaranteeing that the extension of the noun contains at least one element;
(i.′′b) in turn says that it contains at most one element. Together these
conditions thus come down to (i.).

Taken together, the conditions (i.′′a), (i.′′b), and (ii.′′) are know as the
Russellian Theory of Descriptions.10 More generally, this is the following
semantic analysis of the definite article, which is obtained in the by now
familiar fashion, by generalizing the sample analysis:

(41) Jd-RussellKs
∗
= λY.λX.` ↓Y 6= ∅︸ ︷︷ ︸

(i)

& ↓Y ≤ 1︸ ︷︷ ︸
(ii)

& ↓Y ⊆ ↓X︸ ︷︷ ︸
(iii)

a

Condition (i), which corresponds to (i.′′a) above, is also called the existence
condition, because it expresses that there is something – that something
exists – in the extension of the noun. The generalization (ii) of (i.′′b) is
called the uniqueness condition; for it says that the set ↓Y hosts at most
one single individual – i.e., not more than one. Condition (iii) does not have
a special name.

We will see some of the advantages of this analysis, which at first glance
may come across somewhat over-complicated. Even at this point one may
object though, that it cannot possible cover all aspects of the use of the

10After Bertrand Russell, who in his essay On Denoting (1905), opposed an older Fregean
analysis with it and at the same time applied it in a critical linguistic analysis of con-
temporary philosophical works. Russell’s analysis had an immense influence on the
development of Anglo-Saxon philosophy in the 20th century.
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definite article. The following examples are cases in point:

(42) Das Auto war zwischen einer Mauer und einem Porsche
eingeklemmt. [≈ The car was clamped between a wall and a
Porsche.]
(42) can only apply to situations in which there is more than one
car – a Porsche plus the car described by the underlying description.
Hence such situations do not meet the uniqueness condition as it is
formulated in (41). At best, one could say that the car so-described
was the only element in the extension of Auto [≈ car] that was
already under discussion. The uniqueness condition would have to
be watered down to a salience condition in this case.

(43) Obwohl Astrid Lindgren gerade in Schweden sehr populär
war, hat die Autorin nie den Literaturnobelpreis erhalten.
[≈ Although Astrid Lindgren was particularly popular in Sweden,
the author never received the Nobel Prize for literature.]
In (43) the underlined description relates back to the name in the
subordinate clause, or as one says in semantics: it is used anaphor-
ically ; if it is replaced by the pronoun sie [≈ she], no detectable
difference in meaning ensues. Again it is the uniqueness condition
that has been violated: after all, the (main) clause does not relate
to situations that contain only one author.

(44) Der Tiger ist eine in Asien beheimatete Großkatze.
[≈ The tiger is a big cat indigenous to Asia.]
According to the Russellian analysis (41), (44) is supposed to imply
that there is only one tiger; but if anything, the uniqueness condition
seems to refer to the entire kind panthera tigris, not on its exemplars.
As in a similar case with indefinites mentioned above, such uses of
definite descriptions are called generic (in a wide sense).

We will return to these and other objections to the Russellian Theory of
Descriptions in Chapter 10 [once its written down], but take it to be correct
until then.

For the sake of completeness, we state how the extensions of determiners
combine with those of nouns within quantifying noun phrases; since they
have been obtained by abstraction, it is again functional application that
has to be employed:

(45) Compositional Determination of the Extension of Quantifying Noun
Phrases
If QN is a quantifying noun phrase consisting of a determiner D and
a noun N, the for all s ∈LS the following holds:
JQNKs = JDKs(JNKs).
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Until now we have focussed exclusively on the extensions of the determiners
in a given situation s∗ ∈LS. As always, their intensions emerge once we make
the extension depend on an arbitrary situation s∈LS :

(46) a. Jkein-K = λs.λY.λX.`↓X ∩ ↓Y = ∅a cf. (25)
b. Jjed-K = λs.λY.λX.`↓X ⊆ ↓Y a cf. (29)
c. Jein-indefK = λs.λY.λX.`↓X ∩ ↓Y 6= ∅a cf. (31)

d. Jzwei-indefK = λs.λY.λX.`↓X ∩ ↓Y ≥ 2a cf. (33a)

e. Jdrei-indefK = λs.λY.λX.`↓X ∩ ↓Y ≥ 3a cf. (33b)

f. Jein-NumK = λs.λY.λX.`↓X ∩ ↓Y = 1a cf. (32a)
g. Jzwei-NumK = λs.λY.λX.`↓X ∩ ↓Y = 2a cf. (32b)
h. Jdrei-NumK = λs.λY.λX.`↓X ∩ ↓Y = 3a cf. (32c)

i. Jdie meistenK = λs.λY.λX.`↓Y ∩ ↓X > ↓Y \↓Xa
cf. (37)

j. Jd-RussellK = λs.λY.λX.`↓Y 6= ∅ & ↓Y ≤ 1 & ↓Y ⊆ ↓Xa
cf. (43)

3.3 Conservativity and Invariance

The analyses in (46) substantiate that determiners always establish simple
set-theoretic relations between noun and predicate extensions that are inde-
pendent of the situation at hand. In particular, their intensions are always
rigid. But the semantic features common to all determiners go deeper. In
fact, it turns out that the relations between noun and predicate extensions
defined in (46) are not arbitrary but always concern particular ‘regions’ of
the domain of individuals, as partitioned (in a given situation s∗) in the sense
of the following Venn diagram:

(47)
A

[= N\P ]
B

[= S∩P ]
C

[= P\S ]

Rest↓Noun extension ↓Predicate extension

It should be noted that the parts called A, B , C , and R in (47) not only
depend on the situation s∗ at hand but also on the N oun and Predicate
extension; instead we could have written them more clearly but clumsily as:
‘As∗

N,P’, ‘B
s∗
N,P’, ‘C

s∗
N,P’, and ‘Rs∗

N,P’.
It may be noticed that all of the relations between extensions defined in

90



CHAPTER 3. QUANTIFICATION

(46) only concern the difference A and/or the intersection B : the extension
of kein- [≈ no] says that B is empty; that of jed- [≈ every], that A is
empty; that of die meisten [≈ most], that B contains more elements than
A; etc.:

(48) a. B = ∅ kein- [≈ no]
b. A = ∅ jed- [≈ every]
c. B 6= ∅ ein-indef [≈ a(n)]

d. B ≥ 2 zwei-indef [≈ two]

e. B ≥ 3 drei-indef [≈ three]

f. B = 1 ein-Num [≈ one]
g. B = 2 zwei-Num [≈ two]
h. B = 3 drei-Num [≈ three]
i. B > A die meisten [≈ most]
j. A = 0 < B = 1 d-Russell [≈ the]

It seems as if neither the objects in C nor those in the rest R have a rôle
to play in quantification. The extensions of the determiners are, as it were,
only interested in two of the four regions:

(47′)
A B irrelevant

irrelevant↓Noun extension ↓Predicate extension

Determiners whose extensions express relations between the regions men-
tioned in (47′) are called conservative. For a conservative determiner only
the intersection B and the difference A play a rôle when it comes to deter-
mining the truth value. So if a noun and a predicate extension (both taken as
sets) have the same difference and the same intersection like another noun
extension S ′ with another predicate extension P ′, then it does not make
a difference to a conservative determiner which of the two noun/predicate
combinations it is combined with. We thus arrive at the following definition
of conservative determiner extensions:

D3.1 A determinator D is conservative if for all situations s and all
predicate extensions X, X ′, Y, and Y ′ the following holds:
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if: ↓Y \↓X = ↓Y ′\↓X ′
and ↓Y ∩ ↓X = ↓Y ′ ∩ ↓X ′,

then also: JDKs(Y )(X) = JDKs(Y ′)(X ′)

Note that D3.1 is formulated in terms of arbitrary characteristic functions
Y, Y ′, X, and X ′ rather than the sets S , S ′, P , and P ′; this is so because
determiner extensions do not directly apply to sets of indivduals but rather
to their characteristic functions.

Intuitively speaking, a conservative determiner makes a statement about
the relation between noun and predicate extension to the extent that the
latter is affected by the former in the first place: only those objects in the
extension of the predicate are taken into account that are also in the ex-
tension of the noun. With its extension, the noun marks out the bounds
within which the predicate extension is considered. This also explains why
statements of the form (a) – with (sortal) noun N and predicate P – can
always be reformulated as (b), provided that D is a conservative determiner:

a. D N P
b. D N ist ein(e) N und P

[≈ D N is a(n) N and P ]

In (a.) the determiner expresses a relation between the noun extension ↓Y
(taken as a set) and the predicate extension ↓X (taken as a set); in (b.)
it expresses the same relation between ↓Y and ↓Y∩ ↓X (= B). If it is
conservative, though, this should come to the same thing; for then it can
make a statement about that part of the predicate extension P that overlaps
with the noun extension S – in other words, about the intersection B . And
Kein Kind schläft [≈ No child is sleeping] indeed means the same as [≈ No
child is a child and is sleeping]; Jede Frau liebt einen Mann [≈ Every man
loves a woman] means: Jede Frau ist eine Frau und liebt einen Mann
[≈ Every man is a man and loves a woman]; etc. Given this, a (hypothetical)
determiner for which (a.) and (b.) have different truth conditions cannot be
conservative. Conversely, any determiner for which (a.) and (b.) coincide,
is conservative. We thus obtain the following:11

Conservativity Test
A determinator D is conservative just in case, for all situations s and
all predicate extensions Y and X, the following holds:
JDKs(Y )(X) = JDKs(Y )(Y uX),
where Y uX is the characteristic function of ↓Y ∩ ↓X, i.e., λx.`x ∈
↓Y ∩ ↓Xa.

11In the literature the characterization given in the Conservativity Test is frequently taken
as a definition from which the equivalence in D3.1 is derived. The proof of the equivalence
of the two conditions will be provided in an exercise.
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The name of the above equivalence derives from the fact that it makes it
possible to easily find out whether a determiner is conservative: one only
needs to test whether the [schematic] sentences (a.) and (b.) mean the same.
As the above examples indicate, this is usually very easy – and certainly
easier than relying on the condition given in D3.1 as a test for conservativity.

We use the example of a simple chain of equations for the determiner
kein- [≈ no] to convince ourselves that the extensions developed above also
pass the Conservativity Test:

(49) Jkein-Ks∗(Y )(Y uX)
= [λY.λX.`↓X ∩ ↓Y = ∅a](Y )(Y uX) (25)
= [λX.`↓X ∩ ↓Y = ∅a](Y uX) λ-conversion
= ` ↓(Y uX) ∩ ↓Y = ∅a λ-conversion
= ` ↓(λx.`x ∈ ↓Y ∩ ↓Xa) ∩ ↓Y = ∅a Def. ‘∩’
= `{x | x ∈ ↓Y ∩ ↓X} ∩ ↓Y = ∅a (37), Ch. 2
= `(↓Y ∩ ↓X) ∩ ↓Y = ∅a Comprehension Principle
= `↓Y ∩ ↓X = ∅a set theory12

= [λX.`↓Y ∩ ↓X = ∅a](X) λ-conversion
= [λY.λX.`↓Y ∩ ↓X = ∅a](Y )(X) λ-conversion
= Jkein-Ks∗(Y )(X) (25)

The list of the conditions in (48) suggests that all determiners are conser-
vative. This is indeed so – and not just in German [or English, for that
matter]: it may well be that the determiners in all languages are conserva-
tive. At the same time it is not hard to imagine what a non-conservative
determiner would have to look like. Here is an apparent counter-example to
universal conservativity:

(50) Nur Pferde können im Stehen schlafen.
[≈ Only horses can sleep standing up]

(50) is true of a situaiton s∗ if there are no individuals in s∗ that can sleep
standing up without being horses:

12This passage ultimately rests on the definition of set-theoretic intersection:

A ∩B
= {x | x ∈ A & x ∈ B} Def. ‘∩’
= {x | x ∈ A & x ∈ B & x ∈ B} propositional logic
= {x | x ∈ {x |x ∈ A & x ∈ B} & x ∈ B} Comprehension Principle
= {x | x ∈ A & x ∈ B} ∩B Def. ‘∩’
= (A ∩B) ∩B Def. ‘∩’
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(51) A B C

Rhorses in s∗ upright sleepers in s∗

In other words, the predicate extension must be a subset of the extension
of the noun. This leads to the mirror image of the analysis (29) of jed- [≈
every]:

(52) JnurKs∗ = λY.λX.`↓X ⊆ ↓Y a

According to this analysis, nur [≈ only] is not conservative; for the condition
on the regions of Logical Space in the partition (51) corresponding to (52)
concerns neither A nor B , but instead reads:

(53) C = ∅ nur [≈ only]

The above Conservativity Test confirms this finding: if, say, apart from
the horses, donkeys also slept standing up, (50) would be false, but the
corresponding reformulation (54) would still hold:

(54) Nur Pferde sind Pferde und können im Stehen schlafen.
[≈ Only horses are horses and can sleep standing up.]

Is nur [≈ only] a non-conservative determiner, then? No – because, even
if a casual glance at examples like (54) might suggest otherwise, from a
morphosyntactic point of view nothing speaks in favor of nur [≈ only] being
a determiner in the first place:

• nur [≈ only] does not display the kind of agreement morphology typical
for German determiners: viele Kinder [≈ manynom childrennom] vs.
vielen Kindern [≈ manydat childrendat], but nur Kinder(n) [≈ only
childrennom/dat];

• nur [≈ only] combines with constituents of all sorts of categories, not
just with nouns: nur schlafen [≈ only sleep], nur der König [≈
only the king], . . . ; in particular, the construction in (50) can also be
construed as modifying the plural indefinite Pferde [≈ horses] (and
not just the surface-identical noun Pferde [≈ horses]);

• Unlike all (other) determiners, nur [≈ only] is sensitive to stress dis-
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tinctions, even in nominal combinations like (50):13 Maria isst nur
Erdbeeren mit Schlagsahne [≈ Maria only eats strawberries with
cream] does not mean the same as Maria isst nur Erdbeeren mit
Schlagsahne [≈ Maria only eats strawberries with cream].

Moreover, since nur [≈ only] would be the only non-conservative determiner,
the quantifier-semantic analysis confirms this diagnosis. We thus note:14

(55) Conservativity Constraint . . . after Barwise & Cooper (1981)
Determiners are always conservative.

Apart from their conservativity, there is a further feature that the conditions
various determiners impose on noun and predicate extensions (as listed in
(48)), have in common: all of them solely concern the numbers of elements
of the sets S and P . Thus the disjointness condition (46a) expressed by kein
[≈ no] is satisfied just in case the intersection (B) contains zero elements, i.e.
if: S ∩P = 0. Similarly, the overlap required in (46c) means that S ∩P 6= 0
etc. If we abbreviate the cardinalities of A and B as ‘a’ and ‘b’, respectively,
the conditions in (48) are captured by the following numerical relations:

(56) a. b = 0 kein- [≈ no]

b. a = 0 jed- [≈ every]

c. b 6= 0 ein-indef [≈ a(n)]

d. b ≥ 2 zwei-indef [≈ two]

e. b ≥ 3 drei-indef [≈ three]

f. b = 1 ein-Num [≈ one]

g. b = 2 zweiNum [≈ two]

h. b = 3 dreiNum [≈ three]

i. b > a die meisten [≈ most]

j. a = 0 < b = 1 dRussell [≈ the]

Determiners whose extensions can be reduced to purely arithmetical relations
between extensions, along the lines of (56), deserve a term of their own:

D3.2 A determiner D is invariant if for all situations s and all predicate
extensions X, X′, Y, and Y ′ the following holds:

13Though stress distinctions also play a rôle for interpretation elsewhere, in connection
with expressions like nur [≈ only] they have an effect on the truth conditions. This –
well-studied – phenomenon is known as focus sensitivity.

14Ever since the extremely influential essay ‘Generalized Quantifiers and Natural Lan-
guage’ (1981) by Jon Barwise and Robin Cooper, this condition has been regarded as a
presumably universally valid semantic constraint.
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if: ↓Y \↓X = ↓Y ′\↓X ′,
↓Y ∩ ↓X = ↓Y ′ ∩ ↓X ′,
↓X\↓Y = ↓X ′\↓Y ′, and
U\(↓Y ∪ ↓X) = U\(↓Y ′ ∪ ↓X ′,

then: JDKs(Y )(X) = JDKs(Y ′)(X ′)

The analyses presented so far suggest that all determiners are invariant. But
there are remarkable exceptions:

(57) Peters Auto ist grün.
[≈ Peter’s car is green.]

The possessive Peters [≈ Peter’s] in (57) plays the rôle of a determiner;
and it can be analyzed by a variant of the Russellian Theory of Descriptions
applied to the following paraphrase:

(58) Das Auto, das Peter gehört, ist grün.
[≈ The car that belongs to Peter is green.]

According to the Russellian analysis, (58) means that (i) Peter owns at least
one car, (ii) that he owns at most one car, and that (iii) every car that
belongs to Peter is green. Thus the following extension comes out for the
subject of (57) and (58):

(59) JPeters AutoKs∗ = Jdas Auto, das Peter gehörtKs∗

= λX. ` ↓ JAuto, das Peter gehörtKs∗ 6= ∅ (i)
& ↓ JAuto, das Peter gehörtKs∗ ≤ 1 (ii)
& ↓ JAuto, das Peter gehörtKs∗ ⊆ ↓X a (iii)

= λX. ` ↓ JAutoKs∗ ∩ PBs∗ 6= ∅ (i)
& ↓ JAutoKs∗ ∩ PBs∗ ≤ 1 (ii)
& ↓ JAutoKs∗ ∩ PBs∗ ⊆ ↓X a (iii)

Here ‘PBs∗ ’ stands for the objects Peter owns in the situation s∗; for ob-
viously the extension of Auto, das Peter besitzt [≈ car that belongs to
Peter] results from intersecting the extension of Auto [≈ car] (taken as a
set) with Peter’s belongings.15 But while, in the case of the subject of (58),
the extension in (59) can be obtained by combining the Russellian article
with the (complex) noun Auto, das Peter gehört [≈ car that belongs to
Peter], to get the same result for the subject of (57), the extension of Peters
[≈ Peter’s], which is yet to be determined, needs to be combined with the
extension of Auto [≈ car]. A quick comparison with pertinent alternative

15The precise compositional derivation will be addressed in Chapter 6 in connection with
the semantics of relative clauses.
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expressions leads to the extension of the possessive in the by now familiar
way:16

(60) a. JPeters AutoKs∗ =
λX.` ↓ JAutoKs∗ ∩ PBs∗ 6= ∅ & ↓ JAutoKs∗ ∩ PBs∗ ≤ 1 &
↓ JAutoK ∩ PBs∗ ⊆ ↓Xa

b. JPeters FahrradKs∗ =
λX.` ↓ JFahrradKs∗∩PBs∗ 6= ∅& ↓ JFahrradKs∗ ∩ PBs∗ ≤ 1 &
↓ JFahrradK ∩ PBs∗ ⊆ ↓Xa

c. JPeters HausKs∗ =
λX.` ↓ JHausKs∗ ∩ PBs∗ 6= ∅ & ↓ JHausKs∗ ∩ PBs∗ ≤ 1 &
↓ JHausK ∩ PBs∗ ⊆ ↓Xa

Abstracting from the various noun extensions, we arrive at the following
analysis of the possessive:

(61) JPetersKs∗ = λY.λX.`↓Y ∩ PBs∗ 6= ∅ & ↓Y ∩ PBs∗ ≤ 1 & ↓Y ∩
PBs∗ ⊆ ↓Xa

It should be noted that, according to (61), Peters [≈ Peter’s] is conservative,
since in the following reformulation, the sets C and R (in the sense of (47))
play no rôle:

(62) A ∩ PBs = 0 < B ∩ PBs = 1 Peters [≈ Peter’s]

(62) satisfies the conservativity condition even though, on top of A and B ,
it involves ownership; however, the latter is neither contributed by the noun
nor by the predicate but part of the meaning of the possessive itself – along
with the existence and uniqueness conditions. What is remarkable about
(61) and (62) is the fact that these conditions go beyond mere arithmetical
relations between noun and predicate extension in that the truth value does
not solely depend on the cardinalities (a, b, c, r) of the sections of the domain
of individuals according to (47) (A, B , C , R). Thus if (in a given situation)
there are exactly as many bicycles as there are cars; exactly as many bicycles
made of carbon fibre as there are green cars; and as many green objects as
there are objects made of carbon fibre – then the values for a, b, c, and r
in (57) and (63) would be the same; but the truth values need not be the
same, for in the circumstances, Peter’s car could still be green even though

16For simplicity, we are ignoring two subtleties. For one thing, the possessive may indicate
other relations than ownership: thus, e.g., Peters Haus [≈ Peter’s house] can be the
house in which Peter lives. For another thing, the pertinent relation can also be expressed
by the noun itself – as in Peters Vater [≈ Peter’s father], for which no adequate
paraphrase der Vater, der [zu] Peter gehört [≈ the father who belongs/pertains to
Peter] can be found (although this is an additional, remote reading, too). We return to
these complications in Chapter 6.
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he does not possess a bicycle:

(63) Peters Fahrrad ist aus Kohlefaser.
[≈ Peter’s bicycle is made of carbon fibre.]

Since the cardinalities a, b, c, and r do not determine the truth value of
sentences like (57) and (63), the determiner Peters [≈ Peter’s] turns out
to be not invariant – unlike the other determiners considered here. Still,
the uniformity underlying (56) is unlikely to be accidental. For whereas
the possessive Peters [≈ Peter’s] is the result of a grammatical process,
the determiners in (56) are all lexical – with the possible exception of die
meisten [≈ most]. And lexical determiners appear to be invariant – not
only in German, but perhaps universally so. We thus note:17

(64) Logicality Condition
Lexical Determiners are always invariant.

3.4 Quantifying Objects

Like proper names, quantifying noun phrases do not only occur in subject
position. But unlike the former’s interpretation, the latter’s does not easily
carry over from subject to object position. In Section 2.4 we had interpreted
the proper name in the predicate küsst Eike as if it had been in subject
position and then obtained the extension of the predicate by abstraction. So
the starting point was:

(65) Jküsst EikeKs∗ X

JküsstKs∗ ? JEikeKs∗ X

For the analysis of a predicate like küsst niemanden [≈ is kissing nobody],
this strategy is out of the question; for the starting point is different. In the
meantime we have identified the extension (and intension) of the transitive
verb – precisely by resolving (65). So if we now again assume that its rôle as
subject or object makes not difference to the extension of the noun phrase
niemand [≈ nobody], the abstraction procedure cannot be applied:

(66) Jküsst niemandenKs∗ X

JküsstKs∗ X JniemandenKs∗ X
17The hypothesis that this, too, is a universal constraint, originates with the essay ‘A Se-
mantic Characterization of Natural Language Determiners’ (1986) by Edward Keenan
and Jonathan Stavi. The authors speak of logicality instead of (permutation) invari-
ance, which is the more common term; both terms denote a more general property of
extensions that will be scrutinized in the next chapter.
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(66) shows that in the case of quantified object noun phrases, the extensions
to be combined are all known, and so is the result of the combination. What
we do not know, however, is the combination itself, i.e., the operation that
merges the extensions of verb and object into the predicate extension. Ob-
viously functional application, which has always been used so far, won’t do
here, as a quick glance at the extensions to be combined reveals:

(67) a. JküsstKs∗ = λy.λx.`x is kissing y in s∗a
b. JniemandKs∗ = λX.`↓X ∩ Pers∗ = ∅a

In order to be combinable by application, the two extensions need to fit in
that one can act as an argument of the other. However, on the one hand,
the extension of the verb in (67a) can only be applied to individuals, not to
quantifier extensions like JniemandKs∗ . And on the other hand, the latter
expects a predicate extension as its argument, i.e., the characteristic function
of a set of individuals, whose range is {0, 1} (or a subset thereof); but the
values of JküsstKs∗ are no truth values, but predicate extensions themselves.
Functional application is thus ruled out as the combination of extensions in
(66). Rather, we are looking for a combination ⊕ that does the following:

(68) Jküsst niemandenKs∗

= λx.`x is kissing nobody in s∗a
= [λyλx.`in s∗ x is kissing ya]⊕ [λX.`↓X ∩ Pers∗ = ∅a]
= JküsstKs∗ ⊕ JniemandKs∗ – by (38a) from Ch. 2 & (7) from Ch. 3

The problem is to write up the predicate extension in the second line of (68)
so that it becomes clear how it results by combining the two extensions in
the third line. To this end, we will reformulate the second line until the two
extensions have been isolated as separate parts. Once this is done, the result
can be generalized to arbitrary quantifying objects.

To begin with, one may observe that the predicate extension (68) can be
described in terms of a disjointness conditions as it occurs in the represen-
tation (7) of the object extension: that some individual x is kissing nobody
(in s∗) just means that the set of persons (in s∗) does not overlap the set of
the ‘kissees’ x (in s∗), the characteristic function of which we will refer to as
‘Kx

s∗ ’:

(69) λx.`x is kissing nobody in s∗a = λx.`↓Kx
s∗ ∩ Pers∗ = ∅a

This account of the predicate extension is reminiscent of the analysis of
sentences with quantifying subjects, which we developed inSection 3.1:

(70) JNiemand wird von Fritz geküsstKs∗

= JNiemandKs∗(Jwird von Fritz geküsstKs∗) by (8)
= λX.`↓X ∩ Pers∗ = ∅a(KFritz

s∗ ) by (7)
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= `↓KFritz
s∗ ∩ Pers∗ = ∅a λ-conversion

The matrix of the second lambda-term in (69) – the condition `↓Kx
s∗ ∩

Pers∗ = ∅a – looks like the condition of the last line of (70) – with the
difference that Fritz has taken over the rôle of the variable x in (69). Now a
crucial step in the compositional analysis of the predicate küsst niemanden
[≈ is kissing nobody] is to transfer the isolation of the quantifier extension
JniemandKs∗ from (70) to the predicate extension (69):

(71) λx.`↓Kx
s∗ ∩ Pers∗ = ∅a

= [λx.[λX.`↓X ∩ Pers∗ = ∅a](Kx
s∗)] λ-conversion [as in (70)]

= [λx.JniemandKs∗(Kx
s∗)] by (7) [as in (70)]

In (70) the argument KFritz
s∗ of JniemandKs∗ is the extension of the sister

constituent wird von Fritz geküsst [≈ is being kissed by Fritz]. In (71)
the argument Kx

s∗ is, as it were, the extension of the predicate wird von x
geküsst [≈ is being kissed by x ] instead.18

In order to complete the compositional analysis of the predicate exten-
sion, this argument Kx

s∗ still needs to be determined from the extension of
the transitive verb küsst [≈ is kissing]. This is not particularly hard. Kx

s∗

is the characteristic function of the set of those kissed by x (in s∗) and thus
assigns the truth value 1 to an individual y just in case y is being kissed by
x ; in other words Kx

s∗ assigns to any y the truth value of the statement ‘x is
kissing y ’ – the value of JküsstKs∗(y)(x). Hence Kx

s∗ can be described easily
by the following lambda-term:

(72) λy.JküsstKs∗(y)(x)

Summarizing the above observations, we thus obtain the following compo-
sitional analysis of the extension of the predicate küsst niemanden [≈ is
kissing nobody]:

(73) Jküsst niemandenKs∗

= λx.`x kisses nobody in s∗a by (68)
= λx.`↓Kx

s∗ ∩ Pers∗ = ∅a by (69)
= λx.JniemandKs∗(Kx

s∗) by (71)
= λx.JniemandKs∗(λy.JküsstKs∗(y)(x)) by (72)

The decomposition (73) of the extension of the predicate küsst niemanden
[≈ is kissing nobody] into the extensions of its immediate parts suggests that
it can also be used in the general case. We will have ample opportunity to
see that this is actually so:

18‘as it were’, because strictly speaking there is no such predicate, given that German (or
English, for that matter) does not contain variables after all. In the seventh chapter
[not yet written], we will however introduce an alternative analysis according to which
the Logical Forms may contain such variables.
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(74) JP Ks = λx.JQNKs(λy.JV Ks(y)(x))

The combination in (74) is clearly more complicated than functional appli-
cation, which has been used so far for the purpose of composing extensions;
it does not have a name of its own but belongs to a family of semantic op-
erations we will get to know better from Chapter 5 onward. For the time
being we will content ourselves to test (74) by applying the combination to
another example:

(75) Jeder Mann trifft eine Frau.
[≈ Every man is meeting a woman.]

We assume the following constituent structure:

(76)

jeder Mann trifft
eine Frau

According to the decomposition (76), the immediate parts of (75) are: the
quantifying subject jeder Mann [≈ every man] and the predicate trifft eine
Frau [≈ is meeting a woman]. According to the semantics of quantification
– the composition rule (8) for quantifying subjects from Section 3.1 – we
first get (for any s∗ ∈LS ):

(77) J(75)Ks∗ = Jjeder MannKs∗(Jtrifft eine FrauKs∗)

Following (47), the extension of the subject is also determined by functional
application:

(78) Jjeder MannKs∗ = JjederKs∗(JMannKs∗)

The two (immediate) constituents of the subject are non-compound expres-
sions; their intension must therefore be listed in the lexicon. According to
(46a), we get the extension in (79a) for the determiner jed- [≈ every]; for
the noun Mann [≈ man], we take the equation (79b), which we had been
implicitly assuming before.

(79) a. Jjed-Ks∗ = λY.λX.`↓Y ⊆ ↓Xa
b. JMannKs∗ = λx.`x is a man in s∗a

(77) can now be developed further, where we abbreviate the set of men in
s∗ by ‘Mans∗ ’:

(80) J(75)Ks∗

= Jjed-Ks∗(JMannKs∗)(Jtrifft eine FrauKs∗) by (77) and (78)
= [λY.λX.`↓Y ⊆ ↓Xa](JMannKs∗)(Jtrifft eine FrauKs∗) (79a)
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= [λX.`↓JMannKs∗ ⊆ ↓Xa](Jtrifft eine FrauKs∗) λ-conversion
= [λX.`↓(λx.`x ist a man in s∗a) ⊆ ↓Xa](Jtrifft eine FrauKs∗)

(79b)
= [λX.`{x | x ist a man in s∗} ⊆ ↓Xa](Jtrifft eine FrauKs∗)

(37), Ch. 2
= [λX.`Mans∗ ⊆ ↓Xa](Jtrifft eine FrauKs∗) def. of ‘Mans∗ ’
= `Mans∗ ⊆ ↓Jtrifft eine FrauKs∗a λ-conversion

Before we delve into the analysis of the predicate, we notice some details of
the above derivation. In (80) we had performed two λ-conversions to keep
the formulae shorter and more transparent (as far as that’s possible at all).
The exact places at which we performed them do not play a rôle though:
as long as one performs all λ-conversions that can be performed at all, the
result always – and not just in this case – comes to the same thing.19 So we
could also have performed the lexical insertion according to (79b) and only
then get rid of the ‘λY ’:

(80′) . . .
= [λY.λX.`↓Y ⊆ ↓Xa](JMannKs∗)(Jtrifft eine FrauKs∗) (79a)
= [λY.λX.`↓Y ⊆ ↓Xa](λx.`x ist a man in s∗a)(Jtrifft eine FrauKs∗)

(79b)
= [λX.`↓(λx.`x ist a man in s∗a) ⊆ ↓Xa](Jtrifft eine FrauKs∗)

λ-conversion
= . . .

However, what we could not have done is to get rid of the ‘λX’ before the
‘λY ’; for any λ-conversion presupposes a constellation of the form

(81) [λx. . . . ](a)

where a is the argument whose place is taken by the variable ‘x ’ in the
λ-expression. In (80) we find something of the following form:

(82) [λY.λX. . . . ](a1)(a2)

In (82) the underlined part is of the form (81); that the variable has a different
name is of course unimportant. Hence the ‘λY ’ can indeed be eliminated
by λ -conversion as above, plugging in the argument ‘a1’ for ‘Y’ in the part
indicated by the three dots. How does one know that a1 is the argument
and not, say, a2? Quite simply: ‘a1’ stands immediately to the right of
‘[λY.λX. . . . ]’. For the same reason it is just out to first eliminate the ‘λX’
in (80) by λ-conversion. For in (82) the constellation (81) is found only in
the underlined part ; in particular, neither ‘a1’ nor ‘a2’ stand immediately

19This fact is not immediately obvious, but can be proved with mathematical precision.
It is a variant of the so-called Church-Rosser Theorem – named after the Church from
fn. 9 in Section 2.5 and his pupil John Barkley Rosser who established it in 1936.
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to the right of the expression starting with ‘λX’: the former stands to the
right of the ‘λY ’-term, the latter to the right of the underlined expression.
And though (82) does have the overall form ‘F (a2)’, the functional part ‘F ’
is not of the form (81), but is itself composed from ‘[λY.λX. . . . ]’ and ‘a1’.
Thus in this case the order of the elimination of the lambdas happens to be
fixed. So much for the computation (80), which has not even made use of
the technique introduced in the current section. This only happens in the
next step (where Woms∗ is understood in analogy with Mans∗):

(83) Jtrifft eine FrauKs∗

= λx.Jeine FrauKs∗(λy.JtrifftKs∗(y)(x)) by (74)
= λx.JeineKs∗(JFrauKs∗)(λy.JtrifftKs∗(y)(x)) with (45)
= λx.[λY.λX.`↓Y ∩ ↓X 6= ∅a](JFrauKs∗)(λy.JtrifftKs∗(y)(x))

cf. (31)
= λx.[λX.`↓JFrauKs∗ ∩ ↓X 6= ∅a](λy.JtrifftKs∗(y)(x)) λ-conversion
= λx.`↓JFrauKs∗ ∩ ↓(λy.JtrifftKs∗(y)(x)) 6= ∅a λ-conversion
= λx.`Woms∗ ∩ {y | x is meeting y in s∗} 6= ∅a (see below)

The final step makes use of the following two lexical equations:

(84) a. JFrauKs∗ = λx.`x is a woman in s∗a (= λx.`x ∈Woms∗a)
b. JtrifftKs∗ = λy.λx.`x is meeting y in s∗a

(80) and (83) result in the following derivation of the extension of (75):

(85) J(75)Ks∗

= `Mans∗ ⊆ ↓Jtrifft eine FrauKs∗a by (80)
= `Mans∗ ⊆ ↓(λx.`Woms∗ ∩ {y | x is meeting y in s∗} 6= ∅a)a

by (83)
= `Mans∗ ⊆ {x | Woms∗ ∩ {y | x is meeting y in s∗} 6= ∅})a

by (37), Ch. 2

According to (85), the sentence (75) is true of a situation s∗ if every element
of the set Mans∗ – every man in s∗ – is an element of the set of x for which
the intersection of {y | x is meeting y in s∗} and Woms∗ is not empty, i.e.,
contains at least one element. The last condition means that there is at least
one element of Woms∗ – one woman – that at the same time is an element
of the set of y that x is meeting. All in all, (75) comes out true of those s∗

in which every man is meeting at least one woman. So the combination of
extensions for quantifying objects given in (74) also works in this case. We
record the following general rule of composition:

(86) Compositional Determination of the Extension of Object-Quantifica-
tions
If P is a predicate consisting of a transitive verb V and a quantifying
noun phrase QN as its object, then for all s ∈ LS the following holds:
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JP Ks = λx.JQNKs(λy.JV Ks(y)(x)).

It should be noted that according to this interpretation, a sentence like (87a)
may be true of a situation in which every man admires a different actress.
This is doubtlessly correct, given that the sentence can indeed be understood
in this way. However, couldn’t (87a) also mean that every man admires the
same actress? This impression is corroborated if the sentence is continued
by (87b):

(87) a. Jeder Mann verehrt eine Schauspielerin.
[≈ Every man admires an actress.]

b. Sie hat in unzähligen Filmen mitgespielt.
[≈ She starred in innumerable films.]

The continuation by (87b) apparently takes it for granted that (87a) reported
about a situation in which there is a certain actress who is admired by every
man. However, this does not quite prove that we actually have separate
reading of the (surface) sentence (87a). For even on an analysis based on (86)
would the sentence come out true of such a situation: if an actress is admired
by every man, then in particular there is no man who does not admire any
actress at all. In order to show that there actually is an ambiguity, one
would have to adduce a test, which is to be attempted in the exercises. In
the fifth chapter we return to this question and introduce a technique which
in principle allows us to represent sentences like (75) or (87a) as ambiguous;
pronominal continuations as in (87b) will only be interpreted in the seventh
chapter [to be written] though.

3.5 Alternative Interpretations of Quantifying Ob-
jects

We end the chapter with two alternative analyses of quantifying object noun
phrases. The motivation for this derives from the surprising complexity of
the semantic operation used in (86), which gives rise to the question whether
the same result could not be obtained in a simpler way. In particular one
may wonder if one cannot do with functional application alone – provided
that the starting point is suitably modified. This was the starting point at
the beginning of the preceding section:

(88) Jküsst niemandenKs∗

= λx.`x is kissing nobody in s∗a

JküsstKs∗

= λy.λx.`x is kissing y in s∗a
JniemandKs∗

= λX.`↓X ∩ Pers∗ = ∅a
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In view of this scenario, we had been looking for an operation that would
combine the known extensions of the parts into the the predicate extension,
which was also known. The result can be found in (86). But maybe this
procedure was overhasty in that we could as well (or better should) have
taken the situation (88) as a reason to revise our previous analyses: if the
extensions assumed so far do not combine easily into the predicate extension,
then perhaps one needs to assume more complex extensions than had been
necessary for the constructions analyzed before. More specifically, then, we
may want to probe into the possibility of avoiding the semantic operation
(86) by revising (a) the predicate extension, or (b) the verb extension, or
(c) the extension of the quantified object. Revision (a) would be the most
dramatic one because it would have consequences for further, previously
analyzed constructions and expressions; the interpretation of quantifying
subject noun phrases (and thus the interpretation of determiners) as well as
the semantics of predication depended on the predicate extension assumed
in (88). We will therefore not pursue the possibility of revising the latter.20

Neither are we going to speculate whether (b) and (c) should be modified at
the same time, with a simpler combination leading to the predicate extension.
What we do want to pursue is the possibilities of modifying either (b) or (c).

Starting with (c), we ask ourselves whether the object can be (re-)interpreted
so as to have the extension of the predicate küsst niemanden [≈ is kissing
nobody] fall out of the extension of the verb küsst [≈ is kissing] by func-
tional application. Since the object niemanden] [≈ nobodyacc] does not
name a particular individual, the possibility of having it as an argument of
the verb extension is blocked. So its extension would have to be a function
that takes küsst [≈ is kissing] as its argument. Which function would that
be? The answer again emerges from the abstraction procedure:

(89) Jküsst niemandenKs∗ X

JküsstKs∗ X JniemandenKs∗ ?

Instead of presenting the solution to (89) in detail, we only record the result,
which can be derived in the by now familiar way:

(90) JniemandenKs∗ = λR.λx.`Pers∗ ∩ ↓ [λy.R(y)(x)] = ∅a

In (90) the variable ‘R’ stands for arbitrary extensions of transitive verbs
– functions that in turn assign predicate extensions to individuals. As one
can easily verify, the application of the extension in (90) to the extension of
küsst [≈ is kissing] leads to the desired result. What makes this analysis

20In connection with the interpretation of so-called raising verbs in Chapter 5 we will in-
dicate a revision of the predicate meaning, which however is independent of the problem
discussed here.
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unsatisfactory, though, is that it forces us to assume that the extension (91)
of the subject niemand [≈ nobodynom] is different from the extension (90)
of the object niemanden [≈ nobodyacc].

(91) JniemandKs∗ = λX.`↓X ∩ Pers∗ = ∅a [= (7)]

And what is worse: according to this strategy, every quantifying noun phrase
would have to have different extensions in subject and object position. More-
over, in the case of complex noun phrases like kein Mensch [≈ no human
being] this duplication of semantic values would carry over to the semantic
values of the determiners; for according to our current analysis, the extension
of kein- [≈ no] combines with that of Mensch [≈ human being] into the
subject extension (91) and not into the object extension (90). To get from
these complications back to systematic analysis, it is now tempting to trace
the difference in meaning between accusative and nominative noun phrases
to case morphology and derive the extension (90) as in (91):

(92) JniemandenKs∗ = JniemandaccKs
∗
= JniemandKs∗⊕JaccusativeKs∗

In (92) niemand (to the left of ‘⊕’) is an uninflected morpheme that gets
its extension (91) in the lexicon and can be merged with an accusative-
morpheme; the resulting surface form is niemanden, whose extension emerges
from the morphemes to be combined. This merge is sub-syntactic (part of
inflectional morphology), but can still be interpreted compositionally if the
extension of the accusative morpheme is determined by abstraction and thus
the ‘⊕’ in (92) is taken to stand for functional application. We omit the
details again and only show the final result:21

(93) a. JaccusativeKs∗ = λF.λR.λx.F (λyR(y)(x))
b. JaccusativeKs∗(JniemandKs∗) (92)
= λF.λR.λx.F (λy.R(y)(x))(JniemandKs∗) (93a)
= λF.λR.λx.F (λy.R(y)(x))(λX.`↓X ∩ Pers∗ = ∅a) (7)
= λR.λx.[λX.`↓X ∩ Pers∗ = ∅a](λy.R(y)(x)) λ-conversion
= λR.λx.`↓(λy.R(y)(x)) ∩ Pers∗ = ∅a λ-conversion

Thus determined, the extension of the accusative morpheme strongly reminds
of the complex operation (86) for attaching quantifying objects – which was
to be avoided. It now reappears in the guise of a functional morpheme. But
this approach, which we will not pursue any further, still manages to do with
functional application as the only operation for merging meanings.22

21The ‘F ’ in (93) stands for extensions of quantifying noun phrases, of course. – For
reasons of symmetry one would now expect that the nominative, too, has an extension
form which the extension in(91) can be derived by functional application. The following
‘void’ case meaning achieves this: JnominativeKs

∗
= λF.F ; for [λF.F ](JniemandKs

∗
) =

JniemandenKs
∗
!

22Analyses along these lines were popular around 1980 within the tradition of so-called
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Another possibility of avoiding operation (86) is by (b) revising the se-
mantics of the verb. We thus get the mirror image of the above starting
point (89):

(94) Jküsst niemandenKs∗ X

JküsstKs∗ ? JniemandenKs∗ X

Applying the abstraction procedure to (94) (and again omitting the details),
we obtain the following alternative analysis of the verb:

(95) JküsstKs∗ = λF.λx.F (λy.`x is kissing y in s∗a)

On this approach too, functional application combines verb extension and
object extension, but this time it is the latter that plays the rôle of the
argument. Like before, the question arises of how the verb extension (96)
assumed so far relates to that in (95):

(96) JküsstKs∗λy.λx.`x is kissing y in s∗a

In principle, one may again assume a systematic process that ‘raises’ ordi-
nary verb extensions as in (96) to more complicated extensions as in (95).
However, this process cannot be motivated by inflectional morphology but
only by the fact that ordinary verb extensions do not easily combine with
quantifying objects, i.e., by functional application. It is therefore the syn-
tactic environment that would have to trigger the process.23 We will not
go into this process in detail but instead present a method of inserting the
extension (95) without reducing it to (96). For in contrast to the revision (c)
of the interpretation of the object, there is no cogent reason for duplicating
the verb extension now: so far the only construction transitive verbs undergo
is the attachment of proper names as objects, which may also be captured
if the transitive verb is interpreted as in (95). One can (but need not) even
do without a further semantic operation; instead the extensions of proper
names themselves can be revised. Assuming the correctness of our analysis
of predicates, we may construct the extensions of names by abstraction in
the predication environment:

categorial grammar, but have come out of fashion since they did not fit in well with
predominant ideas about syntax.

23We will address this process, which is called type coercion in semantics, in Section 6.3.
It presupposes the central concept of a semantic type that we will only encounter in the
next chapter but one.
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(97) JOlaf hat HustenKs∗

= `Olaf is coughing in s∗a

JOlafKs∗

= ?
Jhat HustenKs∗

= λx.`x is coughing in s∗a

(97) may appear paradoxical: did we not obtain the above predicate exten-
sion by abstraction from the name extension in the first place? How can we
now pretend to not know what the extension of the name is? We can. For
the abstraction procedure is a heuristics that helps formulating a hypothesis
what the meanings of certain expressions might be in cases in which this is
unclear. If the hypothesis proves sound when applied to various construc-
tions, it does not matter at the end of the day how it had been obtained. In
this sense all analyses are subject to revisions as long as the latter lead to a
consistent system of compositional interpretation.

The details of the resolution of the scenario (97) are pushed off to an
exercise. In any case, the result is that JOlafKs∗ is a quantifier extension
that directly combines with verb extensions like (95) by functional applica-
tion. In this way the somewhat baroque lexical equation (95) serves to avoid
the complicated semantic operation (86); obviously, then, the complexity is
shifted from compositional interpretation to lexical semantics.24

Apart from the alternative interpretations of quantifying objects devel-
oped or sketched in this chapter there is a further, popular solution to the
problem posed at the beginning of the previous section, which makes essential
use of an alternative syntactic structure of sentences with quantifying noun
phrases – so-called Quantifier Raising [QR]. We will get to this approach in
[future] Chapter 7.

24The interpretation (95) of transitive verbs and the quantifier semantics of proper names
that goes with it have been developed by the US-semanticist Richard Montague around
1968; we will address the motivation behind it in Chapters 5 and 6.
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3.6 Exercises for Chapter 3

A1 Stepwise derive the extension of (1) in the above holiday situation s∗,
in the style of (25′′′) of the previous chapter.

A2 Develop the intensions of the following expressions, as is done in the
text for zwei Personen [≈ two persons]. Proceed by first determining
the extensions by abstraction.

i eine Person [≈ a person]

ii jede Person [≈ every person]

A3 In what sense are the extensions given in (33) generalizations of the
extension (31) of the indefinite article?

A4 Show that the semantics of quantification arrived at in this chapter
gets the following sentence right:

Kein Mann trifft jede Frau.
[≈ No man is meeting every woman.]

A5 Try to find tests for deciding whether the following sentence is ambigu-
ous:

Jeder Mann verehrt eine Schauspielerin.
[≈ Every man admires an actress.]

A6 What is the extension obtained for the proper name Olaf (in a situa-
tion s∗) by applying the abstraction procedure to the scenario (97)?

A7 Show that in any situation in which I holds, i and ii come down to the
same thing:

I ↓ Jtürkische KursteilnehmerinKs∗ = 1

i ↓ Jtürkische KursteilnehmerinKs∗

∩ ↓ Jsitzt in der 2. ReiheKs∗ 6= ∅
ii ↓ Jtürkische KursteilnehmerinKs∗

⊆ ↓ Jsitzt in der 2. ReiheKs∗

A8 Show that the concept of conservativity defined in D3.1 implies the
correctness of the Conservativity Test.

A9 Try to compositionally account for the intension of
Kein Mann heiratet Pippi
[≈ No man is marrying Pipi].
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A10 Derive the extensions of the following sentence in the way this is done
with the extension of (75) in the text.

I DreiNum Frauen sehen Patrick.
[≈ ThreeNum women are seeing Patrick.]

II Zweiindef Kinder schlafen.
[≈ Twoindef children are sleeping.]

III Der Tiger frisst Roy.
[≈ The tiger is eating Roy.]

IV Pippi heiratet keinen Mann.
[≈ Pipi is marrying no man.]

V Jedes Kind besitzt einenindef Teddy.
[≈ Every child owns a teddy.]

VI Der Löwenbändiger schläft.
[≈ The lion tamer is sleeping.]

VII Kein Architekt baut einNum Haus.
[≈ No architect is building one house.]

VIII Der Postbote beißt den Hund.
[≈ The postman is biting the dog.]

So that you don’t get bored: Pick four of the above sentences.

A11 Describe as accurately as possible what situations must be like in which
the last sentence of the previous exercise is not true.
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Chapter 4

Intensionality

In the previous three chapters we had seen how various linguistic expressions
can be assigned extensions that can then be combined in a systematic, com-
positional way to form the extensions of ever more complex expressions. In
finding these extensions the abstraction procedure proved extremely helpful
because in many cases it made possible to identify extensions for expres-
sions for which this seemed to be hardly possible at first, and because the
extensions thus determined behaved in a compositional way. In each case we
could use the extensions to obtain the corresponding intensions by abstract-
ing from given particular situations, passing to arbitrary possible situations.
In this chapter we will look at constructions for which the relation between
the extensions of the expressions involved is more complicated. We will
mainly focus on one type of expression that has played a major rôle in the
history of semantics (and still does): verbs with clause-like complements – or
as semanticists call them: attitude verbs. We will develop an interpretation
for these verbs and the relevant construction (of clausal embedding) that
includes elements of logical theories of information processing. At the end
of the chapter we will briefly mention further so-called intensional construc-
tions which, in this respect, are similar to attitude reports (= sentences with
attitude verbs) and, for the most part, can be analyzed in a similar way –
but not before the end of the next chapter.

4.1 Attitude Reports

This section focuses on verbs that take sentences – and more precisely: that-
clauses – as objects. Let us start with an example:

(1) Fritz meint, dass Eike in Berlin ist.
[≈ Fritz thinks that Eike is in Berlin.]

First of all, we need to observe that the strategy pursued so far – viz. to
compositionally reduce the extensions of complex expressions to their im-
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mediate parts – fails in this case. To this end we assume (for simplicity)
that neither the complementizer dass [≈ that] nor the verb-final word order
play any semantic rôle.1 We may than treat (1) and similar examples as if
the (verb-second) declarative sentence occupied its object position without
having to care about its internal structure. To see that the compositional
interpretation fails, we concentrate on the predicate meint, dass Eike in
Berlin ist [≈ thinks that Eike is in Berlin] and first observe that we are in
the typical starting situation to apply the abstraction procedure. Obviously
we may take both the embedded sentence and the predicate as having been
analyzed, whereas the extension (and the intension) of the attitude verb
meint [≈ thinks] must still be identified:

(2) Eike ist in Berlin. [≈ Eike is in Berlin.]

As always, we are going to consider an arbitrary situation s∗ for which the
extension of (1) must be determined. If the abstraction procedure were to
work in this case, the extension of meint [≈ thinks] would have to be a
function that assigns the extension of the predicate to the extension of the
complement clause (2) – and not just in the case of (1) but also if we are
dealing with a different complement clause:

(3) a. JmeintKs∗(JEike ist in BerlinKs∗)
= Jmeint, dass Eike in Berlin istKs∗

b. JmeintKs∗(JEike ist nicht in BerlinKs∗)
= Jmeint, dass Eike nicht in Berlin istKs∗

(4) Jmeint, dass Wiesbaden die Hauptstadt Hessens istKs∗

= JmeintKs∗(JWiesbaden ist die Hauptstadt HessensKs∗)

Since the complements in (3) and (4) are sentences, their extensions are truth
values, and moreover different ones in the variants (3a) and (3b). Given that
there are only two truth values, the extension of one of them would have to
coincide with the extension of the complement in (4). Thus, e.g., if in s∗

Eike is in Frankfurt and (as in real life) Wiesbaden is the capital of Hesse,
(5) holds – and hence so does (6):

(5) JEike ist in BerlinKs∗

= 0
= JWiesbaden ist nicht die Hauptstadt HessensKs∗

(6) JmeintKs∗(JEike ist in BerlinKs∗)
= JmeintKs∗(0)
= JmeintKs∗(JWiesbaden ist nicht die Haupstadt HessensKs∗)

1We could have analyzed all sentences in verb-final position in the first place, deriving
the verb-second order by a semantically ineffective surface transformation. In the case at
hand, verb-second would also have been possible; but then the following considerations
and analyses also apply to attitude verbs that only take verb-final complements.
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Yet, however cogent this argument seems, its result is obviously absurd. For
according to (6), anybody who is wrong about Eike’s whereabouts, would
also have to be wrong about the capital of Hesse – and vice versa. And clearly
the argument does not depend on the specific example. Quite generally,
anyone who has one wrong belief would have to believe everything that is
wrong; moreover, a corresponding variation on (5) and (6) would show that
everyone who has some accurate belief would be omniscient. Of course, all
this is nonsense.

This may look like the end of the theory of extension and intension. Quite
the reverse – at least from the historic perspective! In fact, the beginnings
of that theory lie precisely in its application to (now) so-called intensional
constructions, in which the compositionality of extensions fails. In fact, the
failure of the analytic strategy followed so far is not due to compositionality
as such, but to the fact that it has been applied to extensions. After all,
the inference from (5) to (6) is based on the assumption that the predicate
extension depends on the extensions of its immediate parts, one of which
is a sentence – so that any sentence with the same truth value would have
to result in the same predicate extension. This substitution argument2 can
apparently only be escaped by giving up the assumption that the exten-
sion of the predicate is compositionally determined by the extensions of its
parts – a hypothesis that originated with the general strategy to reduce the
compositionality of intensions to the combination of the simplest possible
semantic values, which we had shown at the end of Section 2.6. In view of
the substitution argument, one may now try and derive the predicate inten-
sions directly from the intensions of the immediate parts. However, it turns
out to be sufficient if we just shun the substitution argument ‘locally’ and
only resort to intensions where extensions do not suffice for determining the
predicate extensions – to wit, for the object clause, which resists substitution
by expressions with the same extension. The starting point for determining
the predicate extension thereby shifts from (7a) to (7b):3

(7) a. Jmeint, dass Eike in Berlin istKs∗

X

JmeintKs∗

?

JEike ist in BerlinKs∗

X

2The inference from (5) to (6) to prove the non-compositionality of extensions is a variant
of an argument from Gottlob Frege’s essay ‘Über Sinn und Bedeutung’ (1892) [≈ On
Sense and Reference].

3This ‘local’ correction of the otherwise compositional semantics of extensions is a crucial
characteristic of Frege’s analysis of attitude reports.
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b. Jmeint, dass Eike in Berlin istKs∗

X

JmeintKs∗

?

JEike ist in BerlinK

X

Both in (7a) and in (7b) the extension of the attitude verb meint [≈ thinks]
– yet to be determined – is supposed to be a factor in determining the
extension of the predicate; the difference is that in (7a) the extension of the
complement clause is invoked too, whereas in (7b) it is its intension. Since
the latter is also known, (7b) can in principle again serve as the starting
point for an application of the abstraction procedure, according to which
the extension of meint [≈ thinks] is a function that assigns to the intension
of the complement clause the corresponding extension of the predicate:

(8) a. Jmeint, das Eike in Berlin istKs∗

= JmeintKs∗(JEike ist in BerlinK)
b. Jmeint, dass Eike nicht in Berlin istKs∗

= JmeintKs∗(JEike ist nicht in BerlinK)
c. Jmeint, dass Wiesbaden die Hauptstadt Hessens istKs∗

= JmeintKs∗(JWiesbaden ist die Hauptstadt HessensK)

No absurd consequences like (6) can be derived from the equations in (8).
For the above substitution argument depended on the fact that embedded
clauses with identical truth values also make the same contribution to the
overall extension of the predicate. According to (8), a substitution argument
would only allow us to replace two sentences within a predicate if they were
intensionally equivalent and thus expressed the same proposition. This is
not so for the complements in (8), where we obviously have:

(9) JWiesbaden ist die Hauptstadt HessensK
6= JEike ist in BerlinK
6= JEike ist nicht in BerlinK
6= JWiesbaden ist die Hauptstadt HessensK

And nothing about the relation between the extensions in (8) follows from
(9); in particular, they do not have to coincide.4 The general composition-
ality rule assumed in (8), then, is:

(10) Compositional Determination of Clausal Embedding under Attitude

4But then (9) does not exclude that they coincide either. However, in the case of (8a) and
(8b), this is impossible for independent reasons to be addressed in the next section. For
(8a) and (8c), on the other hand, it is quite possible that the extensions coincide; the
same is true for (8b) and (8c).
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Predicates
If P is a predicate consisting of an attitude verb V and a complement
clause S, then for all s ∈ LR the following holds:
JP Ks = JV Ks(JSK).

In the spirit of ((7)b), the abstraction procedure can now be used to account
for the extension of meint [≈ thinks] by way of a table:

(11) JmeintKs∗ =
λs. `in s Eike is in Berlina λx. `in s∗, x thinks that Eike

is in Berlina
λs. `in s Eike is not in
Berlina

λx. `in s∗, x thinks that Eike
is not in Berlina

λs. `in s Wiesbaden is the
capital of Hessea

λx. `in s∗, x thinks that
Wiesbaden is the capital of
Hessea

. . . . . .

The problem is that one would like to know what the ‘. . . ’ in (11) stand for
– and in particular, what the typical line looks like. However, it is not clear
how the predicate extensions described in the right column of (11) depend
on the corresponding (characteristic functions of) the propositions p in the
left column – if they do so at all.

(11′) JmeintKs∗ =
. . . . . .

p λx. ` in s∗, x thinks that ???a
. . . . . .

In order to complete (11′), a connection must be made between the situations
in which a (given) individual x thinks something and the situations in which
whatever x thinks, happens to be the case. To achieve this, one needs a
theory that models the beliefs of a person x – that which x thinks is true –
in terms of Logical Space. On the basis of such a model, the lacuna in (11′)
is easily filled.

4.2 Hintikka semantics

To see how Logical Space can be employed to represent the beliefs of a person,
we recall to what situations a statement like (1) (repeated here) applies:

(1) Fritz meint, dass Eike in Berlin ist.
[≈ Fritz thinks that Eike is in Berlin.]

To begin with, it is clear that (1) tells us nothing about either (a) Eike’s
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whereabouts or (b) Fritz’s activities. (a) becomes apparent if one compares
different scenarios that differ in the truth values of sentence (1) and the
clause embedded in it. (This will be done in an exercise.) Concerning (b),
we assume that meinen [≈ think/remark] is ambiguous (polysemous); here
we are only interested in meinen as ‘thinking’, as opposed to the reading of
‘remarking’. (The proof of polysemy will also be given in an Exercise.) The
sense of meinen [≈ think/remark] relevant here does not denote an activity,
not even an ‘inner’ thought-process: (1) can be true after all, even though
Fritz is sleeping calmly and dreamlessly. The sentence merely describes a
mental constitution of Fritz that manifests itself in his answering ‘Berlin’ if
asked – under certain conditions – for Eike’s whereabouts;5 that – again in
certain circumstances – he would display indications of surprise if he were
informed that Eike is in Frankfurt; that he put his money on Berlin as the
place of Eike’s whereabouts; etc. The mental condition attributed in (1) is
not a behavior Fritz is actually displaying but merely his potential behavior,
a behavioral disposition.

According to (1), thus understood, Fritz is in a certain mental state,
which we are now going to describe in terms of Logical Space. For this it
only matters which beliefs Fritz has in the situation at hand, what is the case
according to his belief; it is his doxastic state that is a stake.6 This is all that
is relevant in sentence (1); other aspects of Fritz’s mental inner life, like the
doubts that plague him or his present desires. His beliefs in turn relate to
reality and thus to the situation he is in, etc. may be disregarded. Fritz has
a certain image of that situation, and that image may be partially correct,
partially incorrect, leave out some details, include others. With respect to
Logical Space, this means that Fritz’s world view is in accordance with some
possible situations, but not with others. The latter include all situations
in which Eike is in Frankfurt (but not in Berlin), but also all situations
in which Germany is a monarchy, in which pigs have wings, etc.; among
the former are situations in which Eike is in Berlin, Germany is a republic,
and pigs are quadruplets. The distinction between the possible situations in
which, according to what he believes, Fritz cannot be, and those that are
in accordance with the totality of his beliefs, characterizes Fritz’s doxastic
state. And – just like the content of a sentence – this distinction can be
construed as a bipartition of Logical Space:

5The side conditions that must be satisfied are to ensure, among other things, that Fritz’s
answer is honest (and not a lie or a joke); that he understands and uses the answer
correctly (and is not, say, speaking of a different Berlin than the one mentioned in (1));
that putting the question does not influence his belief (perhaps because Eike herself asks
him in Tübingen); etc. In the philosophical literature, the diagnosis of beliefs in terms of
potential answer behavior under ideal conditions is known as the disquotational principle.

6The term is supposed to relate to Ancient Greek doxa ‘belief’.
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(12)

conceivable

excluded

The rectangle in (12) and the dots stand for Logical Space and its elements,
the possible situations, respectively. The oblique line symbolizes the cut
through Logical Space that Fritz performs by being in the doxastic state he
is in: to the right of the line there are the situations that Fritz excludes to
be in; all other situations, in which Fritz might be according to his belief,
are to the left of the line. The tags conceivable and excluded are meant to
express this. Of course, even situations that Fritz excludes are conceivable
for him in that he can imagine (being in) them; but he does not believe that
he is in any of these situations.7

The bipartition of Logical Space indicated in (12) matches Fritz’s doxastic
state in a given situation. The doxastic states of other persons normally
match different bipartitions of Logical Space, as do Fritz’s doxastic states in
different situations. Now, in order to see what it means that (1) is true of a
situation, we should recall that the intension of the embedded sentence (2)
is also a bipartition of Logical Space, viz. into the situations to which (2)
applies, i.e., those of which (2) is true, and those of which (2) is false:

7. . . which means that he believes that he is in none of these situations! Anyone who finds
this confusing (rightly so!), should consult the third exercise.
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(13)

false

true

In the lower situations, it is true that Eike is in Berlin; in the upper ones
she is somewhere else (or nowhere). That a situation s is in the lower half
thus means that J(2)K(s) = 1; otherwise J(2)K(s) = 0. Since the intension of
a sentence is the characteristic function of its content, the lower half in (13)
coincides with the content of (2), i.e., ‖(2)‖

It is understood that the arrangement of the possible situations is the
same in (12) and (13). In principle, we are thus dealing with two independent
bipartitions of Logical Space. Taken together, Fritz’s doxastic state (in the
situation at hand) and the content of (2) split up Logical Space into four
sectors:

(14)

I: excluded and false

II: excluded but trueIII: conceivable and true

IV: conceivable but false

Sector I contains the situations that Fritz excludes and in which Eike is not
in Berlin. Fritz need not exclude the situations because in them Eike is not
in Berlin, though. If he himself happens to be in Tübingen, say, and is also
aware of this, he will, e.g., exclude situations in which he and Eike are both
in Berlin – no matter what he thinks about Eike’s whereabouts.

118



CHAPTER 4. INTENSIONALITY

The situations of the second sector are those that Fritz excludes and in
which Eike is in Berlin. Again Fritz does not have to exclude such situations
because in them Eike is in Berlin. He could have different reasons: in some
of theses situations, e.g., he may himself be in Moscow even though he knows
(or thinks he knows) that he is currently in Tübingen. Fritz would exclude
such a situation even if he were convinced that Eike is in Berlin.

Sector Number III consists of the situations in which Eike is in Berlin and
to be in which Fritz does not exclude. There are no situations among them
of which Fritz can say with certainty that he is in it, but then he cannot
exclude this of any of these situations either. They merely differ in aspects
about which Fritz does not know enough: in one of them Eike just coughed,
in the next one she is asleep, in the third one she is shopping – and all of this
happens in Berlin. If (1) is true, there are many such situations; but even
if he has no idea or only a vague notion of Eike’s whereabouts, this sector
will contain many situations – as long as he does not exclude that she is in
Berlin.

The fourth and last sector also consists of situations that Fritz cannot exclude
to be in; but in none of these situations is Eike in Berlin. If (1) is true, there
obviously cannot be such situations; for if Fritz is convinced that Eike is in
Berlin, he thereby excludes situations in which she is somewhere else – to
wit, all of them. In other words: if (1) is true, Sector IV is empty. And the
reverse is also true: if Fritz excludes any situation in which Eike is anywhere
but in Berlin, then in any situation that is conceivable for Fritz, Eike is in
Berlin, i.e., he takes it that the situation in which he is, is by all means such
that in it, Eike is in Berlin.

Whether (1) is true, of course, depends on Fritz’s doxastic state and thus on
the situation under scrutiny. Following the above considerations, (1) applies
to a situation s∗ if there is no situation which, given the doxastic state he is
in in s∗, Fritz does not exclude and in which Eike is not in Berlin. Positively
put this means that (1) is true of s∗ just in case in all situations that are
conceivable for Fritz in s∗, Eike is in Berlin. So, if DoxFritz,s∗ is the set
of situations that Fritz does not exclude in s∗ – the ‘positive’ part of his
doxastic state –, the extension of (1) can be characterized as follows, given
that the intension is just the characteristic function of the content:

(15) J(1)Ks∗ = `Dox Fritz,s∗ ⊆ ‖Eike ist in Berlin‖a
= J(1)Ks∗ = `Dox Fritz,s∗ ⊆ ↓JEike ist in BerlinKa

On the basis of (15), the compositionality problem posed in (7b) can now
be routinely solved. To this end, we first reformulate the extension of the
predicate by abstracting from the contribution of the subject:

(16) Jmeint, dass Eike in Berlin istK
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= λx.`x thinks that Eike is in Berlina
= λx.`Doxx,s∗ ⊆ ↓JEike ist in BerlinKa

By abstraction from the embedded clause we may then determine the exten-
sion of the attitude verb:

(17) JmeintKs∗ = λp.λx.`Doxx,s∗ ⊆ ↓pa

(17) is the core of a semantic analysis of verbs of belief known as Hintikka
semantics.8 Other attitude verbs call for other bipartitions of Logical Space
but the overall structure of the analysis is always the same. Thus along with
the doxastic perspectives Dox for the interpretation of knowledge reports, so-
called epistemic perspectives are employed, and attributions of desires can
be reduced to bouletic perspectives:9

(18) a. Jweiß, dass Eike in Berlin istK
= `Epi Fritz,s∗ ⊆ ↓JEike ist in BerlinKa
b. JweißKs∗ = λp.λx.`Epix,s∗ ⊆ ↓pa

(19) a. Jwill, dass Eike in Berlin istK
= `Bou Fritz,s∗ ⊆ ↓JEike ist in BerlinKa
b. JwillKs∗ = λp.λx.`Boux,s∗ ⊆ ↓pa

As the doxastic perspective reflects the doxastic state of a person, so their
epistemic, bouletic, . . . perspectives derive from their epistemic, bouletic,
. . . states, which themselves correspond to cuts through Logical Space. In
a given situation s∗, Fritz does not only distinguish between the situations
that he takes to be conceivable (Dox Fritz,s∗) and those that he excludes
(LS\Dox Fritz,s∗); but also between those of which he knows that he is not in
them (LS\Epi Fritz,s∗) and those of which his knowledge does not enable him
to exclude that he is in them (Epi Fritz,s∗); between those in which everything
goes according to his desires (Bou Fritz,s∗) and those that in some respect go
against them (LR\Bou Fritz,s∗); etc.

None of this excludes that some of these perspectives are related to others
or may even be reducible to them. Thus there is a simple connection between
the doxastic and the epistemic perspective of a person. If, e.g., Fritz knows
that he isn’t in a particular situation, then his beliefs also exclude that he
is in that situation. So generally any person x and situation s satisfies:
LS\Epix,s ⊆ LS\Doxx,s – or, positively put:

(20) Doxx,s ⊆ Epix,s

(20) says that a situation in which x might be according to what x thinks
8So called after the Finnish logician Jaakko Hintikka, who developed it – on the basis of a
number of predecessors – in the 1960s; the standard reference is his essay Semantics for
Propositional Attitudes, published in 1969.

9The terms are supposed to recall Ancient Greek episteme ‘knowledge’ and boule ‘desire’.
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(in s), always is a situation in which x might be according x’s knowledge (in
s). This elementary connection between knowledge and belief is undisputed.
However, it is important to realize that the converse of (20) generally does
not hold. For x might be convinced, say, that x has no fever without really
knowing this. In that case Epix,s contains situations in which x has a fever
while Doxx,s consists of (x-)fever free situations only. It might also be that
x is wrong about his or her state of health: x thinks x has no fever, but as
a matter of fact, x does have a fever. In this case x’s doxastic perspective
cannot contain the situation x is actually in – for in that situation x does
have a fever, and situations in which x has a fever are excluded by x. Quite
generally, a person errs (in some respect) in a situation s just in case that
person excludes s in the sense that s /∈ Doxx,s.

Contrary to a possible first impression, (20) thus does not mean at all
that the beliefs or convictions of a person x (in a situation s) are always part
of x’s knowledge. For a belief of x is a proposition p ⊆ LS the truth of x
is convinced of – which precisely means, by the Hintikka-semantic analysis,
that p is a superset of x’s doxastic perspective (in s). This, however, does not
imply that p is also a superset of x’s epistemic perspective; in other words,
from Doxx,s ⊆ p and Doxx,s ⊆ Epix,s it does not follow that: Epix,s ⊆ p.
Quite to the contrary: if the latter is the case and thus (again in the spirit of
Hintikka semantics) x knows (in s) that p is true, then (20) guarantees that p
is also a superset of x’s doxastic perspective (in s) and thus x is also convinced
of p’s truth (in s); in other words, from Epix,s ⊆ p and Doxx,s ⊆ Epix,s it
follows that Doxx,s ⊆ p. These connections will be scrutinized further in
the exercises.

Errors in the sense just indicated are not only possible but quite com-
monplace; so s ∈ Doxx,s does not always hold. On the other hand, it is
impossible that a person x’s epistemic perspective excludes the situation s
that x is in. If this were true, x would have to have knowledge of something
that does not apply to x’s actual situation s: in s, x would have to know that
it is raining although it is not raining in s; or that x has a fever, although
x is free from fever in s; etc. But there is no incorrect knowledge: whatever
is known is also the case. Epistemic perspectives are thus always subject to
the following condition:10

(21) s ∈ Epix,s

(20) and (21) are by no means the only structural properties of doxastic and

10The factuality of knowledge (which is part of what semanticists call its factivity) stated
in (21) is not in conflict with the fact that someone who (honestly) claims to know
something, may be wrong; he or she then does not know this but only believes him- or
herself to know it. Restrictions on condition (21) are nevertheless possible for situations
s in which x does not exist or has no epistemic perspective for some reason or other
(perhaps because x is a straw bale). Further modifications of (21) will be made in the
ninth chapter [once it has been written].
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epistemic perspectives. The relations between belief and knowledge (like
those between other attitudes) are not only interesting for lexical semantics;
the have been investigated extensively in various sub-areas of philosophy
(epistemology, philosophy of mind, philosophical logic). In the [future] sev-
enth chapter we will return to some of the insights gained there.

4.3 The Limits of Hintikka semantics

The Hintikka semantics of attitude reports has its limits. On the one hand,
it does not apply to all embeddings of (that-) clauses; on the other hand,
even in the cases for which it had been developed, it does not always prove
to be adequate. For on the one hand, not every attitude report expresses a
subset relation, as (17), (18b), and (19b) may suggest; on the other hand,
the truth conditions assigned by Hintikka semantics attribute to attitude
subjects a higher degree of rationality than can be expected from normal
mortal beings. Both problems derive from the crucial fact that according to
Hintikka semantics, an attitude report of the form NN V , dass S always
implies the truth of NN V , dass S ′, provided that S ′ follows from S. Let
us recall the observation, made in Section 1.5, that the (sense) relation of
implication between sentences corresponds to a subset relation between the
propositions they express. We may then describe the crucial fact in the
following way:

(22) If ↓JSK ⊆ ↓JS′K, then ↓JNN V, dass SK ⊆ ↓JNN V, dass S′K.

On the Hintikka-interpretation, (22) holds for any attitude verb V whose
extension (in a situation s∗) is characterized by a suitable perspective R:11

(23) JV Ks∗ = λp.λx.`Rx,s∗ ⊆ ↓pa

As a case in point, (22) implies:

(24) If Fritz meint, dass Eike auf einer Tagung in Berlin ist
[≈ Fritz thinks that Eike is at a conference in Berlin]
is true (of some situation), then:
Fritz meint, dass Eike in Berlin oder Benin ist
[≈ Fritz thinks that Eike is in Berlin or Benin]
is true (of that situation).

For we have:

11to prove (22) by means of (23), one needs to show that (for any situation s∗)
JNN V, dass S′Ks

∗
= 1 as soon as (i) ↓JSK ⊆ ↓JS′K and (ii) JNN V, dass SKs

∗
= 1. But

then by (23) and our composition rules we have: JNN V, dass SKs
∗
= `Rx,s∗ ⊆ ↓JSKa

(where x = JNNKs
∗
), i.e., by (i) and (ii): Rx,s∗ ⊆ ↓JSK ⊆ ↓JS′K – and thus also:

Rx,s∗ ⊆ ↓JS′K, which means that: `Rx,s∗ ⊆ ↓JS′Ka = 1 = JNN V, dass S′Ks
∗
.
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(25) ↓JEike ist auf einer Tagung in BerlinK
= {s ∈ LS | in s, Eike is at a conference in Berlin}
⊆ {s ∈ LS | in s, Eike is in Berlin}
= ↓JEike ist in BerlinK
⊆ {s ∈ LS | in s, Eike is in Berlin or Benin}
= ↓JEike ist in Berlin oder in BeninK

The implication established in (22), which directly falls out of the Hintikka
semantics of meint [≈ thinks], is hardly exciting and even welcome in cases
like (24): if Fritz thinks that Eike is spending her time at a conference in
Berlin, then in particular, he thinks that she is in Berlin – and thus also
that she is in Berlin or in Benin.12 The same goes for attitude reports with
wissen [≈ know] and many other verbs. Yet in some cases, (22) is obviously
wrong. If. e.g., Fritz excludes that Eike is at a conference in Berlin, then
he must neither exclude that she is in Berlin nor that she is at a conference.
The Hintikka-schema (23) cannot be applied to the verb ausschließen [≈
exclude] (in the sense as it has been used above, in the introduction of
doxastic states). On the other hand, it is clear that in this case too, doxastic
perspectives do play a central rôle – just not the same as for meinen [≈
think] and glauben [≈ believe];13 the question of which rôle they do play
will have to be settled in an exercise.

Apart from the problems with particular attitude verbs, Hintikka se-
mantics suffers from a fundamental defect, which is in part due to modeling
information by sets of situations (or is at least amplified by it). In some cases
the schema (23) appears to overdo things by taking the attitude holders x to
possess more knowledge than they need to have. Here is a case in point:14

(26) a. Fritz meint, dass Wolfgang zwei Töchter hat.
[≈ Fritz thinks that Wolfgang has two daughters.]

b. Fritz meint, dass die Anzahl von Wolfgangs Töchtern
eine Primzahl ist.
[≈ Fritz thinks that the number of Wolfgang’s daughters is a
prime number.]

As a reminder, a prime number is a natural number that is divisible by

12This second inference may appear weird: if Fritz is convinced that Eike is in Berlin, one
would hardly say that he thinks she is in Berlin or Benin; for the latter suggests an
insecurity on Fritz’s part. This suggestion is commonly explained away as a pragmatic
side effect, though; literally speaking, Fritz is supposed to think that Eike is in Berlin
or Benin as soon as he thinks that she is in one of the two places. Skeptics may try an
example without oder [≈ or] – perhaps Fritz meint, dass Eike in Deutschland ist
[≈ Fritz thinks that Eike is in Germany].

13We are assuming that, in the relevant readings, meinen [≈ think] and glauben [≈
believe] are synonymous.

14In (26a), zwei [≈ two] is meant to be construed in the sense of zweiNum (as defined in
Section 3.2).
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exactly two numbers. The smallest prime number is 2. This being so, the
number of Wolfgang’s daughters is prime; for he has two daughters. Since
in every possible situation the prime numbers are the same numbers, it
also holds of every possible situation in which Wolfgang has two daughters,
that the number of his daughters is a prime number. Hence the sentence
embedded in (26b) follows from the one embedded in (26a):

(27) ↓JWolfgang hat zweiNum TöchterK
[≈ Wolfgang has two daughters.]

⊆ ↓JDie Anzahl von Wolfgangs Töchtern ist eine PrimzahlK
[≈ The number of Wolfgang’s daughters is a prime number.]

According to (22) it would thus follow that J(26a)K ⊆ J(26b)K. But this does
not seem to be true: maybe Fritz forgot that 2 is a prime number; maybe
he never knew it. In that case, it would seem (26a) could well be the case
without (26b) being true.

This argument against Hintikka semantics is based on the assumption
that mathematical states of affairs are independent of the situation consid-
ered, which makes them somehow trivial: they always hold, no matter where
and when, throughout Logical Space. On the other hand, despite their uni-
versal truth, mathematical facts are far from being universally known. How-
ever if, as in Hintikka semantics, doxastic states are reduced to discriminative
abilities in Logical Space, mathematical ignorance obviously cannot be cap-
tured. What is true of mathematical states of affairs also holds for facts that
pertain due to logic or definition: someone who is convinced that the barber
shaves precisely the villagers that do not shave themselves, does not have to
believe that the barber is no villager – even though this is logically implied
by his conviction; someone who thinks that her dog has arthritis, does not
have to know that the animal has problems with its joints, even though this
follows from the very definition of arthritis. It thus seems as if in cases of
lacking analytic knowledge (= knowledge based on mathematics, logic, or
definition), Hintikka semantics reaches its limits. If we still rely on it here,
we will always have to do so under the strong idealization that analytic facts
are doxastically trivial.15

Apart from attitude reports – or more precisely: clausal embedding under
attitude verbs – there is a number of further intensional constructions. The
proof of intensionality can usually be given by a substitution argument, like
the one provided at the beginning of the chapter: if the construction in

15A solution to this problem of logical omniscience may be conjectured in two areas: for
one thing, one may try to work out models of doxastic (epistemic, . . . ) states that are
more differentiated than cuts through Logical Space – in terms of sets of propositions
perhaps; for another thing, one can try to modify Hintikka’s semantics of attitude reports
by having it not only relate to the intensions of the embedded sentences – but, e.g., also
to the intensions of their parts. Proposals along both lines have been made in the
philosophical literature, but none of them has proved to be fully convincing so far.
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question were extensional, parts with identical extensions could replace each
other without any change in the extension of the overall expression. In that
sense the following constructions, to which we will come in the next chapter,
prove to be intensional, too:

(28) Fritz will Eike anrufen.
[≈ Fritz wants to call Eike.] infinitival embedding under control verbs

(29) Fritz sucht ein billiges Restaurant.
[≈ Fritz is looking for a cheap restaurant.]

object attachment under opaque verbs

(30) Kein Schwein scheint zu grunzen.
[≈ No pig appears to be grunting.] raising verbs
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4.4 Exercises for Chapter 4

A1 Show that the truth value of (1) is independent of the truth value of
the embedded sentence (2) by describing, for each possible distribution
of truth values, a situation to which (1) applies.

A2 Find evidence to the effect that meinen in the sense of think and
meinen in the sense of remark are distinct expressions.

A3 Judge whether the following sentence pairs are synonymous and, where
they are not, describe a situation where the two sentences differ in truth
value.

I i Roy glaubt nicht, dass Siegfried raucht.
[≈ Roy does not think that Siegfried smokes.]

ii Roy glaubt, dass Siegfried nicht raucht.
[≈ Roy thinks that Siegfried does not smoke.]

II i Siegfried weiß, dass Angela Merkel langsam redet.
[≈ Siegfried knows that Angela Merkel talks slowly.]

ii Siegfried weiß, dass die Bundeskanzlerin langsam re-
det.
[≈ Siegfried knows that the German chancellor talks slowly.]

A4 The doxastic perspective of a person is a proposition. Contents of sen-
tences are propositions too. Does that mean that doxastic perspectives
are contents of sentences?

A5 Show that, according to Hintikka semantics, a person who makes an
error, excludes the situation in which he or she is. Does the converse
also hold?

Tip: In this context, making an error means having (at least) one false
belief.

A6 Define the extension of ausschließen [≈ exclude], modeling doxastic
states by Logical Space.

A7 Find suitable substitution arguments to show that the constructions
used in (28)–(30) are intensional.

A8 Consider the sentence:

I Fritz weiß, dass Eike in Berlin ist.
[≈ Fritz knows that Eike is in Berlin.]

(a) Show that, according to (17) and (18b), the following implications
hold:

126



CHAPTER 4. INTENSIONALITY

i. ↓JIK ⊆ ↓J(1)K
ii. ↓JIK ⊆ ↓J(2)K

Make use of the principles (20) and (21).

(b) Refute the following principle (*) by giving a counter-example:

(*) Epix,s∗ ⊆ Doxx,s∗ .
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Chapter 5

Type logic and indirect
interpretation

In this chapter we will encounter a systematic method for the representa-
tion of extensions and intension that will come in handy in the description
of more complex semantic operations in the chapters to come: type-based
indirect interpretation. The qualification ‘indirect’ means that the linguis-
tic expressions to be interpreted are translated into an artificial language
known as (two-sorted functional) type logic – a formal language originating
from mathematical logic that has gained the status of a universal auxiliary
language in semantics.

5.1 Types

Before we get to the formulae of type logic, we will introduce a classification
of the extensions of linguistic expressions that these formulae make refer-
ence to: the (two-sorted functional) types, which are essentially designed to
characterize extensions according to whether they are primitive objects or
complex functions and if the latter, which kind of complexity they display.
So far we have encountered the following kinds of extensions:

(1)

Kind of expression Example Kind of extension
sentence Fritz schläft truth value
proper name Fritz individual
intransitive verb/
verb phrase

schläft function from individuals
to truth values (= predicate
extension)

transitive verb küsst function from individuals
to predicate extensions
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ditransitive verb übergibt function from individuals to
functions from individuals to
predicate extensions

quantifying noun
phrase

kein Kind function from predicate ex-
tensions to truth values (=
quantifierextension)

(sortal) noun Kind predicate extension
determiner kein function from predicate ex-

tensions to quantifier exten-
sions

attitude verb meint function from sentence inten-
sions (= functions from possi-
ble situations to truth values)
to predicate extensions

With the exception of the first two kinds – truth values and individuals –
extensions are always functions. By a function from As to Bs we mean a
function whose arguments are the As and whose values are always Bs –
where, in the above cases, A and B are again kinds of extensions – or, as
we will say from now on: types. In order to systematically account for the
above types as well as others to be introduced later, we will, from now on,
abbreviate the extension type of ‘functions from As to Bs’ as ‘(AB)’ and
write ‘e ’ and ‘t ’ for the primitive (= non-functional) types of indivuduals
and truth values, respectively; moreover, we are going to use ‘s’ as a label for
the set of all possible situations.1 Given this notation, Table (1) can now be
rewritten as in (2) (where we have dropped the outermost brackets around
types):

(2)

Kind of expression Example Extension type
sentence Fritz schläft t
proper name Fritz e
intransitive verb/verb phrase schläft et
transitive verb küsst e(et)
ditransitive verb übergibt e(e(et))
quantifying noun phrase kein Kind (et)t
(sortal) noun Kind et
determiner kein (et)((et)t)
attitude verb meint (st)(et)

1We thus have: s = LS. The ‘e’ is reminiscent of entity, which is philosophical jargon
for ‘object’; ‘s’ does not derive from ‘situation’, but from sense (German ‘Sinn’), and
is supposed to be reminiscent of Frege’s term for (his version of) intensions. e and s
are also called ‘sorts’; this term originates from predicate logic, where it denotes ‘kinds
that cannot be characterised by purely logical means’. The notation for types go back
to Montague’s Universal Grammar (cf. Chapter 0, Fn. 15) and has become standard in
semantics.
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The only extensions considered so far that do not immediately fit in this
pattern are those of coordinating conjunctions, which we had analysed as
functions from pairs of truth values to truth values (in Section 1.7): pairs
of extensions have no place in the above type notation.We could introduce
an additional notation for the them; however, we will rather reformulate
the analysis of coordinating conjunctions so that they fit in the schema (2).
Apart from providing a certain unification, the particular method of refor-
mulation will come in handy for what follows. Let us first recapitulate the
analysis of coordination given in Chapter 1:

(3) a. JS und S′Ks = JSKs × JS′Ks [= (35b) from 1.7]
b. JS oder S′Ks = JSKs + JS′Ks − JSKs × JS′Ks [= (36b) from 1.7]

(4) JS K S′Ks = JSKs JKKs JS′Ks [= (37b) from 1.7]

Given this analysis, the extensions of und and oder can be construed as
functions that take as their arguments two truth values at once and assign
them a truth value. Such functions can also be represented by way of tables:

(5) a. JundKs =

(0, 0) 0

(0, 1) 0

(1, 0) 0

(1, 1) 1

b. JoderKs =

(0, 0) 0

(0, 1) 1

(1, 0) 1

(1, 1) 1

Unlike the usual truth table representations of the extensions of und and
oder that we met in Chapter 1, the two arguments in (5a) and (5b) only
occupy a single column. This difference between the representations is merely
cosmetic – the functions represented are the very same, assigning truth values
to pairs of truth values. However, using a certain formal hack,2 functions
whose (only) arguments are pairs, may be transformed into complexes of
interwoven functions that are applied to the individual components of these
pairs, one by one. Replacing simultaneous by successive application then
saves introducing a special type for pairs of truth values (or other extensions).
To achieve this, one only needs to modify the extension of the conjunction so
that it can first apply to the first and then to the second argument – whereby
the result of the first application again needs to be a function, similarly
embedded as the ones that we encountered in connection with transitive
verbs. Applying this idea to the conjunctions und and oder, we thus arrive
at the following results:

2The general procedure is known as Schönfinkeling (after the Russian mathematician
Moses Schönfinkel [1889 – c. 1942]) or Currying (after the US mathematician Haskell
Curry [1900 – 1982]) in the literature.
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(6) a. JundKs =

0
0 0

1 0

1
0 0

1 1

b. JoderKs =

0
0 0

1 1

1
0 1

1 1

(6a) and (6b) can now be abbreviated by λ-tems in the familiar fashion:

(7) JundKs = λv.λu.u× v

And for disjunction we get:

(8) JoderKs = λv.λu.u+ v − u× v

Though the extensions in (7) and (8) can now be assigned a type in the
style of Table (2), the composition rule (4) obviously does not account
for them any more; for the result on the right hand-side of the equation
(‘JSKs JKKs JS′Ks’) presupposes that the extension of the conjunction can be
simultaneously applied to two arguments. However, it is not hard to adapt
(4) to (7) and (8), as will be shown in an exercise.

Let us take stock. Extensions can be classified according to their type,
where two kinds of types need to be distinguished: primitive and functional
ones.The type e of individuals, the type t of truth values, and the type s
of situations are the primitive types. Functional types always have the form
(ab), where a and b are themselves (primitive or functional) types; and the
extensions of a functional type (ab) are the functions whose arguments are
the extensions of type a and whose values are extensions of type b.

5.2 Type-logical formulae

Like the extensions, the formulae of type logic come in different types, which
indicate what sort of object they denote: formulae of type e denote individ-
uals, formulae of type (et) stand for predicate extensions, etc. Accordingly,
in indirect interpretation proper names get translated as formulae of type e ,
intransitive verbs translate as formulae of type (et); etc. The translations of
complex expressions awill always be composed of the translations of their im-
mediate parts – thereby guaranteeing that the Principle of Compositionality
is, as it were, automatically, satisfied in indirect interpretation. As a case in
point, a sentence like (9) is translated by suitably combining the translation
of the subject Fritz with that of the predicate schläft:

(9) Fritz schläft.

Both parts are lexical expressions that cannot be further syntactically dis-
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sembled. Their translations are defined by lexical equations – just like the
corresponding meaning. We had assumed the following extensions for the
subject and the predicate of (9):

(10) a. JFritzKs∗ = Fritz [cf. (5) in 2.1]
b. JschläftKs∗ = λx.`x is asleep in s∗a [= (2′) in 3.1]

The translations of the lexical expressions are type-logical formulae that
reflect essential logical and structural features of the corresponding lexical
equations. In equation (10a) the extension of the proper name is defined
by making reference to an object; this reference is made by a (homophonic)
name of the meta-language, which is not further structured.3 The type-
logical translation of the name Fritz will accordingly be a non-compound
form, a so-called constant, which will be designated by a boldface letter
reminiscent of the word to be interpreted: f. Like all type-logical formulae
the constant f belongs to a type: since it stands for an individual, it is a
formula of type e . In indirect translation, it is taken for granted that the
language of type logic contains enough constants for each type to denote the
extensions of the lexical expressions. How many they are and what they look
like may be left largely open – as long as any two constants of distinct types
are always distinct. A constant is thus always of one type only; this will also
hold of type-logical formulae in general.

We could, in principle, also provide a constant for the type-logical translation
ot the predicate schläft, which would then have to be of type et .4 However,
we will instead explicitly express the dependence of the extension on the
situation at hand in the translation – as we did in (10b). To do so, we
start out with a constant P (like pennt [≈ ‘sleeps’, coll.]) corresponding
to the intension of schläft; since the intension assigns predicate extensions
to situations, P is of type s(et). We then need something to correspond
to ‘s∗’ in (10b), i.e. a way to refer to the situation at hand. To this end,
we will use the symbol i, which however is not a constant but a variable of
type s – obviously so, given that it stands for a situation. We will address
the difference between constants and variables in due course. One effect of
making i a variable is that the formula does not refer to a fixed object.

The type-logical translation of the predicate schläft now combines the con-
stant P with the variable i so that it refers to the extension of schläft (in
the situation denoted by i). Since this extension is the result of applying

3Homophonic is a sophisticated word for ‘sounding alike’. That the object- and meta-
linguistic names are pronounced (and written) alike is due to the fact that we analyse
German in terms of English, which shares the name. From a theoretical point of view,
this is irrelevant but in practice it may occasionally lead to confusion.

4This is in line with Montague’s approach but would result in logical inconveniences. We
will address Montague’s method in Section 5.8.
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the intension denoted by P to the situation denoted by i, the whole formula
needs to combine the two ingredients so that, as a result, this functional
value is denoted. This is achieved by the following construction rule:

(App) If α is a (type-logical) formula of some type ab and β is a formula
of type a, then α(β) is a formula of type b.

α(β) is the formula that results by surrounding the formula β with (bold-
face) parentheses and adding the formula α to the left of the whole arrange-
ment; a und b are arbitrary types that may, but need not, be complex. In
particular, (App) may thus be applied to the constant P [for α] and the
variable i [for β], given that they are expressions of types s(et) [= (ab)] and
s [= a], respectively. For this case, the rule says that the following formula
is of type et :

(11) P(i)

The label ‘(App)’ is of course reminiscent of [Functional] Application; for
this is how formulae constructed by this rule are supposed to be understood.
Strictly speaking, however, (App) is only concerned with the formation of
type-logical formulae, and neither with their meaning nor with their appli-
cation to indirect interpretation. Though it is clear that a formula like (11)
stands for the extension of schläft – and formulae of the form α(β) gener-
ally denote the value of the function denoted by α for the argument denoted
by β; but this does not follow from (App) but only from the interpretation of
type-logical formulae to be introduced in the next section (where the deno-
tations of the constants f and P will also be officially defined). In a similar
vein, it should not come as a surprise that the type-logical translation (12) of
sentences like (9) combines the translations of their immediate constituents
by (App):

(12) P(i)(f)

But again this is not due to (App) but will only follow from the translation
of natural language into type logic provided by the indirect interpretation
procedure to be given in Section 5.5.

The formulae built from constants by applying (App) will suffice for the in-
terpretation of the indirect interpretation of many constructions – including,
e.g., the direct object in (13):

(13) trifft Fritz

If a lexical rule analogous to (11) makes sure that trifft translates as a
formula of the form T(i) (where this time T is a constant of type s(e(et))),
then the translations of verb and object in (13) can again be combined by
(App). As a result, the entire sentence (14) translates into type logic as (15),
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where we take it that e is the translation of the name Eike):

(14) Eike trifft Fritz.

(15) T(i)(f)(e)

The underlined part of (15) is the translation of the predicate, which ensues
by applying (App) to T(i) [for α] and f [for β]; the formula (15) is obtained
once (App) combines the underlined predicate translation with the transla-
tion of the subject, as in (12). The structure of the formula (15) can be
visualised by a tree diagram:

(16) T(i)(f)(e)
t

T(i)(f)
et

T(i)
e(et)

T
s(e(et))

i
s

f
e

e
e

At each node of the above tree, the second line gives the type of the formula
above it. The tree makes clear that (App) is a rule of cancellation in that
the type of a formula constructed by this rule is always shorter than that of
its left constituent.5

Rule (App) meets its limits as a means to express combinations of extensions
at the very same point at which direct interpretation got stuck with func-
tional application. In Section 3.4 we saw this happen with the attachment
of quantifying objects. According to the pertinent rule of combination, the
extension of the predicate of (17) was determined by (18):

(17) Eike trifft niemanden.

(18) Jtrifft niemandenKs∗ = λx.JniemandKs∗(λy.JtrifftKs∗(y)(x))

In order to express this combination by a type-logical formula, apart from
the possibility (App) of referring to function values, one also needs a way
of defining functions by (lambda) abstraction. This is precisely what the
second construction rule offers:6

5The analogy to fraction cancellation in arithmetic can be pushed even further by writing
types (ab) as b

a
. (App) then combines b

a
and a into b – in analogy to multiplication:

b
a
× a = b.

6In order to distinguish them from the variables used in the meta-language, we always
refer to variables of type logic by boldface italicized Roman letters. It should be noted
that these letters are not themselves the variables but merely meta-linguistic variables
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(Abs) If x is a variable of type a and α is a formula of type b, then (λx.α)
is a formula of type (ab).

The formula (λx.α) ensues by letting the variable x precede a (boldface) λ,
a (boldface) period, and the formula α and surrounding the arrangement by
(boldface) parentheses; a and b are again arbitrary types; α is an arbitrary
expression that may, but need not, be complex. (Abs) presupposes that the
type-logical language contains variables, which are primitive expressions –
just like the constants. And like constants, variables are expressions of one –
and only one – type. But unlike constants, their number is not left open: we
assume that there are infinitely many of them for each type. This assumption
will turn out to be quite useful in indirect interpretation.7

According to (Abs) and (App) the expressions (19a)–(19c) are type-logical
formulae:

(19) a. (λXet.X(f))
b. (λut.(λvt.(λRt(tt).R(u)(v))))
c. (λxe.T(i)(f)(x))

In (19a)–(19c) we followed the convention of indicating the type of a variable
as a superscript to its first occurrence in a formula. We will continue to do so
in the following; the only exception is made for the variable i, which stands
for the situation at hand: it will always come without a type superscript.

Once the types of the constants and variables occurring in a formula con-
structed by (Abs) und (App) are known, its type is uniquely determined. As
a case in point, formula (19a) is of type (et)t ; for according to (App), X(f)
is of type t . The structure of the formula can again be represented by way
of a tree:

for them: after all, in (Abs), ‘x’ does not stand for a specific type-logical variable but
for arbitrary variables of an equally arbitrary type a. What the variables ‘actually’ look
like will be left open. In connection with type-logical variables we use the common
(though not always explicitly mentioned) convention that – unless stated otherwise –
within a formula (like T(i)(x)(y)) distinct names of variables (x vs. y) stand for
distinct variables (whatever they may look like); this does, however, not exclude that
distinct variables refer to the very same object (Fritz, say).

7A note for hobby mathematicians: ‘infinitely many’ is not a precise measure. Rather, in
mathematics, several infinite magnitudes are distinguished. It is usually assumed that
there are countably many variables (for each type and all in all) – which is relatively few
by infinity standards. (By way of comparison: the natural numbers are countable, the
reals are not.)
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(20) (λX.X(f))
(Abs): (et)t

X
(Var): et

X(f)
(App): t

X
(Var): et

f
(Con): e

The above tree also indicates which rule was used to construct the parts it is
composed of; this piece of information precedes the type. Hence the second
line of the top node says: according to (Abs), the formula in the line above
is of type (et)t . In the case of primitive, non-compound formulae, instead
of a construction rule, the kind of expression is indicated, i.e. whether it
is a variable or a constant. Using (20) as a model, the reader can now
determine the types of both of the formulae (19b) and (19c), which is done
in an exercise.

(App) und (Abs) are the only construction rules of type logic: all formulae
are constructed from constants and variables using these two operations. We
thus arrive at the following:

(21) Syntax of (two-sorted functional) type logic:
For all types a and b, the following holds:

(Var) Variables of type a are formulae of type a.
(Con) Constants of type a are formulae of type a.
(App) If α is a (type-logical) formula of a type (ab) and β is a formula of

type a, then α(β) is a formula of type b.
(Abs) If x is a variable of type a and α is a formula of type b, then (λx.α)

is a formula of type (ab).

(21) is to be understood as implying that nothing counts as a type-logical
formula of a type a, unless it has been constructed by one of these rules.
(21) finishes the definition proper of type-logical formulae. However, before
we get to their interpretation – for (21) only says how the formulae are
structured, not what they stand for – we will introduce four so-called logical
constants, which play a central rôle in the practice of indirect interpretation,
because they are subject to certain rules of calculation that allow for a quasi-
mechanical reduction of confusingly complex formulae.

The first logical constant is a special symbol for clausal conjunction (in the
semantic sense), which – as we have seen in the previous section – can be
‘mimicked’ by a function of type t(tt). In type logic this function is denoted
by a constant of type t(tt), for which we will borrow the symbol ∧ from
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propositional logic.8 In analogy to natural language, this symbol is inserted
between the conjoined formulae; thus if ϕ and ψ are formulae of type t ,
instead of ∧(ψ)(ϕ), we will write [ϕ∧ψ], which reads ‘ϕ and ψ’.

The constant ∧ is not only used to analyze the word und; it plays an impor-
tant rôle in indirect interpretation and in type logic in general. In particu-
lar, it forms the core of the semantics of the modifier constructions (relative
clauses, adjectives) to be addressed in the next chapters; and it will already
be applied in several lexical analyses in the current chapter. The transla-
tion of the indefinite article is a case in point. In the preceding chapter we
analysed it as follows:

(22) JeinindefKs
∗
= λY.λX.`↓X ∩ ↓Y 6= ∅a [= (31) from 3.2]

Together with a further constant, the conjunction ∧ will help us to represent
the extension to the right of the equality sign in (22) within type logic. To
see how this works, let us first slightly reformulate the equation:

(23) JeinindefKs
∗
= λY.λX.`↓ [λx.X(x)× Y (x)] 6= ∅a

Where (22) mentions the intersection of the sets characertised by X and Y ,
(23) has the set characterised by the lambda-term ‘λx.X(x) × Y (x)’. But
this is the very same set:

(24) ↓ [λx.X(x)× Y (x)] since X(x)× Y (x) = 1 iff X(x) = 1 & Y (x) = 1

= ↓ [λx. ` X(x) = 1 and Y (x) = 1 a] by (37) from 2.5
= {x| X(x) = 1 and Y (x) = 1} def. ‘↓’
= {x| x ∈ ↓X and x ∈ ↓Y } def. ‘∩’
= ↓X ∩ ↓Y

In order to express the right hand-side of (23) in type logic, a constant of
type (et)t is used, which expresses that the extension of a predicate (given
by the argument) characterizes a non-empty set. From predicate logic we
import the symbol ∃ and the name existential quantifier for this constant.9

Using common notation, we omit the lambda prefix and re-bracket whenever
∃ combines with a (type-logical) lambda term: if ϕ is a formula of type t ,
instead of ∃(λx.ϕ) we write (∃x)ϕ, which reads: ‘there is an x such that
ϕ holds’.

Although the indirect interpretation of determiners will be addressed at
length and in its proper context after we have familiarized ourselves with the

8Propositional logic, the beginnings of which go back to antiquity, is the area of formal logic
that concerns the relations between conjunction and negation (which will be introduced
in due course).

9Predicate logic (which goes back to Frege’s 1879 Begriffsschrift) forms the core of for-
mal logic; it covers propositional logic (mentioned in the previous footnote) but is less
expressive and flexible than type logic.
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formulae of type logic, we already offer a glimpse of the translation of the
indefinite article:

(25) (λQet.(λP et.(∃xe)[P (x) ∧Q(x)]))

Expanding (25) by undoing the abbreviations for conjunction and existential
quantifier, it is readily shown (in an exercise) that (25) is a formula of type
(et)((et)t).

The third logical constant is negation, which will be symbolised by ¬, as
in propositional logic. Negation is of type tt and reverses truth values: if a
formula ϕ of type t has truth value 1, ¬(ϕ) has truth value 0 – and vice
versa. As in propositional logic, we usually omit the brackets around the
argument of ¬ and simply write ¬ϕ, which reads: ‘it is not the case that ϕ’.
Given this convention, the type-logical translation of the determiner kein-
runs as follows:

(26) (λQet.(λP et.¬(∃xe)[P (x) ∧Q(x)]))

The fourth and last logical constant will not receive a special motivation;
its interpretation presents no difficulties and we will later recognize its value
for indirect interpretation: identity between individuals, for which we will
reserve a constant of type e(et), written by a boldface equality symbol.
Hence (α = β) stands for = (α)(β), whenever α and β are of type e .

The construction rules (21) and the logical constants ∧, ∃, ¬ and = (includ-
ing their types and the notational conventions) together make the syntactic
side of type logic, i.e., the definition of the type-logical formulae. We now
come to their interpretation.

5.3 The interpretation of type logic

Although we have seen how type-logical formulae are to be understood, they
still lack a systematic interpretation. We will proceed as in the (direct)
interpretation of natural language and assign to each formula α a semantic
value ‖α‖ – α’s denotation. In the case of primitive formulae – constants and
variables – this will be done directly, by way of lexical equations ‘‖α‖ = . . . ’
that specify the corresponding value; the value of complex formulae, on the
contrary, systematically derives from the values of its (immediate) parts and
the way they are combined – by application or abstraction.

There are two kinds of primitive formulae in type logic: variables and con-
stants. As we will soon see, the interpretation of constants is a relatively
simple affair. The variables, on the other hand, present a serious challenge
to compositional interpretation. Roughly speaking, the problem is that a
variable in isolation does not have a fixed extension. But in the context of a
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complex formula, a variable may very well contribute to its interpretation.
Thus a formula of the form λx. . . . denotes a function that assigns its val-
ues to arbitrary objects of a certain type – but what exactly are arbitrary
objects?

As one can see in (26), ¬(∃xe)[Q(x) ∧ P (x)] can express that the sets
characterised by P and Q are disjoint, but what does the x in this char-
acterisation refer to? To arbitrary objects in the intersection of the sets
mentioned – and thus to nothing (if they do happen to be disjoint)? What-
ever mysteriously ‘arbitrary’ objects the x may refer to, they are dispensable
for the (disjunction) statement made; for the underlined reformulation can
do without them.

The problems with the function of variables and their compositional inter-
pretation go way beyond type logic and cannot be solved without a certain
amount of technical machinery. The solution we will adopt here is based
on the idea that a variable simultaneously denotes all objects of its type.10

Following this lead, a variable x of type e can refer to any individual. In
other words, any individual may serve as the extension of x; similarly, any
predicate extension – i.e., any characteristic function of a set of individuals
– can act as the extension of a variable P of type et . Thus variables have
more than one extension (in a given situation). The same is true of complex
formulae containing variables:

(27) P (x)

The formula in (27) can refer to any truth value that ensues if the – arbitrary
– semantic value of P is applied to the – arbitrary – semantic value of
x.11 So if (case 1) P denotes the predicate extension P1 and x denotes
the individual x1, then (27) denotes P1(x1); however, if (case 2) P and x
respectively denote P2 and x2, then P2(x2) is the semantic value of (27); but
P may equally well (case 3) denote P1 whereas x denotes x2, whereupon the
semantic value of (27) would of course be P1(x2); etc. The cases on which it
depends what the relevant variables stand for, are called variable assignments
or merely assignments in logical semantics. Since an assignment says what
each variable of each type stands for, one may think of it as a function that
assigns semantic values to variables:

(28) Definition
An assignment is a function g whose arguments are the variables

10This method of interpreting variables, which is known as assignment semantics and
originates with the Polish-American logician Alfred Tarski (1901–1983), is highly popular
in logical semantics. An alternative – so called substitution semantics – will be sketched
in Section 5.8.

11Our discussion presupposes that the construction (App) is interpreted as expressing
functional application – which we will officially fix in a moment.
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and such that the following holds: if x is a variable of some type a,
then g(x) is an object of type a.

Each of the cases 1–3 thus corresponds to a host of assignments: for instance,
case 1 is given with any assignment g according to which P and x have the
semantic values P1 and x1, i.e. as soon as g(P ) = P1 and g(x) = x1 – no
matter which values g assigns to the other variables.

As the discussion of (27) has shown, it is not enough to assume that only
variables have several semantic values; the value of a complex expression can
also depend on an assignment. The semantics of type logic thus does not
merely have to assign a single semantic value to each expression α but one
semantic value ‖α‖g for each assignment g. Thus if in case 2, where we have
an assignment h with h(P ) = P2 and h(x) = x2, the value of (27) comes out
like this: ‖P (x)‖h = P2(x2). More generally, a given type-logical expression
needs to obtain a separate semantic value for each assignment g. Unlike
the interpretation of natural language given in the preceding chapters, the
compositional interpretation of type logic will determine a whole ‘family’ of
semantic values for each formula; and this family of values then makes the
full meaning of the formula. In practice, though, only single values will play
a rôle. Why this is so will be explained in due course.

Given these fundamental considerations on the architecture of the interpre-
tation of type-logical formulae, the lexical equations for variables are now
straightforward:

(29) Interpretation of variables (Var)
If g is an assignment and x is a variable, the following holds:
‖x‖g = g(x)

Since the type-logical translations of natural language expressions to be de-
veloped denote their extensions, they always contain a free variable referring
to a possible situation. This will always be the same, fixed variable i of
type s; why this is so will become clear later. The assignment, which deter-
mines the value of the variable i, thus also has the function of specifying the
situation at hand.

Now for the constants. Having left open how many constants there are,
and which ones, we cannot fix their interpretation either. Most constants
will be introduced when required in indirect interpretation and will then
receive their interpretation. There are, however, two constraints the lexical
equations introducing them need to obey. For one thing, each constant
has one (and only one) type, which fixes the type of its denotation; this
constraint is analogous to the constraint imposed on variable assignments in
(28). For another thing, the semantic value of a constant does, of course, not
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depend on the semantic values of any variables; so given any two assignments,
the constant will receive the same value relative to them. We record these
constraints as the:

(30) Constant Principles (Con)
a. If g is an assignment and c is a constant of some type a, the

following holds:
‖c‖g is an object of type a.

b. If g and h are assignments and c is a constant (of any type),
the following holds:

‖c‖g = ‖c‖h.

All lexical equations must and will in the following satisfy the principles in
(30). The following random example illustrates this:

(31) If g is an assignment, ‖f‖g = Fritz.

Under the (syntactic) assumption that f is a constant of type e , (31) sat-
isfies constraint (30a); after all, Fritz is an individual. Later equations will
always satisfy (30a) without explicit mention. (30b) also holds; for (31) is
understood to apply to all assignments g.

Given (30b), the superscript to the semantic brackets in the lexical equa-
tions for constants is redundant and will therefore be omitted in the future.
Following this convention, (31) can be rewritten as:

(32) ‖f‖ = Fritz

Apart from this illustrative example, the only specific lexical equations for
constants are those concerning the four logical constants; they run as follows:

(33) a. ‖∧‖ = λv.λu.u× v
b. ‖∃‖ = λP. ` ↓P 6= ∅ a
c. ‖¬‖ = λv.1− v
d. ‖=‖ = λx.λy. ` x = y a

(33a)–(33d) make use of the convention of dropping the assignment super-
scripts; the reader is reminded that this is possible because we are dealing
with constants, the interpretation of which is independent of any assignment.

The right hand-sides of the equations in (33a)–(33d) are all occupied by
lambda-terms. These terms are no type-logical formulae but abbreviations
for descriptions of functions, as we have used them in the previous chapters.
The variables used in (33a)–(33d) are no type-logical variables either but
variables of the meta-language that stand for arbitrary truth values (‘u’,
‘v’), predicate extensions (‘P ’), and individuals (‘x’, ‘y’), respectively. These
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equations do not make explicit the types of objects that these meta-variables
stand for; but they can be identified by constraint (30a), according to which,
e.g., ‖∧‖ must be a function of type t(tt) and thus (successively) take truth
values as arguments; and since the variable ‘v’ following the lambda refers to
the (first) argument of ‖∧‖, it can only stand for truth values. The following,
more cumbersome reformulations of the equations in (33) may be felt to be
clearer in this respect:

(34) a. ‖∧‖ = that function of type t(tt) that assigns to any truth value
v that function of type tt that assigns to every truth value u
the product u× v;

b. ‖∃‖ = that function of type (et)t that assigns the truth value 1
to any predicate extension P just in case P does not characterise
the empty set;

c. ‖¬‖ = that function of type tt that assigns to any truth value
v the truth value 1− v;

d. ‖=‖ = that function of type e(et) that assigns to any individual
x that function of type et that assigns to any individual y the
truth value 1 just in case x is identical to y.

Let us now turn to the interpretation of complex formulae. As already
indicated, they are interpreted compositionally, which means that we will
take the meanings of the immediate parts as given and specify the way in
which they combine into the meaning of the whole formula. We need to
distinguish two cases according to the construction rules for type-logical
formulae. We start with the much simpler case in which two expressions α
and β are combined into α(β). According to (App), this is only possible
if α is a formula of a type ab, where β is of type a. We may thus assume
that the semantic values ‖α‖g and ‖β‖g are always – i.e., at any assignment
g – objects of type ab and a, respectively. In particular, then, ‖β‖g is an
argument to which ‖α‖g assigns a value – and this value is what the entire
formula denotes:

(35) Interpretation of functional application (App)
If g is an assignment and α and β are, respectively, formulae of
types ab and a, the following holds:
‖α(β)‖g = ‖α‖g(‖β‖g).

The second kind of complex formulae are the ones formed by (Abs); they
have the form (λx.α), where x is a variable of some type a and α is a
formula of some type b. In order to see how such formulae can be interpreted
compositionally, let us first consider an example:

(36) (λye.(λxe.S(i)(x)(y)))
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Here S is a constant of type s(e(et)) that denotes the intension of sieht [≈
sees]:

(37) ‖S‖ = λs.λy.λx. ` x sees y in s a

Let us first note that the value of the formula (36) ought to be a function
which, when applied to Eike, yields the predicate extension of wird von
Eike gesehen [≈ is seen by Eike] (in the situation denoted by i) – i.e., that
function that assigns the truth value 1 to an individual x if in g(i), x is seen
by Eike; for if the extension of sieht, which is denoted by S(i), gets applied
to x and then the result is applied to Eike, according to (37), the truth value
1 ensues just in case Eike sees x (in the situation denoted by i). Thus (36)
reverses, as it were, the relation of seeing denoted by S(i) into the relation
of being seen by. In order to interpret (36) compositionally, the meaning of
this formula must be obtained from the meanings of its two immediate parts
– the variable y and the complex formula (38):

(38) (λxe.S(i)(x)(y))

The meaning of (38) in turn needs to be systematically obtained from the
meaning of the variable x and the meaning of the formula (39):

(39) S(i)(x)(y)

The denotation of (39) can be obtained successively by the above interpre-
tation (35) of functional application.We thus get, for arbitrary assignments
g:

(40) ‖S(i)(x)(y)‖g
= ‖S(i)(x)‖g(‖y‖g)
= ‖S(i)‖g(‖x‖g)(‖y‖g)
= ‖S‖g(‖i‖g)(‖x‖g)(‖y‖g)
= ‖S‖g(g(i))(g(x))(g(y))

The last transition in (40) makes use of the interpretation (29) of variables
according to which the denotation of a variable is determined by the assign-
mnt at hand. In (40), this dependence on the assignment is transmitted to
the complex formula (39). Hence if g1 assigns to the variables x, y, and
i the values Fritz, Eike, and s0 – i.e., g1(x) = Fritz, g1(y) = Eike, and
g1(i) = s0 – the denotation of (39) at this assignment will be 1 if Eike sees
Fritz in s0; given an assignment g2, according to which g2(i) = g1(i), and
g2(x) = Fritz = g2(y), ‖(39)‖g2 = 1 if Fritz sees himself in s0; etc.:
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(41)

ass. ‖i‖g ‖y‖g ‖x‖g ‖S(i)(x)(y)‖g
g1 s0 Eike Fritz ` Eike sees Fritz in s0 a
g2 s0 Fritz Fritz ` Fritz sees himself in s0 a
g3 s0 Eike Eike ` Eike sees herself in s0 a
g4 s1 Fritz Eike ` Fritz sees Eike in s1 a
g5 s1 Fritz Fritz ` Fritz sees himself in s1 a
. . . . . . . . . . . . . . .
g g(i) g(y) g(x) ` g(y) sees g(x) in g(i) a
. . . . . . . . . . . . . . .

In passing from (39) to (38) this assignment dependence is reduced by the
lambda-operator. For (38) refers to a function that assigns the truth value
1 to arbitrary individuals x if x sees the individual denoted by the variable
y in the situation denoted by the variable i:

(42)

ass. ‖i‖g ‖y‖g ‖x‖g ‖λx.S(i)(x)(y)‖g
g1 s0 Eike Fritz λx. ` Eike sees x in s0 a
g2 s0 Fritz Fritz λx. ` Fritz sees x in s0 a
g3 s0 Eike Eike λx. ` Eike sees x in s0 a
g4 s1 Fritz Eike λx. ` Fritz sees x in s1 a
g5 s1 Fritz Fritz λx. ` Fritz sees x in s1 a
. . . . . . . . . . . . . . .
g g(i) g(y) g(x) λx. ` g(y) sees x in g(i) a
. . . . . . . . . . . . . . .

So while the value of (39) depends on who or what the variables x, y,
and i refer to, only the denotations of y and i matter for (38): as soon
as two assignments agree on these variable-values (which is indicated by a
match in colouring), they also agree on the denotation of the entire formula.
In comparison to the interpretation of (39) shown in (41), the lambda in
(38) thus ‘neutralizes’ the denotation of x. In formal logic, this form of
neutralization of truth values is called binding : the initially free variable in
the scope of the lambda-operator gets bound by it in abstraction. Here, the
scope (aka the matrix ) is that part of the formula that the operator operates
on – between full stop and bracket. It should be noted that the status of a
variable – whether it is free or bound – is something relative; a variable is
never free or bound ‘as such’ but only in relation to a formula: thus, e.g., x
is free in (39) but not in (38).

Binding is a very general process that occurs whenever variables are used
to seemingly refer to arbitrary objects. In order to see how this process
works, let us take a closer look at the transition from (41) to (42), first
concentrating on g1. Given this assignment, the denotation that the formula
(38) has according to (42), is a function that can again be represented by a
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table:

(43) ‖(λx.S(i)(x)(y))‖g1 =

argument value
Fritz ` Eike sees Fritz in s0 a
Eike ` Eike sees herself in s0 a
. . . . . .

NN ` Eike sees NN in s0 a

(43) represents the denotation in the last line of (42). The overall goal
of our current investigation is to find a general meaning combination that
produces the denotations of formulae of the form (λz.α) from those of the
bound variables z and the matrix formula α. So we should find out how the
function displayed in (43) can be obtained from the meaning of the matrix
S(i)(x)(y) represented in (41). Actually, this is not so hard if we carry over
the shading from (42) to (41): (43) emerges from the two rightmost columns
of (41) by eliminating those lines that differ in their shading from the first
(g1-) line (where ):

(44)

ass. ‖i‖g ‖y‖g ‖x‖g ‖S(i)(x)(y)‖g
g1 s0 Eike Fritz ` Eike sieht Fritz in s0 a
g2 s0 Fritz Fritz ` Fritz sieht sich in s0 a
g3 s0 Eike Eike ` Eike sieht sich in s0 a
g4 s1 Fritz Eike ` Fritz sieht Eike in s1 a
g5 s1 Fritz Fritz ` Fritz sieht sich in s1 a
. . . . . . . . . . . . . . .

The same procedure also leads from (41) to the denotation of (λxe.S(i)(x)(y))
given g3, since this assignment has the same colour; once all differently
shaded lines have been eliminated, (43) emerges again – and indeed, ac-
cording to (42), ‖(λx.S(i)(x)(y))‖g1 = ‖(λx.S(i)(x)(y))‖g3 . In a similar
vein, the denotation of (λxe.S(i)(x)(y)) given the assignments g4 or g5
emerges if one only keeps the darkened assignments in (41) and then cuts
out the mapping represented by the two rightmost columns. Writing up the
tables has been delegated to an exercise. In the end, the following general
pattern emerges: the denotation of a formula of the form (λz.α) given an
assignment g, is a function f , that assigns to the values of z the denotation
of α at the assignments matching with g in shading. Hence if h is such a
matching assignment, f assigns to an object u = h(z) the denotation of α
given h:

(45) ‖(λz.α)‖g(h(z)) = ‖α‖h

(45) basically accounts for the meaning combination expressed by lambda
abstraction that we are after. However, the equation needs to be understood
as applying to arbitrary assignments g and h with the same shading. But
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what does a match in shading amount to in general? In the above tables,
two assignments always received the same shading if they agree on the values
for i and y – or rather (and more generally speaking): if they differ at
most in their x-value. The function denoted by the lambda-term could be
constructed from the assignments with the same shading precisely because
each individual appears as an x-value among them, without thereby affecting
the values of any of the other variables. Using standard terminology from
formal logic, we call two assignments that differ at most in the values of one
variable x, x-alternatives of each other. Given this term, we may generalize
(45) to the following meaning rule for lambda-formulae:

(46) Interpretation of abstraction (Abs) [initial version]
If g is an assignment, x is a variable of type a, and α is a formula
of type b, then ‖(λx.α)‖g is that function of type (ab) such that for
any x-alternative h of g the following holds:
‖(λx.α)‖g(h(x)) = ‖α‖h

According to (46), the denotation of the lambda-term does come out as a
function that assigns to any object of type a an object of type b. For any
object u of type a is the value of an x-alternative to g [for the argument
x], viz. of that function that is like g except that it assigns to the variable x
the object u. It is readily seen there is exactly one x-alternative that does
that.12 We will write it as ‘g[x/u]’ and call it a modification of g. Using this
notation, (46) can be reformulated thusly:

(47) Interpretation of abstraction (Abs) [standard version]
If g is an assignment, x is a variable of type a, and α is a formula
of type b, then ‖(λx.α)‖g is that function of type (ab) such that for
any object u of type a the following holds:
‖(λx.α)‖g(u) = ‖α‖g[x/u]

The reader should realise that (47) and (46) do say the same thing; but the
reformulation makes it clearer that ‖(λx.α)‖g is indeed an object of type
(ab), i.e., a function from the objects of type a to the objects of type b. This
is why (47) is a common textbook formulation.

Under the assumption that the meta-linguistic variable ‘u’ ranges over all
objects of a given type a, (47) can also be reformulated with the help of the
meta-linguistic lambda-operator:

(48) Interpretation of abstraction (Abs) [quick version]
If g is an assignment, x is a variable of type a, and α is a formula
of type b, then:

12We are assuming that h and h′ are the same function if they agree on all variables. In
set theory, this justified by the Principle of Extensionality (7) of Chapter 1.
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‖(λx.α)‖g = λu.‖α‖g[x/u]

(48) brings out clearly that the λ-Operator of type logic corresponds to the
lambda-notation used in the meta-language.

The ynterpretation mechanism given in (46)–(48) can also be used to de-
termine the denotation of the initial formula (36), repeated below, from the
denotations of the subformula (λx.S(i)(x)(y)) given in Table (42) above:

(36) (λye.(λxe.S(i)(x)(y)))

After finally binding the situation variable i, it turns out (in an exercise)
that the denotation of the resulting formula will be the same, whatever the
assignment may be. Small wonder: the formula contains no free variables –
in logical terms, it is closed.

Are (46)–(48) compositional? Yes and no. On the one hand, according to
these rules, the denotation of a lambda-formula (given an assignment g) is
not composed from the denotations of their immediate parts. Rather, to
determine it, the denotations of the parts at other assignments – the x-
alternatives or modifications – need to be called in. On the other hand,
according to (46)–(48), the totality of all denotations of a lambda-formula at
all assignments can be determined from the totality of all denotations of its
parts – and these totalities, which can themselves be construed as functions
that assign denotations to assignments, may be taken as the meanings of
type-logical formulae. More precisely, the meaning of a type-logical formula
α may be identified with the function that maps any assignment g to the
denotation α has (given g) – set-theoretically speaking, the set of pairs
(g, ‖α‖g). Though we will not make explicit reference to this notion of
meaning, we will be relying on its compositionality throughout the remainder
of these notes.

It is not the denotations of the sub-formulae that get combined by variable-
binding but their entire meanings. However, (46) and (47) only indicate how
the meaning of the right part – the matrix α – enters the compositional
determination of the denotation of the lambda-term. But the above (rather
common) formulations remain silent about the rôle the alternative values of
x play. At least they are not mentioned explicitly in (47); and though they do
enter the main equation (45) in (46), it does not really become clear how the
denotation of the entire formula is determined only by them and the values of
the matrix. In order to fully settle the compositionality issue about variable
binding, (46) and (47) would thus have to be reformulated once more. To this
end, the notion of an ‘x-alternative’ or ‘being an assignment that is modified
at x’ needs to be replaced by concepts that only relate to the meaning of the
variable x, and not to the variable itself. That such a formulation is possible
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will be shown in an exercise.13

5.4 Logical transformations

As already mentioned at the beginning of the chapter, one huge advantage
of indirect interpretation is its transparency. The more complex the mean-
ings to be determined and manipulated get, the more desirable – and even
necessary – it will be to have a transparent representation for them. To a
large extent, the transparency of the method is owed to the fact that type-
logical formulae respect certain logical laws that allow for quasi-mechanical
reductions of complex formulae, thus dramatically increasing their readabil-
ity. These reductions are what the current section is about. The logical laws
behind them are by no means additional interpretive constraints, let alone
arbitrary notational conventions. On the contrary, they are direct conse-
quences of the interpretation of the formulae given in the preceding section,
which implies in a host of cases that two given formulae are logically equiv-
alent in that they always – i.e. given any assignment – denote the same
object. Here is a case in point:

(49) If ϕ and ψ are formulae of type t , then:
[ϕ∧ψ] ≡ [ψ ∧ϕ]

In (49), the symbol ‘≡’ stands for said relation of logical equivalence. It
should be noted that it is not a type-logical symbol but a meta-linguistic
abbreviation. In particular, the line on display in (49) is not itself a type-
logical formula but abbreviates the following meta-linguistic statement:

(50) For all assignments g the following holds: ‖[ϕ∧ψ]‖g = ‖[ψ ∧ϕ]‖g.

There is a close connection between logical equivalence and the notion of
meaning defined at the end of the preceding section:14 as it turns out, two
type-logical expressions are logically equivalent just in case they have the
same meaning. In other words, synonymy, understood as sameness of mean-
ing, boils down to logical equivalence – having the same denotation given
any assignment. This connection will become important in the process of
indirect interpretation, and particularly when it comes to the reduction of
type-logical translations in the interest of readibility. For, as indicated above,
meanings behave compositionally. As a consequence, a formula can be re-
placed by a logically equivalent one in any (larger) formula without affecting

13Amore detailed account of the Tarskian approach to compositionality based on meanings
as functions on assignments can be found in the tenth chapter of the Introduction to
Semantics by T. E. Zimmermann and W. Sternefeld (Berlin 2013).

14This calls for some qualification, given that our use of these terms diverts from the
slightly narrower (‘model-theoretic’) definitions that they receive in formal logic.
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the meaning of the latter. We will take advantage of this fact by applying
logical transformations not only directly to entire translations but also to
their parts.

In what sense does (49) follow from the above interpretation of type-logical
formulae? The answer is simple: the claim can be proved ; somewhat pompously
put, it is a mathematical theorem. In order to convey an impression of how
such transformation laws like (49) may in principle be justified, and that in
doing so, one relies solely on the compositional interpretation of the formu-
lae, we will give an exemplary demonstration of (49); afterwards we will do
without such detailed proofs.

Let us thus suppose we are given some formulae ϕ and ψ of type t . In order
to show the equivalence claimed in (49), we need to consider an arbitrary
assignment g and compare the denotations of [ϕ ∧ ψ] and [ψ ∧ ϕ] given g
– i.e. ‖[ϕ∧ψ]‖g and ‖[ψ ∧ϕ]‖g. As a first step, we should undo the nota-
tional simplifications; ‘[ϕ∧ψ]’ stands for the type-logical formula ∧(ψ)(ϕ),
starting wiht the logical constant ∧ of type t(tt), the meaning of which was
given in (33a), repeated here for the readers’ convenience:

(33a) ‖∧‖ = λv.λu.u× v

We now note that ∧(ψ)(ϕ) is the result of two applications of the syntactic
rule (App): first, the formula ∧(ψ) of type tt is formed from the constant
∧ – which, following (Con), is a formula of type t(tt) – and the formula ψ;
then the final result ensues from the latter and the formula ϕ. (If you find
following this reasoning difficult, you should draw a syntactic tree!) And,
to be sure, in both cases the construction rule (App) is the source. This
being so, the denotation of ∧(ψ)(ϕ) can be determined stepwise, using the
interpretation (35) of formulae built by (App), as introduced in the preceding
section and repeated here:

(35) Interpretation of functional application (App)
If g is an assignment and α and β are, respectively, formulae of
types ab and a, the following holds:
‖α(β)‖g = ‖α‖g(‖β‖g).

Here is how it goes:15

15Our proof contains two applications of λ-conversion. In the interest of clarity, it should
be pointed out that this is not necessary. Instead one may recall that meta-linguistic
lambda-terms abbreviate descriptions of functions, and then insert these descriptions
themselves. Thus, e.g., the λ-term ‘[λu.u × ‖ψ‖g]’ abbreviates ‘that function f that
assigns to any truth value u the value u × ‖ψ‖g’; and ‘[λu.u × ‖ψ‖g](‖ϕ‖g)’ denotes
the value of the function thus described for the specific argument u = ‖ϕ‖g – i.e.
‖ϕ‖g × ‖ψ‖g.

150



CHAPTER 5. TYPE LOGIC AND INDIRECT INTERPRETATION

(51) ‖∧(ψ)(ϕ)‖g
= ‖∧(ψ)‖g(‖ϕ‖g) by (App): ∧(ψ) for α, ϕ for β
= ‖∧‖g(‖ψ‖g)(‖ϕ‖g) by (App): ∧ for α, ψ for β
= [λv.λu.u× v](‖ψ‖g)(‖ϕ‖g) by (33a)
= [λu.u× ‖ψ‖g](‖ϕ‖g) λ-conversion
= ‖ϕ‖g × ‖ψ‖g λ-conversion

Since the equation (51) holds for arbitrary formulae ϕ and ψ of type t , it
also holds for arbitrary formulae ψ und ϕ of this type:

(52) ‖∧(ϕ)(ψ)‖g = ‖ψ‖g × ‖ϕ‖g

But then this is the very same result as the one calculated in (51) – viz. the
(arithmetical) product of the truth values ‖ϕ‖g and ‖ψ‖g. This concludes
the proof of the equivalence claimed in (49) – the so-called commutativity of
conjunction.

The transformation (49) is totally trivial; it is immediate without calling for
a laborious proof. And it does not really help to achieve simplicity: the two
formulae it equates have the same length, after all. But then the purpose
of the above explicit equivalence proof was not the result reached but the
path leading to it: it shows that in principle, the logical equivalence can be
proved on the basis of the definitions given in the previous section.

Many of the most important rules of logical transformation refer to the dif-
ference between free and bound variables. It is a prime characteristic of
variable binding that it makes the value of the variable independent of the
assignment. This observation is the content of a fundamental lemma:16

(53) Coincidence Lemma
Let α be a type-logical formula. Then for all assignments g and h
that agree on the free variables of α the following holds:
‖α‖g = ‖α‖h.

That two assignments g and h agree on a variable x obviously means that
g(x) = h(x). Hence the Coincidence Lemma says that the agreement of the
free variables carries over to the whole formula. Plainly, this means that the
denotation of the formula α only depends on the variables free in α – and
thus neither on the variables that do not occur in α at all, nor on those
that only occur as bound variables (in α). And this is precisely the above
observation about neutralizing assignment dependence by binding.

(53) can be proved stepwise, by first establishing it for primitive, non-

16In the literature, the Coincidence Lemma is also referred to as Coincidence Theorem.
The ‘model-theoretic’ version found in logic texts (cf. footnote 14) is slightly more
general.
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compound formulae, and then showing how complex formulae inherit the
assignment independence claimed in the Coincidence Lemma from their im-
mediate parts. The strategy is thus the principle of mathematical induction
familiar from arithmetic.17 We skip the proof and only notice that it can
only be given on the basis of a precise definition of the concept of a free
variable. This concept, too, can be defined stepwise, by specifying for each
formula α a set Fr(α):

(54) Definition of the free variables of a formula α
formula α formation rule Fr(α)
c (Con) ∅
x (Var) {x}
β(γ) (App) Fr(β) ∪ Fr(γ)
(λx.β) (Abs) Fr(β)\{x}

It can be gleaned from Table (54) which variables occur freely in a given
type-logical formula α. If α is a constant (line 1), the set of the variables
occurring freely in α is empty – for no variables occur as part of a constant.
If however, α is itself a variable (line 2), it obviously occurs in α – and freely
so, for there are no λs in α that could bind it. A variable occurring freely
in a functional application β(γ) needs to occur in (at least) one of its parts;
the set of the variables occurring freely in β(γ) thus results from taking the
union of Fr(β) and Fr(γ). And the free variables of an abstraction (λx.β)
are those of its matrix β – with the obvious exception of the λ-bound x.

That a variable is free in a formula α does not mean that it does also occur as
a bound variable in α not at the same time; the variable may, after all, occur
in several positions – as, e.g., the p in (λpt.[p∧qt])(p). A formula that does
not contain any free variables is called closed ; accordingly, open formulae are
those with free variables. The Coincidence Lemma immediately implies that
the denotations of closed formulae are always assignment-independent; for
if g and h are any assignments and α is a closed formula, then g and h
trivially agree on all free variables of α , given that Fr(α) is empty. In the
case of closed formulae α, the denotation can be simply written as ‘‖α‖’,
as we already did for constants (which are, of course, special cases of closed
formulae). But then we will rarely have the opportunity to make use of this
notational convention: as it will turn out, the type-logical translations of
natural language expression typically contain the free situation variable i.
However, as a rule, i will be the only variable that occurs freely in a type-
logical translation α, i.e. Fr(α) ⊆ {i}. The assignment thus only plays a rôle
for such α in assigning a denotation to the variable i; for according to the
Coincidence Lemma ‖α‖g = ‖α‖h whenever g(i) = h(i). So in specifying

17This is the principle according to which every number has a given property P as soon as
P holds of the number 0 and carries over from any number (n) to the next one (n+ 1).
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the denotation of such α, we need not consider the whole assignment but
only its value for i. In the future we will thus sometimes write ‘‖α‖s’ for
the denotation of a formula α, given an (arbitrary) assignment g for which:
g(i) = s ∈ LS. It should be noted that this new notation is reminiscent of
the extensions of natural-language expressions and that it only makes sense
for type-logical formulae α for which Fr(α) ⊆ {i}.

Variable binding creates assignment independence. This is one of two es-
sential features of this process. The second one is equally familiar from the
pre-theoretic treatment of variables, viz. that their precise identity is im-
material: it does not matter whether we are talking of an arbitrary x or
an arbitrary y – bound variables can be more or less randomly renamed
without affecting the content of the overall statement. This insight will be
recorded by way of a logical transformation which is based on a principle
that is as fundamental for the understanding of variable binding as the Co-
incidence Lemma. The principle concerns the substitution of free variables
by arbitrary formulae of the same type, and says that the result of such a
substitution does not affect the denotation of the overall formula (in which
the substitution took place) as long as the variable inserted has the same
value as the formula that it replaces. This may sound complicated, but it
isn’t really. Let us consider an example:

(55) T(i)(xe)(e)

In (55), T is the same constant of type s(e(et)) that features in the transla-
tion of trifft [≈ is meeting], and e is a constant of type e whose denotation
is Eike (at any assignment). So (55) is an open formula of type t – x and i
are free in it – and its denotation given an assignment g obviously depends
on which individual g assigns to the variable x and what the relevant situa-
tion g(i) is: if g(x) = Eike and g(i) = s∗, then ‖T(i)(x)(e)‖g is the truth
value 1 if Eike is meeting herself in s∗;18 if h(x) = Fritz and h(i) = s+, then
‖T(i)(x)(e)‖h is the value 1 if Eike meets Fritz in s+; etc. Now, if f is a
constant of type e denoting Fritz, it is clear that, given the assignment h at
hand, the formula (55) has the same denotation as:

(56) T(i)(f)(e)

(56) derives from (55) by substituting the (free) variable x by the constant
f. Since the two have the same denotation given the assignment h, viz.
Fritz, this denotational equivalence carries over to the entire formula. The
general principle behind this is called the Substitution Lemma. In order to
18This has to be understood in the (literal) reading of meet, which more or less coincides
with German treffen as well as German begegnen: it appears that the only way one
can meet oneself in this sense is by way of time traveling (– or is it?). On a different
reading, German treffen translates as hit and would thus allow for less absurd situations
s∗, but some rather macabre ones.
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formulate it, one needs a general concept of substitution of free variables:
if α is any formula, ‘α[x/δ]’ refers to the formula that ensues if all free
occurrences of the variable x are replaced by the formula δ (of the same type).
Given this notation, the transition from (55) to (56) can be described as:
T(i)(xe)(e)[x/f] = T(i)(f)(e). Substitution, too, can be defined stepwise,
i.e., inductively:

(57) Definition of substituting free x in a formula α by δ
formula α formation rule α[x/δ]

1. c (Con) c
2. x (Var) δ

y [y 6= x] (Var) y

3. β(γ) (App) β[x/δ](γ[x/δ])

4. (λx.β) (Abs) (λx.β)

(λy.β) [y 6= x] (Abs) (λy.β[x/δ])

Table (57) shows what happens if all free occurrences of a variable x in a
given type-logical formula α are replaced by a formula δ. To make sure
that the result α[x/δ] of this substitution is a type-logical formula at all, it
is assumed that x and δ are formulae of the same type; however, α may be
of a different type, as illustrated by (56), where free x of type e has been
replaced by the constant f (of the same type) within the entire formula (55)
of type t . If α is a constant (line 1), nothing happens when free x in α is
substituted – for neither x nor any other variable occurs in α; consequently,
α itself is the result of the substitution. If, however, α happens to be the
variable x (line 2a), the latter does occur in α once, and replacing this one
occurrence by δ results in δ. If, on the other hand, α is a different variable
(line 2b), distinct from x, we are in a similar situation as in the first case
(line 1) – and nothing happens. If one wants to replace the variable x in
an application β(γ) (line 3) by δ wherever it occurs freely, one has to do so
in both immediate parts of the formula – the functor β and the argument
term γ – and then combine the results of these substitutions by functional
application again. Abstractions (λy.β) in which the bound variable does
not happen to be x (line 4b), are treated in a similar way: the substitution
needs to be performed in the matrix β and then the variable (distinct from
x) gets abstracted again. If however, x itself is bound by λ (line 4a), nothing
happens; for the λ leaves no free occurrences of x to be substituted.

The reader should verify that according to the definition in Table (57), we do
have: T(i)(xe)(e)[x/f] = T(i)(f)(e). So if the variable to be substituted has
the same denotation as the constant replacing it (given an assignment), this
denotational equivalence ought to carry over to the entire formula (before
and after substitution). However, not always does the substitution of (free)
variables by co-designating formulae lead to an equivalent result; in other
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words, the following principle is not generally valid:

(58) If ‖x‖g = ‖δ‖g, then ‖α‖g = ‖α[x/δ]‖g.

Here is a simple counter-example. Chooseα to be the formula (λye.T(i)(y)(xe))
and consider an assignment g according to which g(x) = g(y) = Eike. Then
‖x‖g = ‖y‖g, and with (58) – putting δ = y – we would get:

(59) ‖(λye.T(i)(y)(xe))‖g = ‖(λye.T(i)(y)(xe))[x/y]‖g.

But (λy.T(i)(y)(x))[x/y] = (λy.T(i)(y)(y)) – which need not have the
same denotation as (λy.T(i)(y)(x)), despite the common assignment value
of x and y: applying ‖(λy.T(i)(y)(x))‖g to Fritz, the truth value 1 comes
out for situations g(i) in which Eike (= g(x)) is meeting Fritz; ‖(λy.T(i)(y)(y))‖g
only yields this truth value when applied to Fritz in the (remote) situations
g(i), in which Fritz meets himself.

The counter-example turns on the fact that the variable y gets into the
scope of a ‘λy’ and thus bound when inserted for x: since binding creates
assignment-independence, the fact that x and y co-designate given the as-
signment g, becomes irrelevant; the bound y has no independent denotation.
In particular, the denotational equivalence of the sub-expressions x and y
cannot carry over to the whole formula. As a consequence, the principle (58)
must be restricted so that formerly free variables z must not be ‘accidentally’
bound – i.e., get into the scope of a ‘λz’ – when they replace the variable
x. The risk of accidental binding not only arises where the formula δ to be
substituted is itself a variable but also if δ is a complex formula containing
a free variable that would get bound after substitution; a pertinent example
will be scrutinised in the exercise section. In order to formulate the principle
intended in (58) in a reasonably transparent way, a special term for the fact
that a variable gets accidentally bound, is advisable:

(60) Definition
Let α and δ be type-logical formulae and let x be a variable of the
same type as δ. Then x is free for [substitution of] δ in α if there
is no z ∈ Fr(δ) such that α contains a sub-formula of the form
‘(λz.β)’ such that x ∈ Fr(λz.β).

The above definition becomes clearer if one considers the circumstances in
which a variable x is not free for a formula δ within a formula α. According
to (60), this is precisely the case if δ contains a free variable z and there
is a part ‘(λz. β)’ in α in which x is free. If one then replaces (the free
occurrences of) x in α by δs, one would, in particular, have to replace x in
‘(λz. β)’. But then the newly inserted δ would end up in the scope of ‘λz’ –
and with it the free occurrences of z in δ – which would thus be accidentally
bound. This is precisely what happens if x is not free for δ in α; and this is
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precisely what needs to be excluded. We thus obtain the following restricted,
but correct version of (58):

(61) Substitution Lemma
Let α and δ be type-logical formulae and let x be a variable (of the
same type as δ) which is free for δ in α. Then for any assignment g
the following holds:

If ‖x‖g = ‖δ‖g, then ‖α‖g = ‖α[x/δ]‖g.

We skip the proof, which can again be given by proceeding inductively from
simple to ever more complex formulae. Before moving on, a possible source
of confusion regarding the range of the Substitution Lemma ought to be
eliminated. The Substitution Lemma concerns sameness of denotation, not
logical equivalence. As pointed out at the end of Section 5.3, the latter be-
haves fully compositionally: logically equivalent formulae may be substituted
for one another wherever they occur – and, in particular, no matter whether
they contain free variables that may get bound in the process. Moreover,
the result of such a substitution will be logically equivalent to the original
formula and a fortiori share its denotation at any given assignment. The
side condition blocking accidental binding only concerns substitution of de-
notationally equivalent formulae, i.e., formulae that happen to have the same
denotation at some given assignment. Here is a case in point. The formu-
lae (62a) and (62b) are logically equivalent, given the above law (51) of the
commutativity of conjunction. As a consequence, (62a) can be replaced by
(62b) in (63a), with a logically equivalent result (63b), even though the free
x in (62b) gets bound during this substitution:

(62) a. [P et(xe) ∧Qet(x)]
b. [Qet(xe) ∧ P et(x)]

(63) a. (λxe. [P et(x) ∧Qet(x)])
b. (λxe. [Qet(x) ∧ P et(x)])

The fact that logically equivalent formulae can be freely substituted in any
environment will be of great help in the reduction of type-logical translations
of German expressions to be explored from Section 5.5 onward.

Let us now take a look at a consequence jointly implied by the Substitu-
tion Lemma and the Coincidence Lemma, viz. the arbitrariness of variable
names, already mentioned above. Basically, this arbitrariness amounts to
the possibility of rewriting any binding of the form (λx. . . . ) as (λy. . . . ),
provided that all lambda-bound x in ‘. . . ’ are replaced by y. However, this
y must not already be free in ‘. . . ’; otherwise the (λy. . . . ) would bind these
free occurrences. (The formula (λx. x = y) may serve as an illustration –
but only in an exercise.) Moreover, accidental binding by substitutions must
again be prevented; x thus needs to be free for y.
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(64) Principle of bound renaming
Let α be a type-logical formula and let x be a variable. Then if y
is a variable (of the same type as x) that is not free in α and for
which x is free in α, the following holds:

(λx. α) ≡ (λy. α[x/y]).

To see that (64) is correct on the basis of the interpretation of lambda-
abstraction given in Section 5.3, one may consider any assignment and show
that the denotations of the two formulae in (64) have the same denotation (in
the circumstances defined there). Since lambda-abstraction always results
in formulae of types ab, these denotations are always functions from objects
of the type a of the variables x and y to objects of the type b of α. And
such functions are identical if they yield the same value whenever applied
to any object u of type a. So it must be showen that ‖(λx. α)‖g(u) =
‖(λy. α[x/y])‖g(u). And this is indeed the case:

(65) ‖(λx.α)‖g(u) by the interpretation (47) of abstraction
= ‖α‖g[x/u] by the Coincidence Lemma: y /∈ Fr(α)
= ‖α‖g[x/u][y/u] by the Substitution Lemma: x is free for y in α, and

‖x‖g[x/u][y/u] = u = ‖y‖g[x/u][y/u]

= ‖α[x/y]‖g[x/u][y/u] by the Coincidence Lemma: x /∈ Fr(α[x/y])
= ‖α[x/y]‖g[y/u] by the interpretation (47) of abstraction
= ‖(λy.α[x/y])‖g(u)

The logical equivalence given in (64) is a transformation that will be fre-
quently applied in indirect interpretation. It will turn out to be crucial that
there are always enough variables y that meet the conditions imposed in
(64) – x is free for them and they do not occur in the scope of ‘λx’; indeed,
there are infinitely many variables of any type.

Clearly the most important logical transformation is lambda-conversion,
which we have already encountered in the meta-language. As a type-logical
equivalence it can be given a much more precise formulation though:

(66) Principle of λ-conversion
Let α and β be type-logical formulae and let x be a variable (of the
same type as β) that is free for β in α. Then the following holds:

(λx.α)(β) ≡ α[x/β].

Of course, λ-conversion needs to shun accidental binding too. As a case
in point, (λx.(∃y)T(i)(x)(y))(y) is not equivalent to (∃y)T(i)(y)(y),
as one can easily verify (again in an exercise). The side condition on the
variable excludes such cases.

(66) is basically a consequence of the Coincidence and Substitution Lemmas;
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but the Principe (64) of bound renaming also plays a part. Let us take
a closer look at the proof of the equivalence claimed in (66) (under the
circumstances mentioned there)! First of all, in view of the interpretation of
(35) of application, the following holds for all assignments g:

(67) ‖(λx.α)(β)‖g = ‖(λx.α)‖g(‖β‖g)

In order to determine the value to the right of the equality sign, a bound
renaming is helpful. We thus pick a variable z of the type common to x
and β, that does not occur in either α or β – neither freely nor as a bound
variable nor in a lambda-prefix. There must be such z; after all, there are
infinitely many variables of any type. Since z does not occur in α, it cannot
be accidentally bound when it is substituted for x, which means that x is
free for z in α; moreover, since z does not occur in α, the conditions for a
bound renaming in (64) obtain, and so the equation (67) can be continued
as follows:

(68) ‖(λx.α)(β)‖g = ‖(λx.α)‖g(‖β‖g) = ‖(λz.α[x/z])‖g(‖β‖g)
= ‖α[x/z]‖g[z/‖β‖g ]

The last transition is a simple application of the interpretation (47) of ab-
straction. In order to apply the Substitution Lemma now, we need to
make sure that (i) z is free for β in α[x/z] and (ii) z and β have the
same denotation given the assignment g[z/‖β‖g]. (i) holds because z oc-
cupies precisely those positions in α[x/z] at which x stood in α; and no
variables from β gets accidentally bound in these positions – for the gen-
eral assumptions in (66) say that x is free für β in α. But (ii) also holds:
‖z‖g[z/‖β‖g ] = g[z/‖β‖g](z) = ‖β‖g = ‖β‖g[z/‖β‖g ] – due to the Coincidence
Lemma and because z /∈ Fr(β). We may thus apply the Substitution Lemma,
turning (68) into:

(69) ‖(λx.α)(β)‖g = · · · = ‖α[x/z]‖g[z/‖β‖g ] = ‖α[x/z][z/β]‖g[z/‖β‖g ]

But then α[x/z][z/β] = α[x/β]: the provisionally inserted z stand where we
originally had an x – and, by assumption, no other z occur in α.19 (69) thus
reduces to:

(70) ‖(λx.α)(β)‖g = · · · = ‖α[x/β]‖g[z/‖β‖g ]

Given that z did not occur in α or β, it cannot occur in α[x/β] either;
and since g and g[z/‖β‖g] only differ in the value for this z, α[x/β] has the
same denotation at these two assignments, due to the Coincidence Lemma.

19More generally, and more precisely speaking, for any formualae β and variables x and z
of the same type the following holds: if x is free for z in any formula α und z /∈ Fr(α),
then: α[x/z][z/β] = α[x/β]. Again a stepwise (inductive) proof can be given for this
claim.
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(70) thus boils down to the required equivalence from the principle (66) of
λ-conversion:

(71) ‖(λx.α)(β)‖g = · · · = ‖α[x/β]‖g[z/‖β‖g ] = ‖α[x/β]‖g

In practice, λ-conversion is chiefly applied going from left to right, i.e., to
reduce a formula of the form (λx.α)(β). The reduced formula is usually
shorter and, more to the point, easier to read. Since the relevant constellation
frequently arises in indirect interpretation when the side condition does not
obtain, it is important to realise that the latter can always be circumvented
by applications of the principle (64) of bound renaming. For should the
argument β contain a variable y that would be accidentally bound when
replacing x in α, bound y in α may just be renamed – to wit, by a variable
that does not occur in α or β and thus bears no risk. Since there are infinitely
many such variables, such renamings are always possible – if need be more
than once. The next section will already offer several examples to study the
alternation of bound renaming and λ-conversion.

The proof of the law of λ-conversion (66) might appear rather complicated;
however, its purpose is to make sure that this equivalence is not an arbi-
trary formal stipulation but a transformation that is fully justified by the
interpretation of type-logical formulae given in the previous section. Despite
appearances to the contrary, the formulae do not owe their meanings to the
reduction process, but to their compositional interpretation. Reductions pre-
serve the meanings of formulae; however, they usually make them easier to
grasp.

One special case of λ-conversion is particularly frequent and important, viz.
when the argument β in the constellation (λx.α)(β) happens to be the
variable bound in the prefix: (λx.α)(x). It may not be entirely obvious that
the side condition on the variable is satisfied in this case; for the argument β
is the variable x, which means that Fr(β) 6= ∅. In order to apply λ-conversion
one thus first needs to check whether a variable free in β gets accidentally
bound when inserted into α. Since Fr(β) = {x}, it suffices to check this for
x – hence whether the variable x bound by the λ is free for x itself in α.
But then the substitution process captures only the free occurrences of x in
α and if these free x are again replaced by x, obviously nothing happens –
α[x/x] = α; in particular, the x remain free, which excludes any accidental
binding. So the conversion may be carried out, and since α[x/x] = α it boils
down to dropping both the prefix ‘λx.’ and the argument ‘(x)’. We reserve
a special principle for this particular case of λ-conversion:

(72) Principle of eigen-conversion
Let α be a type-logical formula and let x be a variable. Then the
following holds:
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(λx.α)(x) ≡ α.

Apart from the fundamental equivalences introduced so far, there are a few
further logical transformations, which – though not as frequently called upon
– may occasionally be of service and are certainly essential for a full under-
standing of the formalism. Some of them are listed below; further ones will
be mentioned when we make use of them. They are all quite easy to establish:

(73) For all variables x and y of the same type, all formulae ϕ, ψ and χ
of type t , and all formulae α of any type, the following holds:
a. ¬¬ϕ ≡ ϕ Law of Double Negation
b. [ϕ∧ [ψ ∧ χ]] ≡ [[ϕ∧ψ] ∧ χ] associativity of conjunction
c. (∃x)(∃y)ϕ ≡ (∃y)(∃x)ϕ
d. (∃x)[ϕ∧ (∃y)ψ] ≡ (∃x)(∃y)[ϕ∧ψ] – if y /∈ Fr(ϕ)
e. (λx.α(x)) ≡ α – if x /∈ Fr(α) [η-conversion]

5.5 Indirect interpretation

We are now in a position to reconstruct the interpretation of natural language
constructions developed in the previous chapters within the framework of in-
direct interpretation. We will proceed by defining, for each natural language
expression A, a type-logical translation |A| whose denotation is precisely
the extension of A according to the previously given direct interpretation.
Given our preparatory remarks, this is not particularly difficult. We proceed
compositionally and thus need to first give type-logical counterparts for the
lexical expressions. In most cases these will take the form c(i), which we
will, from now on, abbreviate as ci:

(74) |Eike| = e; |Fritz| = f; |Hans| = h; . . . [all of them constants of type e]
|arbeitet| = Ai; |Mann| = Mi; |Frau| = Fi; |Porsche| = Pi; . . .

[where A, M, F, P, . . . are constants of type s(et)]
|trifft| = Ti; |besitzt| = Bi; |sieht| = Si; |knutscht| = Ki; . . .

[where T, B, S, K, . . . are constants of type s(e(et))]

Further lexical translations will be introduced when need be; we will then
take it for granted that the constants are interpreted like the corresponding
lexical expressions in direct interpretation: the (assignment-independent)
denotation of f is the individual Fritz; the denotation of A assigns to any
situation s ∈ LS the characteristic function of individuals that work in s;
etc.

The translations of the (clausal) coordinating conjunctions und and oder
draw on the above logical constant ∧, which translates the former and is
part of the more complex translation of the latter:
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(75) a. |und| = ∧
b. |oder| = (λqt.(λpt.¬[¬p∧¬q]))

Successive application the denotation of (75b) to two truth values u and v
yields the value 1 if it is not the case that u = v = 0 – i.e. just in case at least
one of the two values is 1. We could, of course, also instead have introduced
a logical constant ∨ translating oder and interpret it by the truth table in
(8) in Section 5.1. Yet on the one hand, the fact that disjunction can be
reduced to conjunction (and negation) is of intrinsic interest.20 On the other
hand, we may as well read the notation [ϕ∨ψ] as short for the combination
¬[¬ϕ∧¬ψ] of formulae used in (75b) – which is what we will do from now
on.

Most determiners will be translated by complex formulae as well. We have
already come across two examples, viz. the translations of ein- and kein-
in (25) und (26). The other ones are rather straightforward, given the direct
interpretation in Section 3.2:

(76) a. |kein-| = (λQet.(λP et.¬(∃xe)[Q(x) ∧ P (x)]))
b. |ein-indef| = (λQet.(λP et.(∃xe)[Q(x) ∧ P (x)]))
c. |ein-Num| = (λQet.(λP et.(∃xe)[Q(x)∧P (x)∧¬(∃ye)[¬(x =

y)∧ Q(y) ∧ P (y)]]))
d. |jed-| = (λQet.(λP et.¬(∃xe)[Q(x) ∧¬P (x)]))
e. |die meisten| = MOST [constant of type (et)((et)t)]
f. |d-Russell| = (λQet.(λP et.(∃xe)[Q(x) ∧¬(∃ye)[¬(x = y) ∧

Q(y)]∧ P (x)]))

The translation (76c) of ein- as a numeral looks rather complicated but only
has the effect that after combining it with noun and predicate, the truth
value 1 ensues if the intersection of their extensions (taken as sets) contain
precisely one individual x – so that there is precisely one x that is both in the
noun extension and in the predicate extension without there being a further
individual y – distinct from x, that is – in this intersection. Moreover, it is
not hard to see that the denotations of the translations (76d) and (76f) also
coincide with the corresponding interpretations given in Chapter 3. Finally,
as to (76e), we merely translated the determinator die meisten by a non-
logical constant which we take to be interpreted accordingly.

Let us move on to complex expressions. Following the Principle of Compo-
sitionality, we will, for each grammatical construction discussed in the pre-
ceding chapters, specify how the type-logical translation of the constructed
expression is obtained from the translations of its parts. We start with the

20The reduction, which also works in the opposite direction, is called de Morgan’s Law,
in honour of the English logician Augustus de Morgan (1806–1871), although it had
already been known in classical antiquity.
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coordination of clauses analysed in Chapter 1; in indirect interpretation it
comes out as follows:

(77) Indirect interpretation of clausal coordination
If S and S′ are (declarative) sentences and K is a coordinating con-
junction, the following holds:
|S K S′| = |K|(|S′|)(|S|).

It is worth stopping to note how the equation in (77) is to be understood.
According to it, the translation of two sentences S und S′ coordinated by
und or oder (and more generally, by a conjunction K) – i.e. the translation
|S K S′| of ‘S K S′’ – arises from the type-logical translation of the con-
junction itself (i.e., some formula |K|), followed by the translations of the
coordinated clauses (i.e., certain formulae |S′| and |S|, each between (bold-
face) parentheses. Since |S| and |S′| are themselves formulae of type t and
conjunctions K translate as formulae of type t(tt), the end result of (77) is
a formula of type t . Before applying the rule to a specific example, we need
to translate the constructions from Chapter 2:

(78) Indirect interpretation of predication
If S is a sentence whose subject is a proper name N and whose
predicate is P , the following holds:
|S| = |P |(|N |).

(79) Indirect interpretation of names as direct objects
If P is a predicate consisting of a verb V and a proper name N as
its object, the following holds:
|P | = |V |(|N |).

Let us test these rules on an example:

(80) Eike arbeitet und Fritz trifft Hans.
[≈ Eike is working and Fritz is meeting Hans.]

The translation follows the obvious constituent structure of the sentence:

(81) |Eike arbeitet und Fritz trifft Hans| by (77)
= |und|(|Fritz trifft Hans|)(|Eike arbeitet|) by (78) [2×]
= |und|(|trifft Hans|(|Fritz|))(|arbeitet|(|Eike|)) by (79)
= |und|(|trifft|(|Hans|)(|Fritz|))(|arbeitet|(|Eike|))

by (74) and (75a)
= ∧(Ti(h)(f))(Ai(e))

The resulting formula can be rewritten using the notation used for conjunc-
tion as [Ai(e) ∧ Ti(h)(f)]; using a similar convention, the right conjunct
can be brought into (German and English) surface order, thus obtaining:
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(82) [Ai(e) ∧Ti(f,h)]

It should be noted that the reformulation (82) of the translation (81) de-
termined in (80) is merely a notational variant. The type-logical formula is
exactly the same; it is merely represented differently. Thus the transition
is not a logical reduction based on any transformation laws. Indeed, logical
transformations can only make this formula less readable. The case of the
following variation is different:

(83) Eike arbeitet oder Fritz trifft Hans.

The translation obviously proceeds as in (81) – with the exception of the
final line, where the complex translation (75b) of oder takes the place of
the logical constant ∧:

(84) |Eike arbeitet oder Fritz trifft Hans| by (77)
= |oder|(|Fritz trifft Hans|)(|Eike arbeitet|) by (78) [2×]
= |oder|(|trifft Hans|(|Fritz|))(|arbeitet|(|Eike|)) by (79)
= |oder|(|trifft|(|Hans|)(|Fritz|))(|arbeitet|(|Eike|))

by (74) and (75b)
= (λq.(λp.[p∨ q]))(Ti(h)(f))(Ai(e))

Again we can apply the convention just introduced to repackage the trans-
lation of the second clause – but to no avail:

(85) (λq.(λp.[p∨ q]))(Ti(f,h))(Ai(e))

But of course, this formula can be further reduced, even though the formula
as a whole does not have the form required by (66): it is an application
γ(δ), where γ is not a λ-term, but again an application. However this
part γ constitutes a constellation relevant for λ-conversion: it is of the form
‘(λx.α)(β)’ – where α is the part starting with ‘(λq. . . . ’ and ending before
‘(Ti(f,h))’, x is q, and β is the argument Ti(f,h). Since this β contains
no free variables (apart from i), q is free for β in α, and the conversion can
proceed:

(86) |Eike arbeitet oder Fritz trifft Hans|
= . . . using (84)
= (λq.(λp.[p∨ q]))(Ti(h)(f))(Ai(e))
= (λq.(λp.[p∨ q]))(Ti(f,h))(Ai(e)) = (85)
≡ (λp.[p∨Ti(f,h)])(Ai(e))

– which is itself again a relevant constellation for a further conversion:

(87) |Eike arbeitet oder Fritz trifft Hans|
. . .

≡ [Ai(e) ∨Ti(f,h)]
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It should be noted that the last two transitions in (86) and (87) are no
equations (=); the application of λ-conversion (and logical transformations
in general) leads to new, equivalent formulae (≡).

(87) is a (logically) reduced translation of (83), i.e. a formula that is logically
equivalent to the real translation in (84). For two reasons, the reduction of
(85) to (87) is relatively simple. For one thing, (a) at each step there was
only one possibility of applying the law of λ-conversion; both the translation
(85) itself and the first reduction (86) only contain one relevant constella-
tion. For another thing, (b) the side condition on variables obtained in both
cases, since the argument to be inserted contained no free variables, apart
from i, which never gets bound anyway (so far). However, (a) and (b) are
rather the exception than the rule, as we will see once the remaining con-
structions have been translated and made to interact. These constructions
introduce quantifying nominals in subject and object position. In the case of
subject quantification, functor and argument merely get reversed, vis-à-vis
the translation (78) of predication:

(88) Indirect interpretation of quantification
If S is a sentence whose subject position is occupied by a quan-
tificational noun phrase Q and whose predicate is P , the following
holds:
|S| = |Q|(|P |).

In the case of quantifying objects, too, the interpretation given in Section
3.4 immediately carries over to type-logical formulae:

(89) Indirect interpretation of quantificational noun phrases in object po-
sition
If P is a predicate consisting of a verb V and a quantificational noun
phrase Q as its object, the following holds:21

|P | = λxe.|Q|((λye.|V |(y)(x))).

We will apply (88) and (89) to an example in due course, thus exploring the
interaction of bound renaming and λ-conversion. However, before that, we
need to specify the translation of non-lexical noun phrases:

(90) Indirect interpretation of quantificational noun phrases
If QN is a quantificational noun phrase consisting of a determiner
D and a noun N , the following holds:
|QN | = |D|(|N |).

21The double parentheses around the part starting with ‘λx.’ are due to the syntax of
type logic: according to (Abs), the lambda term starts and ends with a bracket; and,
being an argument of ‘Q’, it has to be surrounded by brackets again – by (App). We
will, however, usually omit these double brackets in the future.
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With (90), we have now covered the interpretation given in Chapters 1–3
within the methodology of indirect interpretation. Let us now look at a
somewhat more complex example:

(91) Jeder Mann trifft eine Frau.

This is what the relevant translation rules produce:

(92) |Jeder Mann trifft eine Frau| by (88)
= |Jeder Mann|(|trifft eine Frau|) by (90)
= |Jeder|(|Mann|)(|trifft eine Frau|) by (89)
= |Jeder|(|Mann|)(λxe.|eine Frau|(λye.|trifft|(x, y))) by (90)
= |Jeder|(|Mann|)(λx.|eine|(|Frau|)(λy.|trifft|(x, y)))

by (74) [3×]
= |Jeder|(Mi)(λx.|eine|(Fi)(λy.Ti(x, y))) by (76d)
= (λQet.(λP et.¬(∃x)[Q(x) ∧¬P (x)]))(Mi)

(λx.|eine|(Fi)(λy.Ti(x, y))) by (76b)
= (λQ.(λP.¬(∃x)[Q(x) ∧¬P (x)]))(Mi)

(λx.(λQ.(λP.(∃x)[Q(x) ∧ P (x)]))(Fi)(λy.Ti(x, y)))

The type-logical translation (91) determined in (92) offers a first chance to
profit from the compositionality of logical equivalence: though it is not itself
a pertinent constellation of the form ‘(λx.α)(β)’, it does contain two such
sub-formulae to which λ-conversion may be applied (subject to the variable
condition). For one thing, the whole formula has the form ‘(λQ.α)(β)(γ)’
– where conversion can be applied to the underlined part, since β is the
formula M(i), in which i is the only free variable, but does not get bound
anywhere in the α-part. For another thing, the argument γ is itself of
the form ‘(λx.(λQ.α′)(β′)(γ′))’, where the conversion rule may target the
doubly underlined part – and is again applicable, given that β′ is the formula
Fi and i is not bound in α′. Reducing the singly underlined formula leads to
(93a); if, on the other hand, conversion is performed on the doubly underlined
part, (93b) results:

(93) a. (λP.¬(∃x)[Mi(x) ∧¬P (x)])
(λx.(λQ.(λP.(∃x)[Q(x) ∧ P (x)]))(Fi)(λy.Ti(x, y)))

b. (λQ.(λP.¬(∃x)[Q(x) ∧¬P (x)]))(Mi)
(λx.(λP.(∃x)[Fi(x) ∧ P (x)])(λy.Ti(x, y)))

(93a) has the form ‘(λP.α)(β)’, where the argument (as is readily seen)
contains no free variable other than i, which is not bound anywhere (as
always). So (93a) λ-reduces to:

(94) ¬(∃x)[Mi(x)∧
¬(λx.(λQ.(λP.(∃x)[Q(x)∧P (x)]))(Fi)(λy.Ti(x, y)))(x)]
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The argument of the second (innermost) negation in (94) can be eigen-
reduced to obtain (95a); in a second step one may get rid of the ‘λQ’
and insert the argument ‘Fi’, thus obtaining (96). Alternatively, starting
from (94), one could have gotten rid of the ‘λQ’ first and then performed
an eigen-conversion on the resulting (95b) – with the very same result, viz.
(96).

(95) a. ¬(∃x)[Mi(x)∧¬(λQ.(λP.(∃x)[Q(x)∧P (x)]))(Fi)(λy.Ti(x, y))]
b. ¬(∃x)[Mi(x)∧¬(λx.(λP.(∃x)[Fi(x)∧P (x)])(λy.Ti(x, y)))(x)]

(96) ¬(∃x)[Mi(x) ∧¬(λP.(∃x)[Fi(x) ∧ P (x)])(λy.Ti(x, y))]

Trying to further reduce (96) by trading the λP -prefix for the argument
‘λy.Ti(x, y)’, leads to a conflict with the variable condition on λ-conversion:
x is free in λy.Ti(x, y), but then λP lies in the scope of ‘∃x’ in the matrix –
or, more precisely, of the λ implicit in the notation ‘∃x’. So a renaming (97a)
of the bound matrix variable (from x to brand-new z)22 needs to precede
the conversion performed in (97b):

(97) a. ¬(∃x)[Mi(x) ∧¬(λP.(∃z)[Fi(z) ∧ P (z)])(λy.Ti(x, y))]
b. ¬(∃x)[Mi(x) ∧¬(∃z)[Fi(z) ∧ (λy.Ti(x, y))(z)]]

Before going on, let us stop to emphasise that the variable condition was
violated in the constellation (λP.(∃x). . . )(λy.Ti(x, y)) in(96) because x
is free in the argument – notwithstanding the fact that x is bound by the
outermost existential quantifier. In this case the side condition sees to it
that an intervening binder – the innermost existential quantifier – destroys
the binding relation between the x in the argument and its proper binder
– the outermost existential quantifier. The latter binding relation turns on
the fact that x is ‘locally’ free, i.e. free in the argument – which is precisely
the criterion that is relevant for the side condition on λ-conversion.

A final conversion now reduces (97b) to (98), which is not further reducible;
this time the variable condition is obviously met, since the only variable
occurring in the argument of the λ-term is z, which we have chosen so as to
not appear anywhere in the whole formula, let alone in a binding prefix:

(98) ¬(∃x)[Mi(x) ∧¬(∃z)[Fi(z) ∧Ti(x, z)]]

It is no accident that all reductions of the translation (92) of (91) considered
so far come down to the same ‘irreducible’ formula (98). Rather, it is a con-
sequence of a general property of type logic, known as strong normalization.

22The attentive reader will realise that we could have renamed x into y without getting
into conflict with the side condition on λ-conversion; in fact, this choice would have
turned the next reduction step into an arguably simpler eigen-reduction. However, we
decided to blindly stick to the more general safe strategy of always picking a ‘fresh’
variable.
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According to it, (i) any type-logical formula can be reduced by a sequence
of λ-conversions and bound renamings to a so-called normal form; and, (ii)
any two normal forms of a given formula are alphabetic variants of one an-
other. Here a normal form is one that does not contain any sub-formula of
the form ‘(λx.α)(β)’, to which λ-conversion may be applied (if need be af-
ter renaming); and alphabetic variants are formula that may be transformed
into one another by a sequence of bound renamings. The proof of strong
normalization is rather complex and would lead astray.23 The result as such
is of interest to indirect interpretation in that the exact procedure in reduc-
ing type-logical formulae is immaterial: as long as one does not miss any
potentially relevant constellations of the form ‘(λx.α)(β)’ and is prepared
to rename bound variables whenever necessary, all paths lead to Rome – that
is to say: the normal form.

Given strong normalization, we may rest assured that the decision to
reduce (92) by starting with (93a) rather than (93b) does not bear on the end
result (98). Indeed, (93b) contains two pertinent constellations – respectively
starting with the λQ in the first line and the λP in the second line – which
can be reduced in any order, similarly to the alternative paths leading from
(94) to (96). In either case the result will be:

(99) (λP.¬(∃x)[Mi(x)∧¬P (x)])(λx.(∃z)[Fi(z)∧(λy.Ti(z, y))(x)])

Note that the elimination of the λP involved renaming the bound x to z
– just as in the parallel reduction (97). (99) again offers two options for
λ-reduction: getting rid of the λP in the main functor or eliminating the
λy in the main argument. And again, the two reductions can be carried out
in either order and lead to the same result:

(100) ¬(∃x)[Mi(x) ∧¬(λx.(∃z)[Fi(z) ∧Ti(z, x)])(x)]

As the reader may check, in both conversions leading to (100), the side
condition on the variables were fulfilled, saving us from any bound renaming.
And, clearly, (100) now eigen-reduces to the above normal form (98) – just
as the strong normalisation theorem would have it.

One detail concerning the renaming of bound variables is worth pointing
out, before finally moving on to the indirect interpretation of intensional
constructions. Let us therefore take a closer look at the above reduction
from (97a) to (97b):

(101) ¬(∃x)[Mi(x)∧¬(λP.(∃x)[Fi(x) ∧ P (x)]) (λy.Ti(x, y))][=(96)]
≡ ¬(∃x)[Mi(x)∧¬(λP.(∃z)[Fi(z) ∧ P (z)]) (λy.Ti(x, y))][=(97a)]

23It can be found in pertinent textbooks like Introduction to combinators and lambda-
calculus (1986) by J. Roger Hindley and Jonathan Paul Seldin. The uniqueness (ii) of
normal forms (up to alphabetic variation) is a version of the Church-Rosser Theorem
mentioned in fn. 19 of Section 3.4 above.
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≡ ¬(∃x)[Mi(x) ∧¬(∃z)[Fi(z) ∧Ti(x, z)]] [=(97b)]

To prepare the λ-conversion at the position indicated by underlining, we
performed a bound renaming in the functor. As it turns out, we could just
as well have proceeded like this:

(102) ¬(∃x)[Mi(x)∧¬(λP.(∃x)[Fi(x)∧P (x)]) (λy.Ti(x, y))][=(96)]
≡ ¬(∃z)[Mi(z) ∧¬(λP.(∃x)[Fi(x) ∧ P (x)]) (λy.Ti(z, y))]
≡ ¬(∃z)[Mi(z) ∧¬(∃x)[Fi(x) ∧Ti(z, x)]]

In (102), too, the first transition involves renaming a bound variable: the
binding of the variable x, marked in the first line, has been replaced by a
z-binding; since z does not occur anywhere in the original formula (96), the
conditions for applying the principle (64) of bound renaming are certainly
met. And with this transition the conditions for applying λ-conversion are
again met; for the free variable x in the argument (= the β-part, as it were)
has disappeared by renaming, and the variable z taking its place has been
chosen so as to not occur in the functor (= the α-part). In this respect, (101)
and (102) are fully parallel; and the results are merely alphabetic variants
of each other. However, there is a crucial difference between the two ways
of proceeding, viz., that in (101) renaming applied in the α-part, whereas
in (102) it was performed in the β-part. Both strategies are fully legitimate
in this case. Nevertheless it should be noted that the second strategy, fol-
lowed in (102), only works if the variable in question – in this case: x – does
get bound in the overall formula – in this case: by the existential quantifier
‘(∃x)’. If, however, the variable remains free throughout the whole for-
mula, the corresponding renaming must not be performed – for only bound
variables are to be renamed.24 On the other hand, the strategy of bound
renaming in the α-part, as in (101), can always be applied, for a simple
reason: a violation of the variable condition of λ-conversion is always the
result of a conflict between a free variable in the β-part and a binding in the
α-part – which gets resolved by renaming the selfsame binding. To see how
the strategy of renaming the trouble-making variable in the β-part can go
wrong, one may consider the sub-formula (103a) on which the above reduc-
tion (101) had been performed: renaming x in the β-part before converting,
as in (103b), would have led to the open formula (103c), which is clearly not
equivalent to the starting point (103a) – since, unlike the latter, it depends
on the value assigned to z:

(103) a. (λP.(∃x)[Fi(x) ∧ P (x)])(λy.Ti(x, y))
b. (λP.(∃x)[Fi(x) ∧ P (x)])(λy.Ti(z, y))
c. (λP.(∃x)[Fi(x) ∧ (λy.Ti(z, y))(x)])
≡ (λP.(∃x)[Fi(x) ∧Ti(z, x))])

24This is not an arbitrary restriction but a result of the interpretation of type logic given
in Section 5.3: in general, substitution of free variables does not preserve denotation.
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To minimize the risk of breaking the denotational equivalence chain, it is
thus strongly advised that in preparation of a λ-conversion, renamings of
bound variables should always be restricted to the α-part.

5.6 Simplifying notation

The constellation ¬(∃x)[ϕ∧¬ψ] that we came across in the translation of
(91) is so frequent that it deserves a notation of its own. On the whole, the
formula expresses that no individual satisfies ϕ without satisfying ψ too – in
other words, that everything that satisfies ϕ, also satisfies ψ.25 In predicate
logic this state of affairs is usually expressed by a combination of two logical
constants. For one thing, the universal quantifier defined as an abbreviation
in (104), expresses that a formula is satisfied by every individual. Like the
existential quantifier, the universal quantifier may be construed as a formula
of type (et)t :

(104) a. ∀ is (an abbreviation for) the formula:
(λP et.¬(∃xe)¬P (x))

of type (et)t .
b. If ϕ is a formula of type t and x is a variable of type e , then

(∀x)ϕ is (an abbreviation for) the formula:
∀((λx.ϕ)).

As can be easily checked (in an exercise), (104) implies, for any assignment
g:

(105) ‖(∀x)ϕ‖g = 1 iff for any individual u the following holds:
‖ϕ‖g[x/u] = 1.

In predicate logic it is customary to read ‘(∀x) . . . ’ as ‘for all x the following
holds: . . . ’ or ‘for every x the following holds: . . . ’, which seems justified by
(105). As in the case of disjunction, we could have introuded ∀ as a logical
constant (of type (et)t) instead of an abbreviation; (105) would then have
been a direct consequence of the interpretation of this constant. In any case,
the universal quantifier can now be used to rewrite the constellation under
scrutiny as follows:

(106) ¬(∃x)[ϕ∧¬ψ]
≡ ¬(∃x)¬¬[ϕ∧¬ψ]
≡ (∀x)¬[ϕ∧¬ψ]

25We borrow the term satisfaction from predicate logic, where it is given a precise def-
inition along the following lines: an individual u satisfies a formula ϕ at position x
relatively to an assignment g iff ϕ is true if x denotes u – i.e., if ϕ denotes 1 given the
modified assignment g[x/u].
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The first transition in (106) is based on the Law of Double Negation (73a)
from propositional logic.

There is a also a common abbreviation for the remaining constellation in
(106):

(107) If ϕ and ψ are formulae of type t , then
[ϕ→ ψ]

is (an abbreviation for) the formula:
¬[ϕ∧¬ψ].

(107) immediately entails:

(108) [ϕ→ ψ]
= ¬[ϕ∧¬ψ]
≡ [¬ϕ∨ψ]

Apart from the Law of Double Negation, (108) only makes use of the nota-
tional introduction (75b) of disjunction ∨. And again, we could, of course,
have introduced → as a separate logical constant (of type t(tt)).

According to (108), a formula [ϕ → ψ] expresses that either ϕ is true or
else – i.e. otherwise – ψ is false. Up to a point, this observation justifies the
paraphrase ‘if ϕ, then ψ’, which is common in propositional and predicate
logic. The arrow → and the truth table that goes with it also run by the
name ofmaterial implication. However, as a semantic account of conditionals
– as inWenn . . . , [dann] . . . [≈ If . . . , [then] . . . ] – an interpretation along
the lines of the constellation defined in (107) turns out to be insufficient, as
we will come to see in Chapter 10.

Given (104) and (107), formulae of the form ¬(∃x)[ϕ ∧ ¬ψ] can be ab-
breviated as (∀x)[ϕ → ψ]. As the above translation of (91) shows, such
formulae correspond to sentences of the form [[Jed- N ] VP]. It is worth
noticing that the symbol ∀ from predicate logic does not correspond to the
determiner jed- [≈ every]. For as we have seen in Chapter 3, the latter (or
rather, its extension) establishes a relation between two sets (or rather their
characteristic functions) – the relation of subset-hood. However, the uni-
versal quantifier, makes a statement about a single set – namely that every
individual is an element of it. The difference between universal quantifier
and determiner is thus reflected in their types: while the extension of jed- is
of type (et)((et)t), the universal quantifier is a formula of type (et)t . The
extension of jed- is thus binary in that it takes two predicate extensions to
obtain a truth value; the universal quantifier, on the other hand, is unary, in
that it yields a truth value when given one predicate extension as its argu-
ment. Still, the above considerations show that the subset relation expressed
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by the determiner can be expressed by the unary universal quantifier if the
two predicate extensions to be related are combined with the help of material
implication:

(109) JJed- N VPKs

= ‖|Jed- N VP|‖s
= ‖(∀xe)[|N |(x) → |VP|(x)]‖s
= ‖∀‖(‖(λx.[|N |(x) → |VP|(x)])‖s)
= ‖∀‖(‖(λx.[¬|N |(x) ∨ |VP|(x)])‖s)
= ‖∀‖(λx. ` JNKs(x) = 0 or JVPKs(x) = 1 a)
= [λP.λQ.‖∀‖(λx. ` P (x) = 0 or Q(x) = 1 a)](JNKs)(JVPKs)

The first step of the transition makes use of the notational convention intro-
duced in Section 5.4 to the effect that ‘‖α‖s’ is short for ‘‖α‖g’ whenever
Fr(α) = {i} and g(i) = s. The other steps will be reconstructed in an
exercise. The final reformulation in (109) shows that the (subset-hood) re-
lation the determiner jed- establishes between two sets can be construed as
a property of the (underlined) combination of them, viz. the union of the
second set with the complement of the first one (again identifying sets with
their characteristic functions.

The reducibility of a binary determiner extension to a unary operation can
also be observed in the case of other determiners. We thus have, in analogy
to (109):

(110) JEin-indef N VPKs

. . . . . .
= [λP.λQ.‖∃‖(λx. ` P (x) = 1 and Q(x) = 1 a)](JNKs)(JVPKs)

The binary relation (of overlap) expressed by the indefinite article thus turns
out to be reducible to a combination of the two predicate extensions; however,
this combination is different from the one used in the reduction (109) of
Jjed-Ks – viz. intersection. Yet not always can a corresponding reduction
be given. As a case in point, the extension of die meisten cannot be
rewritten as an operation on a combination of its two arguments. There is
thus something anecdotal about the reducibility of Jjed-Ks, Jein-indefKs etc.26

In view of this observation, many semanticists have dropped the existential
and universal quantifiers of predicate logic for a more general and transparent
notation, writing (∀x :ϕ)(ψ), (∃x :ϕ)(ψ), and (MOSTx :ϕ)(ψ), in lieu
of (∀x)[ϕ → ψ], (∃x)[ϕ ∧ ψ], and MOST(λx.ϕ)(λx.ψ), respectively.
Though there is certainly something to this notational innovation, we will

26It appears, though, that this reducibility was a decisive factor in the development of
predicate logic. – The irreducibility of die meisten is a consequence of a theorem due
to the US semanticist Ed Keenan, who proved it in his paper Natural Language, Sortal
Reducibility and Generalized Quantifiers (1993).
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stick to the traditional variant in these notes.

5.7 Intensionality

We end our indirect reformulation of the semantic analyses developed in the
first chapters with the Hintikka semantics of attitude reports, at the same
time taking the opportunity to extend the range of intensional constructions
analyzed.

As already established in (2), the extension type of an attitude verb is
(st)(et). When such a verb gets combined with a complement clause, the
extension of the ensuing predicate is obtained by applying the verb extension
to the intension of the complement. To capture this meaning combination
within indirect interpretation, one first needs to find a way to turn a formula
denoting the extension of a linguistic expression into one that denotes its
intension; so far, the translation of the embedded sentence is of type t and
thus denotes its truth value. At this point, it pays that the translations make
explicit reference to the situation at hand – and that this reference is made
by way of a variable. For the intension of an expression A is that function
that assigns to every situation s in Logical Space its extension in s:

(111) JAK = λs.JAKs

Since we assume that in the type-logical translation |A| of A the situation
at hand is denoted by the variable i, the extension of A in s(∈ LS) can be
obtained by assigning s to the variable i:27

(112) JAKs = ‖|A|‖g[i/s]

Since (112) holds for arbitrary s ∈ LS,28 (111) and (112) entail:

(113) JAK = λs.‖|A|‖g[i/s]

In view of the formulation (48) ot the interpretation of λ-abstraction, (λi.|A|)
now emerges as the translation of the intension of A:

(114) λs.‖|A|‖g[i/s] = ‖(λi.|A|)‖g

We thus obtain:29

27We are also assuming that the other variables do not play any rôle. In the translations
considered so far, apart from i, all variables are bound anyway; given the Coincidence
Lemma, their denotation thus does not depend on the assignment.

28This requirement is indispensable to the inference from (111) and (112) to (113); for
the ‘s’ in (112) also stands for arbitrary situations. The point becomes clearer by
reformulating (112) and (113) with different (meta-linguistic) situation variables – thus
performing a bound renaming in the meta-language

29Cf. footnote 21 on the double bracketing in (115).
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(115) Indirect interpretation of dass-clauses as complementisers
If P is a predicate consisting of an attitude verb V and a comple-
ment clause S, the following holds:
|P | = |V |((λi.|S|)).

It should be noted that it is not only essential for (115) that reference to
the situation is made by a variable – otherwise we could not have abstracted
from it; it is equally important that it is always the same variable, viz. i –
otherwise we would not know which variable to bind to obtain the translation
of the intension of the embedded clause.

To conclude the indirect formulation of Hintikka semantics, we still need to
specify the translations of the lexical attitude verbs. To prepare the ground,
we name the underlying perspectives Dox, Epi, Bou, . . . by suitable type-
logical constants DOX, EPI, BOU,. . . . As we have seen in Chapter 4, the
(doxastic, epistemic, bouletic,. . . ) perspective of an individual (of type e)
always depends on the given situation (of type s) and consists of a set (of
type st) whose members are situations in Logical Space. Accordingly, the
constants mentioned are formulae of type e(s(st)), to be interpreted in the
following way:

(116) a. ‖DOX‖ = λx.λs0.λs1. ` s1 ∈ Doxx,s0 a
b. ‖EPI‖ = λx.λs0.λs1. ` s1 ∈ Epix,s0 a
c. ‖BOU‖ = λx.λs0.λs1. ` s1 ∈ Boux,s0 a

The constants interpreted in (116) can now be employed in the lexical trans-
lations of the attitude verbs:

(117) a. |meint| = (λpst.(λxe.(∀j)[DOX(x)(i)(j) → pj]))
b. |weiß| = (λpst.(λxe.(∀j)[EPI(x)(i)(j) → pj]))
c. |will| = (λpst.(λxe.(∀j)[BOU(x)(i)(j) → pj]))

As in (117), we will from now on use ‘j’ whenever we need an additional
(bound) variable ( 6= i) of type s; and we also write it as a subscript when used
as an argument. Moreover, like before, (∀j)ϕ is short for ∀(λj.ϕ), where the
universal quantifier ∀ abbreviates the formula (λpst.¬(∃j)¬p(j)) of type
(st)t – like the existential quantifier used to define it. Strictly speaking, then,
these universal and existential quantifiers are not the formulae introduced in
the preceding sub-section, which had been of type (et)t . However, in line
with logical-semantic tradition, we refuse to make a notational difference
between the two kinds of quantifiers.

To see the indirect version of the interpretation (115) and (117) of Hintikka
semantics at work, we construct and reduce the type-logical translation of a
simple attitude report:
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(118) |Fritz meint, dass Eike einen Porsche besitzt| by (78)
= |meint, dass Eike einen Porsche besitzt|(|Fritz|) (115)30

= |meint|(λi.|Eike besitzt einen Porsche|)(|Fritz|) by (74)
= |meint|(λi.|Eike besitzt einen Porsche|)(f) by (117a)
= (λpst.(λxe.(∀j)[DOX(x)(i)(j) → pj]))

(λi.|Eike besitzt einen Porsche|)(f) Exercise!
≡ (λp.(λx.(∀j)[DOX(x)(i)(j) → pj]))

(λi.(∃ye)[Pi(y) ∧Bi(e, y)])(f) λ-conversion (66)
≡ (λx.(∀j)[DOX(x)(i)(j) → (λi.(∃y)[Pi(y)∧Bi(e, y)])(j)])(f)

λ-conversion (66)
≡ (λx.(∀j)[DOX(x)(i)(j) → (∃y)[Pj(y) ∧Bj(e, y)]])(f)

λ-conversion (66)
≡ (∀j)[DOX(f)(i)(j) → (∃y)[Pj(y) ∧Bj(e, y)]]

Actually, (118) only captures one reading of the (surface) sentence under
scrutiny. According to this reading, Fritz need not have a specific idea about
Eike’s possession. In particular, he need not have a particular car in mind
that he takes Eike to own. In Chapter 7 we will encounter and analyse a
further reading, according to which Fritz believes of a certain Porsche that
it belongs to Eike.

The lexical analysis of (117c) not only covers finite complements; the use of
wollen in (119), where it functions as a control verb and embeds infinitivals,
can also be captured by this lexical entry (117c):

(119) Fritz will gewinnen.
[≈ Fritz wants to win.]

In order to interpret (119) in the framework of Hintikka semantics, we may
(simplifyingly) assume that the infinitive may be paraphrased by a dass-
clause whose (vacant) subject position is filled by the subject of the matrix
clause:

(120) a. NN will P
b. ≈ NN will, dass NN P

In (120), ‘NN ’ and ‘V ’ respectively stand for a proper name and a pred-
icate; and we have neglected the difference between finite predicates and
infinitves.31 The synonmy effect postulated in (120) – this is how the quasi-
equation ought to be read – can be achieved relatively easily on the basis
of the lexical interpretation (117c) of wollen, under the assumption – and
against prevalent syntactic ideas – that the embedded infinitive is underly-

30We continue to assume that the embedded dass-clause is reduced to its main clause
variant.

31Basically this means that we have chosen to ignore the temporal reference expressed by
tense morphology.
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ingly subject-less and thus corresponds to a predicate:

(121) a.
NN will P

≈ b.
NN

will NN P

According to (121), we should have:

(122) |NN will P | in view of (121)
≈ |NN will, dass NN P| by (78) & (115)
≡ |will|(λi.|P |(|NN|))(|NN|)

The underlined part obviously corresponds to the translation of the predicate
of (120b): its denotation characterizes the set of individuals who want that
NN (= the bearer of the name ‘NN ’) will win. Yet despite the (assumed)
synonymy between the two attitude reports, the sub-formula highlighted
in (122) does not correspond to the predicate of (120a); the extension of
the latter comprises those individuals that would like to win themselves: in
(120a), the proposition functioning as the argument of the modal verb will
depends on the subject. The following reformulation of the translation of
(119) accounts for this dependence:

(123) |NN will P | cf. (122)
≈ |will|(λi.|P |(|NN|))(|NN|) λ-conversion (66)
≡ (λxe.|will|(λi.|P |(x))(x))(|NN|)

This time the underlined part corresponds to the predicate of (119): its
denotation characterizes the set of individuals who want that they themselves
win. That the transition is correct follows from the fact that the translations
of proper names are always constants and thus do not contain any variables
that might be bound during conversion.

From (123) we immediately get an interpretation of infinitival embedding
according to which the extension of the control verb is of type (st)(et):

(124) Indirect interpretation of infinitival embedding under (subject) con-
trol verbs
If VP is a predicate consisting of an attitude verb V and an infini-
tival predicate P as its object, the following holds:
|VP| = (λxe.|V |(λi.|P |(x))(x))

The above interpretation only works for such verbs that equate (or control, in
the syntactician’s parlance) the implicit subject of their complement (‘PRO ’)
with their subject, in the sense of the (near) synonymy (120). Among these
are (certain uses of) German modal verbs but also ordinary verbs embedding
infinitives under zu [≈ to]: hoffen [≈ hope], versprechen [≈ promise],
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versuchen [≈ try]. The latter example shows that some of these verbs do
not even embed finite clauses, but can still be analyzed along the lines of
(124). However, not every infinitival embedding can be interpreted as in
(124). On the one hand, some verbs (anweisen [≈ instruct], empfehlen
[≈ recommend], raten [≈ advise],. . . ) equate the infinitival subject with an
object of the embedded verb; in this case one may give an interpretation of
the object-control construction that is analogous to (124); we abstain from
doing so for reasons of time and space. On the other hand, a handful of verbs,
intuitively speaking, treat their subject as part of the infinitival, rather than
equating it with its subject. Among these so-called raising verbs are again
(certain readings of) German modal verbs plus certain uses of the full verbs
scheinen [≈ appear] and drohen [≈ threaten]. That such verbs cannot be
captured by (124) is best seen when considering a quantifying subject:

(125) Die meisten Gäste scheinen da zu sein.
[≈ Most visitors appear to be here.]

(125) is true of a situation in which the speaker has some (not further speci-
fied) evidence that the majority of visitors of a certain (nor further specified)
event have already arrived at the (nor further specified) venue. This evidence
may, e.g., consist in the state of a coat stand: the fact that five coats are
hanging on the visitors’ coat rack indicates that already five of the altogether
seven invited guests have arrived. A speaker who relies on this evidence does
not necessarily have been able to match even a single garment to its wearer.
He need not even be able to utter a qualified conjecture about a single visitor
and the question of whether she has arrived. In other words: even if (125)
is true, for none of the expected guests NN need the following sentence be
true:

(126) NN scheint da zu sein.
[≈ NN appears to be here.]

This, however, means that scheinen cannot be an attitude verb (of extension
type (st)(et)) to which (124) applies whenever it embeds an infinitival. For
the translation (124) of predicates ‘V zu P ’ combines with the quantifying
subject die meisten Gäste so that, following the familiar account (88) of
quantification, the truth of the resulting quantified sentence depends on how
many corresponding predications are true; accordingly (125) would be true
if there were more true sentences of the form (126) (where each ‘NN ’ stands
for a guest) than false ones.32 The example showed that things are different:
irrespective of the truth of (125), the predications (126) could all be false.

The reason why raising verbs like scheinen are not construed along the lines
of (124) is that, though they do express propositional attitudes (of sorts),

32We are tacitly assuming that each visitor has exactly one name!
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they do not ascribe them to their subject (or, more precisely, its extension).
In the case of scheinen the rôle of the missing subject can be expressed
by an ‘Experiencer ’-dative: ihm scheint, dass . . . . This case-anomaly
notwithstanding, this use of scheinen can obviously be captured within
the Hintikka semantics framework. We will not go into the details of this
construction here, but take it that, as in the other cases of attitudes analyzed
in (116), there is an underlying alternative-relation of type e(s(st)):

(127) ‖EVI‖ = λx.λs0.λs1. ` in s0, is s1 an evidential alternative for
x a,

where the evidential alternatives (for an individual x in a given situation
s0) are those possible situations that x cannot exclude to be in, given the
evidence available to x in s0. We are deliberately leaving open what counts
as evidence here – be it perception, previous knowledge, hearsay, etc.

The Hinitkka-style attitude relation in (127) also underlies the impersonal
use of scheinen [≈ appear] – as in: Es scheint, dass . . . [≈ It appears
that . . . ], where the rôle of the attitude bearer is implicitly played by the
speaker, or a group (s)he belongs to. Since we are taking no account of
context dependence – and particularly reference to the speaker – for the
time being (more specifically until Chapter 8, we will simplify matters and
talk of the evidential alternatives ‘in a situation’, for which we reserve a
constant EVI∗ of type s(st):33

(128) ‖EVI∗‖ = λs0.λs1. ` s1 is an evidential alternative in s0 a

On the basis of EVI∗, the impersonal use of scheinen can be analysed like
an attitude verb, except that it lacks a (personal) subject. Here is a case in
point:

(129) |Es scheint, dass die meisten Gäste da sind|
≡ (∀j)[EVI∗i (j) → MOST(Gj)(Dj)]
≡ |schein-|(λi.|die meisten Gäste sind da|)

We leave out the – hardly exciting – details of this analysis. What matters
is merely that in (129), we have assumed the following lexical interpretation
of impersonal scheinen:

(130) |schein-| = (λpst.(∀j)[EVI∗i (j) → pj])

The fact that (125) seems to express the same as the impersonal variant
analysed in (129), suggests that (130) also underlies the use of scheinen

33 Objects of this type can obviously be construed as relations between points in Logical
Space. In modal logic (where Hintikka semantics has its origins), they are known as
accessibility relations.

177



5.7. INTENSIONALITY

as a raising verb. The (indirect) interpretation of (125) would thus have to
account for the following sequence of equivalences:

(131) |die meisten Gäste scheinen da zu sein| cf. (129)
≡ |scheint|(λi.|die meisten Gäste sind da|) by (88)
≡ |scheint|(λi.|die meisten Gäste|(|sind da|)) by (74)
≡ |scheint|(λi.MOST(Gi)(Di))

In order to achieve this result in a compositional fashion, the predicate
scheinen da zu sein needs to be combined with the subject die meisten
Gäste so that the latter can take the underlined position in the argument
of |scheint|. The translation of the predicate would thus have to look like
the last line of (131) – minus the underlined part. The kind of subtraction
needed here can of course again be performed by λ-abstraction. However,
care needs to be taken to avoid a complication with the situation variable i.
For the following fomula is not equivalent to the last line in (131):

(132) (λX(et)t.|scheint|(λi.X(Di)))(MOST(Gi))

We skip the proof of non-equivalence; but take notice of the fact that the
transition from (131) to (132) is not supported by the law (66) of λ-conversion:
the argument MOST(Gi) (= |die meisten Gäste|) contains the free vari-
able i that gets bound in the substitution process. That (132) does not work
as a decomposition of the translation of (125) also shows in the fact that
the argument merely denotes the extension of the subject. According to
(132), then, any co-extensional subject would lead to the same truth value
– contrary to fact: if the visitors happen to be precisely the members of
the rabbit breeder society, the seeming arrival of their majority does not
necessarily constitute evidence for most visitors’ arrival. (We leave it to the
readers to construct a pertinent scenario in which extensional substitution
of the subject fails.) So the contribution that the subject makes to the truth
value of (125) is not confined to its extension, but rather lies in its intension.
Accordingly, the formula in the final line of (131) needs to be dissected as
follows:

(133) |scheint|(λi.MOST(Gi)(Di))
≡ |scheint|(λi.(λi.MOST(Gi))(i)(Di)) eigen-conversion (72)
≡ (λ℘s((et)t).|scheint|(λi.℘(i)(Di)))(λi.MOST(Gi))

λ-conversion (66)

The sub-formula underlined in (133) corresponds to the intension of the sub-
ject. Thus the rest of the formula ought to correspond to the translation of
the predicate, which in turn ought to be derivable by combining the transla-
tion (130) of the raising verb with the embedded infinitival. This is achieved
by the following, by now pretty obvious, rule:
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(134) Indirect interpretation of infinitival embedding under raising verbs
If VP is a predicate consisting of a raising verb V and an infinitival
predicate P as its complement, the following holds:
|VP| = (λ℘s((et)t).|V |(λi.℘(i)(|P |)))

(134) can be combined with the intension of the subject by functional appli-
cation. However, this cannot be achieved by the quantificational rule (88);
since predication does not work either in this case – the subject of (125) is a
quantifier after all and not of type e –, we now obviously need a third way
of construing the connection between subject and predicate:

(135) Indirect interpretation of raised subjects
If S is sentence whose subject is a quantifying noun phrase QN
and whose predicate VP translates as a type-logical formula |VP|
of type (s((et)t))t , the following holds:
|S| = |VP|(λi.|QN|)

(135) is a new kind of rule in that it explicitly refers to the type of the trans-
lation of one of the constituents involved. This – methodologically innocuous
– complication could be avoided if the pertinent predicates were syntactically
marked (e.g., by a feature [± Raising]. The term ‘raised subjects’ reflects
the intuition that the quantifying subjects behave as if they had been raised
from the subordinate infinitival clauses. This intuition could also be directly
modeled in syntactic terms, thus giving rise to an alternative treatment and
interpretation of the construction to which we will get in Chapter 7 .34

(134) and (135) only cover raising verbs with quantifying subjects and thus
cannot be immediately applied to sentences of the form (126). This gap will
be closed in the next chapter, where we will encounter a method of reducing
predication, quantification, and raising to a single construction.

What is special about the interpretation (135) of the raising verb construc-
tion is the fact that, (i) the subject position is occupied by a quantifier,
whereas (ii) it is interpreted as an argument of the predicate extension.
With respect to the first trait (i), the construction resembles quantification,
whereas (ii) is reminiscent of predication. This combination of properties of
the subject position of raising verbs, can also be found in the object position
of so-called opaque verbs – a case in point being:

(136) Fritz sucht einindef Restaurant.

34The above account of raising verbs was first mentioned, but not worked out in detail, in
Richard Montague’s paper The Proper Treatment of Quantification in Ordinary English
(1973). Semantic composition mechanisms that explicitly refer to the (extension) types
of the constituents involved have been made popular by Irene Heim and Angelika Kratzer
through their 1998 text-book Semantics in Generative Grammar.
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[≈ Fritz is looking for a restaurant.]

Just like the interpretation (88) of quantifying subjects failed on (125), in
this case the interpretation (89) of quantifying objects leads to problems.
For if (136) is true of a situation s, Fritz need not be looking for a particular
restaurant in that situation; in other words, there need not be a restaurant
called ‘L’ for which (137) holds:

(137) Fritz sucht L.
[≈ Fritz is looking for L.]

However, according to the rule of object quantifiers (89), (136) expresses that
(137) is true for some restaurant L. But then (136) can even be true when
there are no restaurants at all in the given situation. In order to still arrive
at a compositional account of (136), let us first take a look at the following
near-paraphrase:35

(138) Fritz will einindef Restaurant finden.
[≈ Fritz wants to find a restaurant.]

The interpretive machinery developed so far immediately accounts for (138).
As is readily seen, the rule (124) for control verbs leads to the following
(reduced) type-logical translation of (138):

(139) (∀j)[BOU(f)(i)(j) → (∃ye)[Rj(y) ∧ Fj(f, y)]]

Under the assumption that (136) is synonymous with (138), (139) can be
used to arrive at a compositional interpretation of the sentence. The proce-
dure is the same as in the case of scheinen in (131) and (133), i.e. we first
isolate the contribution the object makes to the extension of the predicate:

(140) |sucht einindef Restaurant| by assumption
≡ |will einindef Restaurant finden| by (89) & (124)
≡ (λxe.|will|(λi.|ein Restaurant|(λye.|finden|(x, y)))(x))

by (76b) etc.
≡ (λx.|will|(λi.(λP et.(∃y)[Ri(y)∧P (y)])(λy.|finden|(x, y)))(x))

eigen-conversion (72)
≡ (λx.|will|(λi.(λi.(λP.(∃y)[Ri(y) ∧ P (y)]))(i)

(λy.|finden|(x, y)))(x)) λ-conversion (66)

35The idea to reduce opaque verbs to propositional attitudes by paraphrase goes back
to the US-logician and philosopher Willard Van Orman Quine, who developed it in
his paper Quantifiers and Propositional Attitudes (1956). The compositional account
of opacity originates with Richard Montague, who first sketched it in his paper On
the Nature of Certain Philosophical Entities (1968) and later elaborated it in Univer-
sal Grammar (1970) and The Proper Treatment of Quantification in Ordinary English
(1973).
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≡ (λ℘s((et)t).(λx.|will|(λi.℘(i)(λy.|finden|(x, y)))(x)))
(λi.(λP.(∃y)[Ri(y) ∧ P (y)]))

The first transition in (140) is an immediate result of the translation rules
mentioned (plus the usual assumptions about the lexical meanings involved).
The second transition makes explicit reference to the translation of the object
in order to bring to attention the free variable i. In the third transition the
intension of a restaurant is isolated as the contritbution to the extension;
as in (133), this is done with the help of eigen-conversion. In this way the
ground is prepared for the conversion to follow; otherwise the free i would
have been bound – as in (132). Starting from the synonymy of the predicates
in (136) and (138), the final transition brings out clearly that we have isolated
the intension of the object. The rest of the formula, then, is the contribution
of the predicate:

(141) |sucht|
= (λ℘s((et)t).(λxe.|will|(λi.℘(i)(λye.|finden|(x, y)))(x)))
≡ (λ℘.(λx.(∀j)[BOU(x)(i)(j) → ℘(j)(λy.Fj(x, y))]))

The lexical analysis in (141) obviously requires the following translation rule:

(142) Indirect interpretation of the objects of opaque verbs
If VP is a predicate consisting of an opaque verb V and a quanti-
fying noun phrase QN, the following holds:
|VP| = |V |(λi.|QN|)

Analyses like (141), which explicitly refer to the meanings (or intensions)
of other lexical expressions (like will [≈ want] and finden [≈ find]) are
sometimes called lexical decompositions.

Just like, according to (135), (the extension of) the raising verb takes (the
intension of) the quantifying subject as an argument, so (142) has (the ex-
tension of) the opaque verb operate on (the intension of) the object. More-
over (and despite the different lengths of the formulae involved), there is
an interesting parallel between the lexical analysis (130) of the raising verb
scheinen and the translation (141) of the opaque verb suchen: in both
cases, the verb meaning is compositionally reduced to a propositional atti-
tude, which is then interpreted in terms of Hintikka-style perspectives. In
the case of the raising verb scheinen this was the relation expressed by the
impersonal use of scheinen. In the case of the opaque verb suchen it was
the bouletic perspective expressed by wollen. This may be no coincidence;
from the so-called propositionalist stance, all intensional constructions can
be paraphrased by clausal embeddings. On this view (which we cannot go
into here), raising verbs and opaque verbs are only a special case. What
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speaks in favor of propositionlism is that for practically all known opaque
verbs, (more or less) plausible lexical decompositions along the lines of (141)
can be found. As a case in point, the opaque verb schulden [≈ owe] can
be analyzed by combining the meanings of müssen [≈ must] and geben [≈
give], as will be shown in an exercise.

As remarked above, Fritz need not be looking for a particular restaurant
for the sentence (136) to be true. On the other hand, he may very well be
looking for a particular restaurant, which will then guarantee the truth of
(136). In this case we are dealing with the so-called specific reading (of the
object). We will get to it in the next chapter but one. The analysis given in
(142) only covers the non-specific reading.

5.8 Alternatives to two-sorted type logic

Apart from the two-sorted type logic used for indirect interpretation in this
chapter, there are a number of other formal languages that are more or less
suited for this purpose. Two of them will be introduced in this section.
Before that we will, however, first address a variant of two-sorted type logic
that is frequently found in the semantic literature.

5.8.1 Logical constants

In (33) in Section 5.3, we had introduced four ‘logical’ constants that are of
supreme relevance for indirect interpretation in that they are employed for
quite a few diverse purposes. Moreover, we had introduced further symbols
(∨,→, and ∀) as abbreviations for formulae that could be formed from these
logical constants – and which we could as well have treated as constants
themselves. By treating them as abbreviations, we could show that they are
reducible to the other logical constants – ‘∧’, ‘∃’, ‘¬’, and ‘=’: one could,
in principle, do with the logical constants defined in (33) alone.

In principle, one can even do without the logical constants defined in (33).
However, in order to do so, one needs to extend the syntax of type logic by
one more construction, viz. equations between formulae of any types:

(143) Syntax of (two-sorted functional) type logic with equations
For all types a and b the following holds:

(Var) Variables of type a are formulae of type a.
(Con) Constants of type a are formulae of type a.
(App) If α is a formula of some type (ab) and β is a formula of type a,

then α(β) is a formula of type b.
(Abs) If x is a formula of some type a and α is a formula of some type b,

then (λx.α) is a formula of type (ab).
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(Id) If α and β are formulae of the same type a, then (α = β) is a
formula of type t .

Only clause (Id) is new; the other ones are as in (21). However, the version
of type logic given in (143) also does without the logical constants defined
in (33); for they are going to be construed as abbreviations.

It should be noted that the two formulae in equations need to be of the same
type and that the resulting type is always t ; hence an equation between
formulae of distinct types is not interpretable, and an equation between
formulae of the same type always stands for a truth value. For the special
case in which the type of the formulae equated is e , we get equations that
we could also have formed with the help of the logical constant ‘=’ of type
e(et), as defined in (33d); by analogy, we could have dropped clause (Id) in
(143) and introduced a constant ‘=a’ for each type a.

The interpretation of type logic according to (143) proceeds as before – i.e.
by the interpretive clauses given in Section 5.3: (29), (30), (35), and (46)
(or, equivalently (47) or (48)), as well as by a further, obvious semantic rule
for equations:

(144) Interpretation of identity (Id)
If g is an assignment and α and β are formulae of some type a, the
following holds:
‖α = β‖g = ` ‖α‖g = ‖β‖g a.

For the special case that the two equated formulae ϕ and ψ are of type t ,
we have: ‖ϕ = ψ‖g = |1− ‖ϕ‖g + ‖ψ‖g|. In formal logic, this combination
of truth values is known as ‘material equivalence’ and written ‘[ϕ ↔ ψ]’.
It is readily seen that material equivalence is logically equivalent to the
conjunction of material implications in both directions: [ϕ ↔ ψ] ≡ [[ϕ →
ψ]∧ [ψ → ϕ]]. Further truth tables can be defined with the help of identity,
although sometimes in a somewhat roundabout way. We will only show this
for (¬) and conjunction (∧).36 To prepare the ground for negation, we define
an equation ⊥ that always – i.e., given any assignment – denotes the truth
value 0. ⊥ says that (the characteristic function of) the set of all truth values
{0, 1} equals (the characteristic function of) the singleton set {1} – which is,
of course, wrong. The set of all truth values is the set of all truth values that
are identical to themselves – {0, 1} = {u ∈ {0, 1}| u = u} – and is therefore

36In fact, arbitrary truth tables can be defined in two-sorted type logic with iden-
tity; this follows from a fundamental theorem from propositional logic, the func-
tional completeness of conjunktion and negation, which means that any combina-
tion of truth values can be reduced to a combination of ∧ and ¬. A proof may
be found on p. 38 of the class notes Formale Grundlagen der Sprachphilosophie:
https://user.uni-frankfurt.de/~tezimmer/Zimmermann/FGdSp.pdf.
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characterisable by the formula λ-term (λu.(u = u)), which corresponds to
an expression of type logic with identity (between truth values). Moreover,
{1} is the set of truth values that are identical to 1: {u ∈ {0, 1}| u = 1}
– which truth value in turn is the denotation of any equation of the form
(α = α). Given these observations we arrive at the following definition:

(145) ⊥ := (λut.(u = u)) = (λu.(u = (u = u)))

The proof that, indeed, (for any g) ‖⊥‖g = 0, is left to the readership. On
the basis of (145), negation can now be defined; for, given any truth value
u, the statement that u is identical to 0, always has the opposite truth value
of u:

(146) ¬ := (λut.(u = ⊥))

Conjunction is more complicated. One way of expressing it in terms of the
expressive means given in (143) makes use of a set-theoretic version of what
is known as Leibniz’s Principle; according to it, any objects x and y are
identical to each other just in case x has the very same properties as y:37

(147) If U is a set and {u, v} ∈ U , the following holds:
u = v iff for all subsets X ⊆ U : u ∈ X iff v ∈ X.

The principle (147), which is valid in set theory, looks more complicated than
it actually is. To begin with, only one direction is of any interest. For the fact
that u is an element of the same sets as v if u and v are identical, is obvious
anyhow: if u ∈ X, it immediate follows that, given u = v, v ∈ X – and
vice versa. However if – and now we are getting to the interesting direction
– u and v are elements of the same subsets of X, we have, in particular:
v ∈ {u}, for {u} is a subset of U of which u is an element. But {u} also
contains no other elements, and we may therefore conclude that u = v, given
that v ∈ {u}, by the assumption that v is a member of the same subsets as
u.

The connection between the set-theoretic version (147) of Leibniz’s Principle
and conjunction emerges from the observation (already made in the first
chapter) that the latter can be construed as a function from pairs of truth
values to truth values – and thus as the characteristic function of a set of
pairs of truth values. Since conjunction assigns the truth value 1 to a pair
(u, v) of truth values just in case u = v = 1, it characterizes the singleton
set {(1, 1)}, i.e. the set of all objects that are identical to the pair (1, 1):
{(u, v)| (u, v) = (1, 1)}. According to (147), conjunction thus characterizes

37More precisely this is the Principle of the Identity of Indiscernibles [principium identiatis
indiscernibilium], which is frequently attributed to Gottfried Wilhelm Leibniz (1646–
1716), although it has been known since antiquity. The exact relation between this
principle and its type-logical version is complex and would lead us astray.
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the set of pairs (u, v) that are members of the same set of truth value pairs
as (1, 1):

(148) ↓JundKs

= {(1, 1)}
= {(u, v)| (u, v) = (1, 1)}
= {(u, v)| for all sets X of pairs of truth values: (u, v) ∈ X iff (1, 1) ∈

X}

In the type hierarchy, where sets of pairs (of truth values) are represented
by sets assigning characteristic functions of sets (of truth values to truth
values), (148) can be reformulated like this:

(149) JundKs = λv.λu. ` for all R of type t(tt): R(v)(u) = R(1)(1) a

The condition to the right of the lambdas in (149) can now be construed as a
combination of abstractions, applications, and identities and thus expressed
in type logic with identity. To see this, we only have to express the locution
‘for all R of type a: . . . ’. This is relatively simple; for a statement ‘. . . ’ is
true of all objects of some type a just in case the set of those objects of type
a that satisfy ‘. . . ’ coincides with the set of all objects of this type – i.e.
with the set of self-identical objects of type a. We thus arrive at a (general)
definition of the universal quantifier over objects of a type a:

(150) ∀a := (λP at .((λxa.P (x)) = (λx.(x = x))))

By the so-called duality – the inter-definability – of universal and existential
quantifier (with the help of negation), (150) allows for a general definition
of the existential quantifier for arbitrary types:

(151) ∃a := (λP at .¬∀a(λxa.¬P (x)))

For the special case that a = e , the formula in (151) is provably equivalent
to the formula used in the interpretation (33b) of the existential quantifier
as a logical constant. The same holds for the formula (150) and the version
of the universal quantifier introduced in (104). For the case a = t(tt), (151)
can finally be exploited to give a type-logical version of (149):38

38An alternative definition, due to Leon Henkin’s A theory of propositional types (1963),
makes use of the observation that the pair (1,1) is already characterised by the behaviour
of the truth values on unary functions f of type tt : u = v = 1 iff the f for which (i)
f(1) = 1 are the same as the f for which (ii) f(u) = v. This is so because only two
f satisfy (i), viz. the identical mapping id, and the function f1 mapping every truth
value to 1; but from fi(u) = v it follows that u = v, and from id(u) = v it follows that
v = 1 so that we may conclude that u = v = 1, as required. Hence the type-logical
formula (λvt.(λut.(∀f tt)((f(u) = v) = (f(¬⊥) = ¬⊥)))) may be used to define
conjunction; and it can even be reduced to (λv.(λu.(∀f)((f(u) = v) = f(¬⊥)))),
given the logical equivalence of (ϕ = ¬⊥) and any ϕ of type tt ! – There is a further
definition of conjunction due to Tarski, which however is too obscure to be mentioned
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(152) ∧ := (λvt.(λut.(∀aRt(tt))[R(v)(u) = R(¬⊥)(¬⊥)]))

This finishes our demonstration that type logic with identity can do without
the four logical constants. Remarkable though this fact is from a logical
point of view, it is irrelevant to the business of indirect interpretation. On
the other hand, the reductions in (145), (146), and (150)–(152) reflect a
common feature of the logical constants that is also of semantic interest.
For the fact that they can be defined by purely logical means – that is,
without recourse to any constants – implies their universal applicability,
irrespective of the thematic context. In logic, this topic neutrality is known
as invariance – a term that we have already come across in connection with
determiner extensions and that we will now generalize. The basic idea is
that the denotations of logical constants are functions that only relate to
the structural aspects of their arguments. It is a main characteristic of
these structural aspects that they may be specified without reference to
any particular individuals. Thus, e.g., it does not matter to the existential
quantifier ∃e which elements the set characterized by its argument contains
– but only whether it contains any elements at all. The fact that the exact
identity of particular individuals does not matter means that, as far as the
logical constants are concerned, all individuals are alike, they all play the
same rôle – and are therefore interchangeable: trading individuals for each
other would not have any effect on the result of a logical operation. This
intuitive idea can be made precise by way of the notion of a permutation:39

a permutation is a function that initially exchanges all individuals and then
gets ‘transferred’ to objects of complex types:

(153) Definition
a. A permutation is a function π of type ee such that for any

individuals x and x′ the following holds:
(i) if x 6= x′, then π(x) 6= π(x′);
(ii) there is a z such that x = π(z).

b. If π is a permutation and a is an extensional type, then πa is
a function of type aa so that the following holds:
(i) if a = e , then πa = π;
(ii) if a = t , then πa = {(0, 0), (1, 1)};
(iii) if a = (bc) and f is a function of type a, then:

πa(f) = {(πa(x), πb(y))| f(x) = y}.

here.
39The idea to use permutations for the characterisation of logical constants was first
proposed in the 1935 essay On the Limitations of the Means of Expression of Deductive
Theories by Adolf Lindenbaum and Alfred Tarski, but appears to be so obvious that
it has been repeatedly re-discovered in the meantime; its type-logical formulation goes
back to a talk given by Alfred Tarski in 1966, the manuscript of which was published in
1986 under the title What are Logical Notions?.
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Here, an extensional type is one that contains no s; a generalization of
permutations to all types, though possible, is somewhat awkward and un-
necessary in the current context.

According to (153a), a permutation π must not only assign a unique indi-
vidual to any individual – as any function of its type does; on top of that, π
must never assign the same individual to two distinct arguments and, more-
over, every individual must be assigned to some argument. If one conceives
of functions as arrangements of arrows leading from argument to value, the
two conditions express that no arrows may ever converge and that every
individual gets hit by some arrow.40 It should be noted that this definition
does not exclude the limiting (but harmless) case of the identity mapping
from x to x; it, too, is a permutation in the sense of (153a).

Basically, (153b) describes what happens to a function of an extensional
type if all the individuals get permuted: permuted objects get mapped to
permuted objects. As a case in point (the characteristic function of) the set
M = {x, y, z} of individuals gets mapped to (the characteristic function of)
the set Mπ = {π(x), π(y), π(z)}. In particular, M and Mπ have the same
cardinality. Since the existential quantifier only cares about the cardinality of
its arguments, it will also mapM andMπ to the same truth values 1 = π(1).
Generalising this consideration, one sees that for any permutations π the
following holds: π(∃e) = ∃e. In this sense the existential quantifier does not
‘notice’ if any individuals have been exchanged:

(153) c. An object X of an extensional type a is (permutation) invari-
ant, if πa(X) = X, for all permutations π.

Apart form existential and universal quantifiers, the lexical determiner ex-
tensions considered in Chapter 3 come out as invariant, as well as all truth
tables and the relation of identity between individuals (regarded as an ob-
ject of type e(et)). It can also be shown that the denotations of type-logical
formulae (with or without identity) are always invariant if they contain no
constants or free variables. Given that all logical constants can be defined
by such formulae, their invariance thus follows.41

40In mathematical parlance, the first conditions says that permutations are injective or
one-one and the second one says that they are surjective or onto. Functions that meet
both conditions are also called bijective. A permutation, then, is a bijection on the set
of individuals. As is readily seen, the inversion of a bijection π, that is, the set of all
pairs (π(x), x), is again a bijection.

41A similar connection between definability and permutation invariance holds for prac-
tically all languages of formal logic (with the exception of some that contain so-called
choice operators). However, this generalization does not reverse: for any (countable)
logical language there are invariant objects that cannot be defined in it.
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5.8.2 Intensional type logic

Besides two-sorted type logic, the most frequent logical language used in the
semantic literature for the purpose of indirect interpretation is the inten-
sional type logic (or simply Intensional Logic) developed by Richard Mon-
tague.42 Although this language does without any explicit reference to situ-
ations, it does preserve a large amount of the expressivity of two-sorted type
logic.

The starting point of intensional type logic is a modification of the notion
of a two-sorted type, based on the observation that, as far as extensions and
intensions are concerned, Logical Space only acts as a functional domain:
there are apparently no natural language expressions whose extensions are
of a type of the form as; moreover natural language does not seem to contain
expressions of the type s itself. As a result, intensional type logic is restricted
to types where s occurs to the left of another type. The primitive intensional
types are, accordingly, only the types e and t ; and complex intensional types
are either generated by taking pairs – thus ab is an intensional type if a and b
are – or by prefixing s to a type – so that sa is an intensional type whenever
a is. The objects of an intensional type a are then defined exactly as in two-
sorted type logic: the objects of type e are the individuals; those of type t
are the truth values; the objects of an intensional type ab are the functions
that assign to all objects of (intensional) type a some object of (intensional)
type b; and the objects of (intensional) type sa are the functions that assign
to any possible situation an object of (intensional) type a.

As expected, intensional type logic contains infinitely many variables of any
intensional type a, which – given an assignment – denote objects of type a.
And as expected, intensional type logic also contains suitably many constants
of any intensional type – which however receive a different interpretation than
in two-sorted type logic. For, like their natural language counterparts, the
constants of intensional type logic have both an extension and an intension.
The type a of a constant – and a formula of intensional type logic in general –
is their extension type; accordingly, their intension is of type sa. This feature
has immediate consequences for indirect interpretation: while we translated
a noun like Tisch by a two-sorted formula of the form T(i) (where T is a
constant of type s(et)), the corresponding translation into intensional type
logic is merely the constant T of type et , whose extension is the set of all
tables in the situation s at hand.

In intensional type logic, each formula has two semantic values: its extension
and its intension. To denote them, we will use the same notation as in two-

42The language was first introduced in Montague’s paper Universal Grammar (1970);
later accounts usually refer to the extended version used in The Proper Treatment of
Quantification in Ordinary English (1973).
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sorted type logic, adding the situation at hand as a second super-script (on
top of the assignment): the extension of a formula α in a situation s and
given the assignment g, is thus written as ‘‖α‖g,s’, and its intension (given
the same assignment): ‘‖α‖g’. The relation between extension and intension
is defined in intensional type logic as it was defined (for German expressions)
in direct interpretation: ‖α‖g,s = ‖α‖g(s), for all s ∈ LS.

Like two-sorted type logic, intensional logic has the expressive means of func-
tional application and λ-abstraction, which work (on the level of extensions)
in exactly the same way: ‖α(β)‖g,s = ‖α‖g,s(‖β‖g,s), and ‖(λx.α)‖g,s(u) =
‖α‖g[x/u],s. Thus the sentence (154a), translated as (154b) into two-sorted
type logic in Section 5.5, receives an analogous compositional translation
(155) into intensional type logic:

(154) a. Jeder Mann trifft eine Frau. [= (91)]
b. (λQ.(λP.¬(∃x)[Q(x) ∧¬P (x)]))(Mi) [= (92)]

((λx.(λQ.(λP.(∃x)[Q(x) ∧ P (x)]))(Fi)(λy.Ti(x, y))))

(155) (λQ.(λP.¬(∃x)[Q(x) ∧¬P (x)]))(M)
((λx.(λQ.(λP.(∃x)[Q(x) ∧ P (x)]))(F)(λy.T(x, y))))

The intensional logic version (155) only differs from the original two-sorted
translation (154b) at the three underlined places, where the explicit reference
to a situation by the variable i has been replaced by the implict reference to
a situation inherent to the intensional logic constant. And just like the two-
sorted formula (154b), its intensional counterpart (155) can be equivalently
reformulated by a sequence of λ-reductions:

(156) ¬(∃x)[Mi(x) ∧¬(∃z)[Fi(z) ∧¬Ti(x, z)]] = (98) [≡ (154b)]

(157) ¬(∃x)[M(x) ∧¬(∃z)[F(z) ∧¬T(x, z)]] [≡ (155)]

The example suggests that intensional type logic leads to simpler (or at least
shorter) formulae in indirect interpretation. We will, however, see that this
only holds for extensional construction.

Functional application and abstraction of intensional type logic do not suffice
to represent the complementation of an attitude verb. The extension of
such a verb is of type (st)(et) and cannot be applied to the translation of
the embedded clause, given that the latter is of type t . What is obviously
missing is a formula that stands for the intension of the embedded clause,
rather than its extension. In two-sorted type logic we obtained this formula
by λ-abstraction from the situation variable i; this option is not available
in intensional type logic, simply because there is no such variable. Instead,
at this point a so-called cap operator ∧ is invoked. Quite generally, this
operator allows to construct an expression (∧α) of type sa, starting with
any expression α of an (intensional) type a; and the extension of (∧α), then,
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is α’s intension: ‖∧α‖g,s = ‖α‖g.43

Comparing the means of expression of intensional type logic introduced so far
with those of two-sorted type logic, a simple connection emerges. Roughly,
the two-sorted equivalent α∗ of an intension formula α, can be obtained by
having α∗ express the situational dependence of α’s extension in terms of
the variable ‘i’:

(158)

α [formula of intensional type logic] α∗ [two-sorted quivalent of α]

c [constant of an int. type a] c+(i) [where c+ is a constant of type sa]

x [variable of int. type a] x

β(γ) β∗(γ∗)

(λx.β) (λx.β∗)

(∧β) (λi.β∗)

According to table (158), for any formula α of intensional type logic (as
considered so far) one can find a two-sorted formula α∗ whose denotation at
any situation s is the extension of α, provided that i refers to s:44

(159) ‖α‖g,s = ‖α∗‖g∗[i/s]

In (159), g is any assignment to the variables of intensional logic, whereas
g∗ is an assignment of all two-sorted variables that agrees with g on all
intensional variables: g ⊆ g∗. Since, apart from i, α∗ can only contain
intensional variables, only their denotations and the value of i matter. The
former are taken care of in (159) by g, the latter by the situation s to the
left of the equality symbol.

Apart from the cap operator, there is a further construction in intensional
type logic – its inverse, as it were – that is mainly needed to specify the
semantic contributions of intensional arguments. Thus, the extension of the
attitude verb meinen [≈ think] can be represented by a complex formula of
two-sorted type logic that describes which rôle the intension of the comple-

43It should be noted that the extension of an expression of the form form (∧α) does not
depend on the situation at hand; for the intension of an expression does not vary across
Logical Space. There are, of course, possible situations s in which, say, the German
word Tiger [≈ tiger] has a different intension in that the same form of the variant of
German spoken in s is used to denote donkeys. But the extension of the actual German
word Tiger contains those individuals that are tigers – and not those that are called
Tiger; for the fact that it is called a Tiger does not make a member of the equus asinus
group a panthera tigris. By the intension of Tiger, we mean the function that assigns
to any possible situation the extension of the word Tiger in actual German.

44α∗ is also known as the two-sorted translation of α. The connection mentioned in
(159), as well as the notation introduced in (158), originate with Daniel Gallin’s book
Intensional and Higher-Order Modal Logic (1975).
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ment clause (= the argument p) plays, viz. being ‘evaluated’ at the doxastic
alternatives; this evaluation boils down to a functional application of the
intension to a situation:

(160) (λpst.(λxe.(∀j)[DOX(x)(i)(j) → pj])) |meint|, by (117a)

Since intensional logic contains no variables referring to situations, formu-
lating analyses like (160) requires the means to express the application of an
intension to a given situation. This is done by the so-called cup operator ∨.
Quite generally the operator allows to construct an expression (∨α) of type
a, starting from an expression α of (intensional) type sa; and the extension
of (∨α), then, is the value of the function denoted by α for the situation
at hand: ‖∨α‖g,s = ‖α‖g,s(s). It should be noted that the cup operator
can only precede formulae of types sa, which themselves may have the form
(∧α).45 Obviously, the cup operator, too, easily transfers to two-sorted type
logic:

(158)
α [Formulas of int. type logic] α∗ [two-sorted equivalent of α]

. . . . . .
(∨β) β∗(i)

Since cap and cup are notational variants of λ-abstraction and functional
application, they are also subject to a law of λ-conversion, which is heavily
used in indirect interpretation based on intensional type logic:

(161) Down-Up-Cancellation
If α is a formula (of intensional type logic) of type a, the following
holds:

∨(∧α) ≡ α.

In view of the ∗-counterparts of intensional formulae of the form ∨(∧α),
Down-Up-Cancellation proves to be a variant of eigen-conversion; for, as is
readily seen by inspection of (158), (∨(∧α))∗ = (λi.α∗)(i). The detour
via two-sorted counterparts also explains why there is no mirror image law
of Up-Down-Cancellation: (∧(∨α))∗ = (λi.α∗(i)), which is not necessarily
equivalent to α if α∗ contains the variable i.46

Even with the cup operator, the analysis (160) of the attitude verb meint
cannot be expressed in intensional type logic without further ado; for apart
from the ubiquitous i, it contains a further variable of s, viz. ‘j’. However,
this is a bound variable, which can in principle be turned into a (bound) ‘i’
by bound renaming:47

45– but they need not: as a case in point, in the intensional version (165) of (160) it gets
combined with a variable (of type st).

46If i /∈ Fr(α∗), then (λi.α∗(i)) ≡ α∗, by the principle (73e) of η-conversion.
47The genearal strategy of eliminating bound variables of type s underlying (162) goes
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(162) (λpst.(λxe.(∀j)[DOX(x)(i)(j) → pj])) λ-conversion
≡ (λp.(λx.(λqst.(∀j)[qj → pj])(DOX(x)(i)))) bound renaming
≡ (λp.(λx.(λq.(∀i)[qi → pi])(DOX(x)(i))))

Thus reformulated, the analysis of meint [≈ thinks] can be expressed in
intensional type logic, using (158), provided it contains the arrow ‘→’ and
the universal quantifier. As before, the former can be defined by combining
negation and conjunction, which – unlike the non-logical constants – are
written and interpreted as in two-sorted type logic. The same holds for the
universal quantifier of type (et)t , which may be reduced to negation und
existential quantifier in the familiar way and is also written ‘∀’. On the other
hand, the universal quantifier appearing in (162) is of type (st)t and called
the necessity (or box ) operator) in intensional logic;48 it may be defined
in terms of a corresponding existential quantifier know as the possibility or
diamond operator). Unlike their two-sorted counterparts, the two operators
receive their own notation in intensional logic:

(163) a. ♦♦♦ is a logical constant of type (st)t (in intensional type logic)
such that the following holds:

‖♦♦♦‖g,s = λp. `↓p 6= ∅ a cf. (33b) in 5.3
[= that function of type (st)t that assigns to any sentence
intension p the truth value 1 just in case p does not characterise
the empty set] cf. (34b) in 5.3

b. If ϕ is an (intensional) formula of type t , then the formula
♦♦♦(∧ϕ) is abbreviated as ♦♦♦ϕ.

c. ��� is (an abbreviation for) the formula: cf. (104) in 5.6
λpst.¬♦♦♦¬(∨p)

of type (st)t .
d. If ϕ is a formula of of type t , then

���ϕ
is (an abbreviation for) the formula

���(∧ϕ).

A comparison of the pertinent definitions and notational conventions for
predicate logic quantifiers reveals how the variable i is ‘simulated’ by cap and
cup operators in intensional type logic. On the basis of (163) and (158) the
following consequences for a two-sorted re-translation of the modal operators
(= box & diamond) as quantifiers of type (st)t emerge:

(164) a. (♦♦♦ϕ)∗ ≡ (∃i)ϕ∗; b. (���ϕ)∗ ≡ (∀i)ϕ∗.

back to my paper Intensional Logic and Two-Sorted Type Theory (1989).
48According to an idea that goes back to the German philosopher Gottfried Wilhelm
Leibniz (1646–1716), necessity can be construed as truth in – or more accurately: of –
all possible worlds. In modal logic, from where the notation introduced in (163) derives,
this notion of necessity is dubbed metaphysical or absolute necessity.
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Given (164), we can now transfer the (reformulated) analysis (162) of the
attitude verb meinen into intensional type logic:49

(165) (λpst.(λxe.(λqst.���[∨q → ∨p])(∗DOX(x))))

A comparison of (160) and (165) brings out clearly that the formulae of in-
tensional type logic are not always shorter and more transparent than their
two-sorted counterparts. As soon as more than one situation gets into focus,
the omission of the situation variable i may turn into a nuisance. And this
is not just a matter of the readability of formulae but also has repercussions
on their formal properties. For intensional logic violates a number of funda-
mental logical laws. One of them is the so-called principle of specialization
– the (generalized) inference from a universally quantified formula (∀x)ϕ
to any instance ϕ[x/α] in which the variable x has been replaced by a term
α of the same type – provided that α contains no free variable that would
thereby get bound. The (valid) formula (∀xe)(∃ye)���(x = y) of inten-
sional logic is a counterexample to this principle: it does not guarantee the
truth of (∃ye)���(c = y) if c is a constant (of type e) whose extension is
situation-dependent. Its two-sorted ∗-counterpart shows why this inference
fails: the necessity operator binds the situation variable i implicit in the con-
stant c. In a similar way, the general validity of the principle of λ-conversion
can be refuted in intensional type logic: (λxe.(∃ye)���(x = y))(c) is not
equivalent to (∃ye)���(c = y). These logical principles (specialisation and
λ-conversion) only hold in restricted forms – namely, if the ∗-counterpart of
the formula to be substituted does not contain a free i that contradicts the
variable condition – producing an accidental binding by substitution.50 But
even when properly restricted will the principle of λ-conversion wreak havoc:
unlike their counterparts in two-sorted type logic, sequences of λ-reductions
(and renamings) starting with the same formula do not always lead to the
same result.51 Given this formal complication, it seems advisable to shun

49∗DOX is an intensional constant of type s(et) whose ∗-translation is equivalent to the
following formula of two-sorted type logic:

λj.λxe.DOX(x)(i)(j).

50In this restricted form, the principles can also be formulated without reference to the two-
sorted ∗-counterparts of intensional formulae. Following Gallin’s proposal (cf. footnote
44), one may define the notion of a modally closed intensional formula, which covers such
formulae in whose ∗-counterpart i does not occur freely. The modally closed formulae
comprise (i) all variables, (ii) all formulae of the form (∧α) as well as (iii) all functional
applications α(β) and λ-abstractions (λx.α), where α and β are themselves modally
closed. The principle of λ-conversion can then be restricted (apart from the usual
variable condition) so as to apply to (λx.α)(β) and α[x/β] only if either β is modally
closed or nowhere in α does (free) x stand in the scope of a cap operator.

51This fact has been known since the publication of the paper λ-Normal Forms in an
Intensional Logic for English (1980) by Joyce Friedman and David Warren, where an
example along the following lines was presented: if P and c are constants of types (se)e
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intensional type logic and replace its formulae by their ∗-counterparts, even
if the latter are sometimes longer.

5.8.3 Substitutional quantification

The interpretation of variables offered in Section 5.3 is not the only way of
solving the problem of binding: one may also empoy substitutions instead of
assignments. For this to work, one would have to assume, though, that any
object u of any type a has a standard name cu, which is a (unique) constant
of type a. Given this assumption, the denotation ‖α‖ of a formula α does
not have to depend on an assignment. In particular, ‖cu‖ = u. The inter-
pretation of the other constants proceeds as before; the variables, however,
do not receive denotations of their own (or some that is arbitrarily cho-
sen). Functional application, too, will be interpreted as before, but without
reference to assignments. The λ-operator, however, receives the following
interpretive treatment:

(166) Substitutional interpretation of λ-abstraction
If x is a variable of type a and α is a formula of type b, then
‖(λx.α)‖ is that function of type (ab) such that for all u of type
a the following holds:
‖(λx.α)‖(u) = ‖α[x/cu]‖

As before, the notation ‘α[x/cu]’ stands for the replacement of any free oc-
currences of x by the constant cu, the standard name of the object u. It
should be noted that no accidental bindings can occur in (166), given that
cu contains no variables.

The substitutional interpretation of abstraction is independent of the two-
sorted type logic considered here and can be applied to more or less all known
forms of variable binding. In particular, one may also define a substitutional
variant of intensional type logic. In practice, however, substitutional inter-
pretation is chiefly found in connection with predicate logic.

(166) presupposes that the result of the substitution α[x/cu] has a denota-
tion in the first place. If x is the only free variable in α, one can show
that this is in fact so – even if α (and hence α[x/cu]) contains further λ-
operators. But if α contains several free variables, α[x/cu] has no denotation
(or, as the case may be, one that is totally random, due to the arbitrarily
chosen denotations of free variables). In this sense, the technique of substi-
tutional interpretation is intrinsically confined to closed formulae – which is
no great loss: free variables and open formulae do not really have content;

and e, respectively, then the formula (λx. P((λy. ∧y)(x)))(c) can be (restrictedly)
λ-reduced to both P((λy. ∧y)(c)) and (λx. P(∧x))(c), neither of which is further
reducible or can be obtained from the other by bound renaming.
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even accordng to assignement semantics, their denotations are provisional,
assignment-dependent. However, in the realm of closed formulae, assignment
semantics and substitutional interpretation agree.

According to (166), the denotation of a formula (λx.α) – whether open or
closed – is not determined from the denotations of its parts. Rather, the
denotation depends on all substitution instances α[x/cu] none of which are
part of the formula.52 In contrast, as we have seen in Section 5.3, assignment
semantics is compositional, at least on the level of meanings (= functions
from assignments to denotations). Maybe it is its lack of compositionality
that is chiefly responsible for the otherwise conceptually and technically sim-
pler substitutional interpretation of variable binding. A further reason may
be seen in the assumption of the somewhat artificial standard names that
the substitutional interpretation of variable binding needs to rely on.53

52. . . apart from the neurotic case in which α is closed (i.e., Fr(α) = ∅) and thus not even
x is free in α.

53The substitutional approach to variable binding also leads to (surmountable) technical
problems when combined with the (standard) model-theoretic approach to logic, where
arbitrary (non-empty) sets may play the rôles of the domains of individuals and situ-
ations. – There is reason to suspect that the compositionality aspect was the crucial
factor in the development of assignment semantics as an alternative of the older sub-
stitutional interpretation: it is known that Tarski (cf. Fn. 10) does not seem to have
scruples regarding languages of arbitrary cardinality, which substitutional interpretation
is committed to (and a source for qualms about it).
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5.9 Exercises for Chapter 5

A1 1. What is the extension type of the meanings of coordinate con-
junctions defined in (7) and (8)?

2. Give a reformulation of the compositional rule (4) so as to make
it compatible with the analyses (7) and (8).

A2 1. Draw trees in the style of (20) for the formulae (19b) and (19c).
2. Undo the notational abbreviations in (26) and draw a tree for the

result.

A3 Show that (25) (λQet.(λP et.(∃xe)[Q(x) ∧ P (x)])) is a formula of
type (et)((et)t).

A4 Represent ‖(λx. S(i)(x)(y))‖g2 in the style of (43) by ‘thinning’ table
(41).

A5 Reformulate the interpretation (47) of (λxa. α) as a combination of
the meanings of xa and α.
Hint: It suffices to construct the modified assignment g[x/u] from g, u
and the meaning of x – the denotation depending on the assignment –
for arbitrary assingments g and objects u of type a.

A6 Determine the denotation ‖(λye. (λxe. S(i)(x)(y)))‖g1 of (36), start-
ing from table (41).

A7 Show that the denotation of (λi. (λye.(λxe. S(i)(x)(y)))) does not
depend on the assignment.

A8 1. Show that (λxe. (x = y)) is not equivalent to (λye. (x =
y)[x/y]).

2. show that (λx. (∃y)Ti(x)(y))(y) is not equivalent to (∃y)Ti(y)(y).

A9 Show that the bound renaming performed on (96)
¬(∃x)[Mi(x) ∧¬(λP.(∃x)[Fi(x) ∧ P (x)])(λy.Ti(x, y))]
was necessary, by specifying an assignment given which the denotation
of (96) differs from that of:
¬(∃x)[Mi(x) ∧¬(∃x)[Fi(x) ∧ (λy.Ti(x, y))(x)]]

A10 Prove (105) by reference to the abbreviation conventions (104) and the
interpretation of type logic given in Section 5.3.

A11 Show that the transitions in (109) are correct, under the assumption
(given in the text) that g(i) = s. You may presuppose that ‖|N |‖g =
JNKs and ‖|VP|‖g = JVPKs.

A12 Show that |Eike besitzt einen Porsche| ≡ (∃y)[Pi(y)∧Bi(e, y)].
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A13 Show that the ditransitive verb schulden [≈ owe] is an opaque verb
and provide a lexical analysis in the style of (141) based on the (ap-
proximate) synonymy with geben müssen [≈ must give] mentioned
in the text.
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Chapter 6

Modification

In this chapter we will take a look at constructions in which a constituent is
optionally expanded (or modified) by an adjunct without thereby changing
its category. We start with the analysis of (restrictive) relative clauses and
(attributive) adjectives, which both modify nominal constituents, and later
briefly turn to the modification of verbs and sentences by adverbs. Before
doing the latter, we will discuss some foundational (type-) theoretic issues.

6.1 Relative Clauses

6.1.1 Ambiguity in Relative Clauses

There are several kinds or uses of relative clauses. Let us consider the fol-
lowing ambiguous (surface) sentences:

(1) Die türkische Kursteilnehmerin, die in der zweiten Reihe
sitzt, hat die Klausur bestanden.
[≈ The female Turkish course participant [,] who is sitting in the second
row[,] passed the test.]

To begin with, (1) may say about the (only) female Turkish course partic-
ipant that she passed the test and moreover convey where this person is
sitting. In this case we are dealing with an appositive reading of the under-
lined relative clause. [This is the reading that is normally marked by commas
in the English translation.] In particular, there would have to be precisely
one (1) female Turkish course participant according to this reading. On the
other hand, (1) may also be used if more than one Turkish woman takes the
course, as long as only one of them is sitting in the second row; and then
a claim is made about the latter’s test result. In this case we are dealing
with a restrictive use of the underlined relative clause [which is marked by
omitting the commas in the English translation]. The difference between the
two readings of (1) can be made clear by the following paraphrases:
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(1) a. Die türkische Kursteilnehmerin, die übrigens in der zwei-
ten Reihe sitzt, hat die Klausur bestanden.
[≈ The female Turkish course participant, who is, by the way, sitting
in the second row, passed the test.]

b. Diejenige türkische Kursteilnehmerin, die in der zweiten Reihe
sitzt, hat die Klausur bestanden.
[≈ Precisely that female Turkish course participant who is sitting in
the second row passed the test.]

Obviously (1a) is inappropriate if there are several (relevant) female Turkish
course participants – even if only one of them is sitting in the second row.1

Rather, (1a) must be understood as an assertion about the only Turkish
woman in class. It appears that the adverb übrigens [≈ by the way] is
only compatible with the appositive reading of the relative clause in which it
occurs; it thus disambiguates. The same goes for bekanntlich [≈ as is well
known], [unstressed] ja [≈ as is well known], and a bunch of further adverbs
and particles. Reversely, modifying the definite article by -jenig [≈ precisely
[that]] announces a relative clause that must be construed restrictively, as
is confirmed by its incompatibility with adding übrigens [≈ by the way],
bekanntlich [≈ as is well known], ja [≈ as is well known] etc.:

(1) c. *Diejenige türkische Kursteilnehmerin, die übrigens in
der zweiten Reihe sitzt, hat die Klausur bestanden.
[≈ Precisely that female Turkish course participant who is, by the way,
sitting in the second row passed the test.]

Not every relative clause is ambiguous in this way. As a case in point, (2)
can only be understood appositively, i.e., in the sense of (2a); conversely, (3)
lacks an appositive reading, which is again illustrated by its incompatibility
(3∗) with the above-mentioned disambiguating elements:

(2) Selin, die in der zweiten Reihe sitzt, hat die Klausur be-
standen.
[≈ Selin, who is sitting in the second row, passed the test.]

a. Selin, die ja in der zweiten Reihe sitzt, hat die Klausur
bestanden.
[≈ Selin, who is, by the way, sitting in the second row, passed the test.]

(3) Keine türkische Kursteilnehmerin, die (∗übrigens) in der
zweiten Reihe sitzt, hat eine schlechte Klausur geschrieben.
[≈ No female Turkish course participant who (*by the way) is sitting in the
second row did bad on the test.]

In this chapter we will chiefly treat restrictive relative clauses and address
the appositive ones only in passing. More specifically, we will neglect the
1As before we ignore the possibility of an anphoric use of the subject; we will return to
anaphoric definite descriptions in Chapter 10 [which is yet to be written].
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appositive uses of relative clauses; for the relative clause always has the
same meaning, no matter if it is used restrictively or appositively.

6.1.2 Restrictive Relative Clauses

By way of approaching the analysis of restrictive relatives, let us look at:

(4) Jede Kursteilnehmerin, die in der zweiten Reihe sitzt, hat
die Klausur bestanden.
[≈ Every female course participant who is sitting in the second row passed
the test.]

(4) is apparently true of a given (classroom) situation s if the set As of female
course participants in the second row in s is a subset of the set Bs of the
successful attendants in s: As ⊆ Bs. The set As can then be constructed by
intersecting the set Ks of female course participants (in s) with the set Zs of
persons sitting in the second row (in s): As = Ks ∩ Zs.Using this notation,
the proposition expressed by (4) can then be represented as follows:2

(5) {s ∈ LS | Ks ∩ Zs ⊆ Bs}

Let us, for simplicity, assume that Ks, Zs and Bs correspond to constants
of type s(et) whose denotations, when applied to a given s ∈ LS, charac-
terise these sets: ‖K‖ = λs.λx. ` x ∈ Ks a, etc. Then the type-logical
representation of the extension of (4) corresponding to (5) looks like this:

(6) (∀xe)[[Ki(x) ∧ Zi(x)] → Bi(x)]

Ki is the translation of the noun Kursteilnehmerin [≈ female course
participant], Bi translates the predicate hat die Klausur bestanden [≈
passed the test]. It is thus suggestive that the contribution the relative clause
makes to the extension of (4) ought to be seen as consisting in the character-
istic function of the set Zs; we thus take it that its type-logical translation
is equivalent to the formula Zi – and thus to that of the predicate sitzt
in der zweiten Reihe [≈ is sitting in the second row]. Precisely how the
relative clause gets this semantic value will be made clear presently. Before
that, however, we will ponder about how the extensions of the parts of (4)
combine into the extension represented by (6). The answer to the under-
lined question is both simple and surprising. To begin with we observe that
the subject is obviously a quantifier, so that the type-logical translation of
the overall sentence S ought to be derivable by the translations of the sub-
ject Q and the predicate P , using the quantifier rule (88) from section 5.5:
|S| = |Q|(|P |). The translation of the predicate we have been taking to be:
Bi. The subject’s translation is not hard to find either; for as we already
remarked, the sentence expresses a subset relation between two sets As and

2(5) thus is the set characterised by the intension of (4).

201



6.1. RELATIVE CLAUSES

Bs, and this subset relation is just contributed by the determiner jede [≈
every] , whose extension accordingly must be applied to the intersection of
the extension of Kursteilnehmerin [≈ female course participant] and that
of the relative clause:

(7) |jede Kursteilnehmerin, die in der zweiten Reihe sitzt|
≡ |jede|(λxe.[|Kursteilnehmerin|(x)∧

|die in der zweiten Reihe sitzt|(x)])
≡ (λQet.(λP et.(∀xe.[Q(x) → P (x)])) (λx.[Ki(x) ∧ Zi(x)])

It is now but a small step to a simple semantic analysis of attaching the
relative clause to the noun:

(8) Jede Kursteilnehmerin, die in der zweiten Reihe sitzt,
hat bestanden

(∀xe)[[Ki(x) ∧ Zi(x)] → Bi(x)]

Jede Kursteilnehmerin, die in der
zweiten Reihe sitzt

(λP et.(∀xe)[[Ki(x) ∧ Zi(x)] → P (x)])

jede
(λQet.(λP et.

(∀xe)[Q(x) → P (x)]))

Kursteilnehmerin, die in der
zweiten Reihe sitzt

(λxe.[Ki(x) ∧ Zi(x)])

Kursteilnehmerin
Ki

die in der
zweiten Reihe sitzt

Zi

. . . . . .

hat bestanden
Bi

The surprising thing about (8) is its bracketing: contrary to any (assumed)
expectation, the relative clause does not go with the quantifying noun phrase
jede Kursteilnehmerin [≈ every female course participant] but with the
noun Kursteilnehmerin [≈ female course participant]. This analysis sug-
gested by (7) also proves to be both handy and correct in other cases, as
will be shown in an exercise (of course). And it cannot be escaped in the
environment of a compositional semantic analysis – as will also be shown in
an exercise, though a less simple one. The general pattern, then, is this:

(9) Indirect Interpretation of the Attachment of Restrictive Relative Clauses
If N is a (complex) noun consisting of a (possibly complex) noun N ′
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and a relative clause M , then:
|N | = (λxe.[|N ′|(x) ∧ |M |(x)]).

Like the analysis in (8), the general rule (9) presupposes that the extension
of the relative clause is of type et . Now, how does the relative clause get
an extension like that? To answer this question, we must attribute to it
a rudimentary syntactic structure that takes the fact into account that a
relative pronoun always relates to a gap in the remaining clause:

(10) a. [diex[ x in der zweiten Reihe sitzt]]
[≈ [whox[ x is sitting in the second row]]]

(10a) indicates the coarse structure of the relative clause from (4): the rela-
tive pronoun is combined with the matrix of the relative clause, a (subordi-
nate) sentence with a gap – in our case in its subject position – that has the
same subscript ‘x’. This coindexing serves to uniquely identify the gap.3

(10) b. [diex[ x Fritz kennt]]
c. [diex[Fritz x kennt]]

In (10a) and (10b) the (nominative) relative pronoun relates to the subject
position of kennt [≈ knows]; in (10c) it is in the accusative and relates to
its object position. Accordingly, the extension of (10b) should consist of the
individuals who know Fritz, whereas the extension of (10c) should comprise
those that Fritz knows:

(11) b. |diex[ x Fritz kennt]|
= (λxe.|kennt|(x, |Fritz|))
= (λx.Ki(x, f))
c. |diex[Fritz x kennt]|
= (λxe.|kennt|(|Fritz|, x))
= (λx.Ki(f, x))

The translations given in (11b) and (11c) can be obtained in a simple and
systematic way under the assumption that the gap is always translated by
a variable (of type e) the value of which is then abstracted from in the
formation of the relative clause:

3The syntactic literature also has traces (of movement) instead of (co-) indexed gaps. –
As a rule, a relative clause contains only one gap, which could also be identified without
coindexing. But there are exceptions. Thus the accusative relative pronoun both stand
for either of the two objects of lehren [≈ teach], with the other one being implicit:
die Gebiete, die niemand lehren will [≈ the subjects no-one wants to teach] vs. die
Studenten, die niemand lehren will [≈ the students no-one wants to teach]. Indexing
removes ambiguity – provided that the two object positions are uniquely identified in the
underlying syntactic structure. In (10) this is done by the ‘canonical’ order Subjekt
Objekt Verb, which we have been assuming for simplicity; in general the positions are
identified by detailed syntactic structuring.
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(12) Indirect Interpretation of Relative Clauses
If M is a (subordinate) sentence and x is a variable of type e , then:
|d-x M | = (λxe.|M |).

(13) Indirect Interpretation of Indexed Gaps (‘Traces’)
| x| = x where x is a variable of type e

Following this line, one now gets a translation of the relative clause in (10a):

(11) a. |[diex[ x in der zweiten Reihe sitzt]]| by (12) and (13)
≡ (λxe. |sitzt in der zweiten Reihe|(x)) by assumption
≡ (λx.Zi(x)) for type-logical reasons4

≡ Zi

Much can be said about the interpretive rules (12) and (13). First of all,
it should be noted that (12) presupposes that the syntactic analysis already
provides the coindexing of relative pronoun and gap. In particular, one may
assume that the matrix M contains a (correctly indexed) gap in the first
place. ‘Empty’ relativisation, as in [derx Fritz niemanden kennt] [≈
[whox Fritz knows nobody]] are thus excluded syntactically, although
they would in fact make – limited – semantic sense (as is shown in an exer-
cise). Apart from that, the coindexing must be made by way of a type-logical
variable (of type e). This is, of course, merely a matter of semantic conve-
nience: one could have taken different indices and assigned variables to them
instead.

It must furthermore be noted that (13) is a lexical rule: the indexed gap is
understood as a simple expression.5 In order for the gap to make its semantic
contribution to the matrix, it must syntactically behave like a proper name
and, in particular, be able to participate in subject and object predication.
On the basis of the semantic equivalence of main and subordinate clauses
familiar from Chapter 4, the matrices of the three relative clauses in (10)
can now be translated into type logic:

(14) a. | x in der zweiten Reihe sitzt| reduction to verb second [main clause]

word order

= | x sitzt in der zweiten Reihe| (Subject) Predication
= |sitzt in der zweiten Reihe|(| x|) by (13)
≡ Zi(x)
b. | x Fritz kennt| reduction to verb second [main clause] word

order

4– by the so-called law of η-Conversion: cf. (73e) in section 5.4.
5There are reasons for assuming that gaps (or traces) are functional morphemes, which
accordingly are not part of the lexicon. All that matters for our current purposes is that
they are not complex expression whose semantic values must be reduced to those of their
parts.

204



CHAPTER 6. MODIFICATION

= | x kennt Fritz| (Subject) Predication
= |kennt Fritz|(| x|) (Object) Predication
= |kennt|(|Fritz|)(| x|) by (13)
= Ki(f)(x) notational convention
= Ki(x, f)
c. |Fritz x kennt| reduction to verb second [main clause] word

order
= |Fritz kennt x| (Subject) Predication
= |kennt x|(|Fritz|) (Object) Predication
= |kennt| (| x|)(|Fritz|) by (13)
= Ki(x)(f) notational convention
= Ki(f, x)

Finally, (12) appears to be in conflict with the Principle of Compositionality
in in the form assumed so far, and this for no fewer than three reasons. For
one thing, the contribution the matrix makes to the extension of the relative
clause consists neither in its extension nor in intension: the construction is
thus neither extensional nor intensional. The reason for this is simply that
according to (12), relative clause formation is a binding operation, where
the assignment-dependence of the extension is reduced by binding a free
variable. As we have seen (toward the end of section 5.3), this passage
cannot be construed as an operation on the extension or the intension of the
matrix; rather, the entire meaning of the matrix needs to be involved, i.e.,
the dependence of the extension on the variable assignment. If this meaning
is itself taken as a function from assignments to extensions, variable binding
– and relative clause formation according to (12) – can be conceived of as
being compositional on the meaning level. We will not delve deeper into
this but only point out that this is an essential property of relative clause
formation (as well as certain other constructions to be considered in Chapter
7 [to be written]).6

But even if the Principle of Compositionality is weakened in this way, (12)
does not seem to satisfy it. For there the (type-logically expressed) meaning
of the relative clause is only traced back to the meaning of the matrix; the
relative pronoun does not seem to contribute a meaning of its own. However,
things are not that simple. In fact, (12) can be reconciled with the Principle
of Compositionality (on the meaning level) – in rather different ways:

• (12) can be construed as saying that the relative pronoun – unlike
the indexed gap – is no morpheme on its own but only indicates the
grammatical construction in use (viz., relative clause formation); the
relative pronoun would then be syncategorematic. On this view, its

6This only holds for the (standard) analysis of relative clauses pursued here. Compo-
sitionality on the level of extensions can be upheld in the framework of variable-free
interpretation (as indicated at the end of the previous chapter).
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status would be similar to that of the brackets or the lambda in type-
logical notation, neither of which have meanig on their own, although
they do contribute to the meanings of the formulae in which they occur.
Furthermore, relative clause formation would then be a unary construc-
tion, i.e., not a combination of several expressions but one that merely
one expression undergoes, viz., the matrix. And (12) would indeed
interpret this construction in a compositional way; for the meaning of
the entire expression (the relative clause) is systematically obtained
from the meaning of its only part (the matrix), viz., by abstraction
from the variable assignment.7

• In view of this, one may as well identify the semantic contribution of
the relative pronoun with the meaning of the corresponding variable –
and thus also with the meaning of the coindexed gap. The translation
given in (12) could then be reformulate accordingly:

|d-x M | = (λ|d-x|.|M |),

where a further (lexical) translation rule has it that |d-x| = xe. Ac-
cording to this analysis, the semantic contribution of relative clause
formation thus consists precisely in the abstraction indicated by the
type-logical λ.

• One may also consider λ-abstraction itself – or more precisely: the cor-
responding semantic operation – the meaning of the relative pronoun.
For this one would, however, step out of the type-logical framework de-
fined so far. For abstraction combines the meaning of the variables x
with the meaning of the matrix M into the meaning of the λ-formula;
it is thus no meaning itself, i.e., no assignment-dependent extension.

We do not have to decide on any of the three compositional accounts here. It
should merely be noted that, from a semantic point of view, relative clause
formation differs from most of the constructions considered in the previous
chapters in that it is not interpreted by type-logical functional application.8

The same holds for the attachment of the restrictive relative clause to the
noun, which in (9) is interpreted by intersection, set-theoretically speaking.
We will, however, come across an alternative to (9) in Section 6.3.

7Since different variables correspond to different semantic operations, one would, strictly
speaking, be dealing with a whol ‘family’ of constructions – one construction per variable;
such a conception of relative clauses can be found in Richard Montague’s writings.

8According to the third of the above possibilities relative clause formation does correspond
to some kind of functional application, but not to that of typelogic; for no extension (of
some type ab) gets applied to an extension (of some type a) or an intension (of some type
sa).
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6.1.3 Appositive Relative Clauses

The attachment of appositive relative clauses, on the other hand, can be
interpreted by functional application, although not in the by now familiar
way. First of all, one should remember that this construction also occurs
in connection with proper names. It is thus not (or not always) compatible
with the constituent structure of the restrictively used relative clause. Thus
in (2) the relative clause cannot modify a sortal noun; for the subject does
not contain any such noun (outside the relative clause). We will assume the
following bracketing instead:

(2) [[Selin, [die in der zweiten Reihe sitzt,]] hat die Klausur be-
standen]
[≈ [[Selin, [who is sitting in the second row,]] passed the test] ]

Under the assumption that the meaning of the relative clause is independent
of its (restrictive vs. appositive) attachment, the type-logical translations of
the three bracketed constituents in (2) may be presumed to be known:

(15) a. |Selin| = s, constant of type e
b. |die in der zweiten Reihe sitzt| ≡ Zi, where Z is a constant

of type s(et)
c. |hat die Klausur bestanden| ≡ Bi, where B is a constant of

type s(et)

If one now wants to combine these three type-logical formulae in parallel
to the structure given in (2), functional application suggests itself for the
interpretation of the subject (= proper name + relative clause):

(16) Selin, die in der zweiten Reihe sitzt,
Zi(s)

Selin
s

die in der zweiten Reihe sitzt
Zi

It is not hard to see that the result of this combination is of type t and thus
corresponds to a truth value (extensionally) or a proposition (intensionally).
This is problematic in that there is no natural way for combining these
semantic values with those of the predicate in (15c), which is of type et after
all. It rather seems as if this predicate (or more precisely: its semantic values)
must be combined with the proper name Selin by functional application –
just like the relative clause:

(17) a. Zi(s)
b. Bi(s)
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On the extensional layer the resulting truth value obviously needs to be 1 in
both cases, should the entire sentence (2) come out true. The corresponding
intensions – this is not hard to see either – then have a different status:

(18) a. (λi.Zi(s))
b. (λi.Bi(s))

(2) seems to express these two propositions at once, but present them in
different ways. Whereas (18a) makes up the true informational value of (2),
(18b) gives some information aside, which may either be presupposed to be
known or marked to be less relevant. The compositional derivation of the
meaning of (16) must account for this asymmetry and make a split between
major and minor parts; a theoretical frame for this will be developed in
Chapter 9 [which still needs to be written].

Appositive relative clauses not only occur with proper names. Definite de-
scriptions, too, can be modified by them, as the intial example of this chapter
has already illustrated:

(19) Die türkische Kursteilnehmerin, die in der zweiten Reihe
sitzt, hat die Klausur bestanden. = [(1)]

a. Die türkische Kursteilnehmerin, die übrigens in der
zweiten Reihe sitzt, hat die Klausur bestanden.
[≈ The female Turkish course participant, who is, by the way, sitting
in the second row, passed the test. ]

b. Diejenige türkische Kursteilnehmerin, die in der zweiten
Reihe sitzt, hat die Klausur bestanden.
[≈ Precisely that female Turkish course participant who is sitting in
the second row passed the test.]

In the light of the above observations it is now tempting to explain the read-
ing (19a) in analogy to the interpretation of (2): the definite description die
türkische Kursteilnehmerin [≈ the female Turkish course participant]
can be (syntactically) combined directly with the relative clause and (se-
mantically) be interpreted as a claim that complements the proper content
(or the proposition expressed). The difference between the restrictive and
the appositive reading then comes out as a bracketing ambiguity:

(20) a. [[[Die [türkische Kursteilnehmerin]] [die in der zweiten
Reihe sitzt]] hat die Klausur bestanden]
[≈ [[[The [female Turkish course participant]] [who is sitting in the
second row]] passed the test] ]

b. [[Die [[türkische Kursteilnehmerin] [die in der zweiten
Reihe sitzt]]] hat die Klausur bestanden]
[≈ [[The [[female Turkish course participant] [who is sitting in the
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second row]]] passed the test] ]

(There is a special exercise dedicated to those readers who find these brack-
ets too confusing!) As in the case of (16), the combination of the definite
description with the relative clause can be interpreted by functional applica-
tion, but unlike in that case, the extension of the definite description must
be applied to that of the relative clause: following Russell’s interpretation of
the definite article, definite descriptions are quantifying noun phrases after
all:

(21) die türkische Kursteilnehmerin, die in der zweiten Reihe sitzt
(∃xe)[Ti(x) ∧Ki(x) ∧¬(∃ye)[¬(x = y) ∧Ti(y) ∧Ki(y)] ∧ Zi(x)]

die türkische Kursteilnehmerin
(λP et.(∃x)[Ti(x) ∧Ki(x) ∧

¬(∃y)[¬(x = y) ∧Ti(y) ∧Ki(y)] ∧ P (x)])

die in der zweiten Reihe sitzt
Zi

Intuitively speaking, the relative clause in (21) has the same function as that
in (16), viz., providing additional information about the person denoted by
its sister constituent. It is thus not surprising that appositive relative clauses
cannot modify quantifying noun phrases like keine Kursteilnehmerin [≈
no female course participant] (as we had already seen by way of (3)): un-
like definite descriptions, ‘true’ quantifiers do not denote individuals. This
insight is not reflect in (21) though, since the meaning combination used for
interpreting relative clause attachment would just as well work with ‘true’
quantifiers; as a case in point, the subject of (3) would receive the following
appositive interpretation:

(22) keine türkische Kursteilnehmerin, die in der zweiten Reihe sitzt
¬(∃xe)[Ti(x) ∧Ki(x) ∧ Zi(x)]

keine türkische Kursteilnehmerin
(λP et.¬(∃x)[Ti(x) ∧Ki(x) ∧ P (x)]

die in der zweiten Reihe sitzt
Zi

However, on no reading does (3) say – and be it only as an aside – that the
second row did not contain any female Turkish course participants. The ap-
positive construction (22), though parallel to (21), must therefore be blocked
somehow – perhaps by a pertinent syntactic restriction. A more natural ex-
planation emerges if one follows the above-mentioned intuition that definite
descriptions denote the individuals they describe like proper names denote
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their bearers. For if the semantic value of a definite description were an
individual, definite descriptions would not be quantifiers, and there would
be analogy between (1) and (3). The bracketing (20a) of (1) could then be
interpreted in analogy to (2). We will return to this topic in Chapter 9 [to
be written].

6.2 Adjectives

In (21) and (22) we tacitly assumed the complex noun türkische Kursteil-
nehmerin [≈ female Turkish course participant] to translate as follows:

(23) (λxe.[Ti(x) ∧Ki(x)])

Of course, both (non-logical) constants appearing therein are of type s(et):9

(24) a. ‖T‖ = λs.λx. ` x is of Turkish nationality in s a
b. ‖K‖ = λs.λx. ` x is a female course participant in s a

Obviously, to obtain (23) as the desired result of the indirect interpretation of
türkische Kursteilnehmerin [≈ female Turkish course participant], one
first needs to equate the intensions of the adjective türkisch [≈ Turkish]
and the noun Kursteilnehmerin [≈ female course participant] with the
respective denotations of the constants interpreted in (24a) and (24b):

(25) a. |türkisch| = Ti
b. |Kursteilnehmerin| = Ki

. . . and combine the results by intersection – just as in the case of the at-
tachment of the restrictive relative clauses to their head nouns:10

(26) Indirect Interpretation of Attaching Intersective Adjectives

9(24b) raises the question which course is referred to to the right of the equality sign.
A straightforward answer is that this depends on the situation s at hand, i.e., that
it is the course that is pertinent in s. An alternative answer relates the question to
context dependence, the topic of the next chapter but one [which is not yet written]. We
leave the question open for the time being. Moreover we will neglect the fact that the
adjective türkisch [≈ Turkish] is obviously polysemous in a systematic way and apart
from nationality, may also relate to the place of residence or the origin.

10The formula given in (26) only describes an intersection if neither the translation of
the noun nor that of the adjective contains x as a free variable. Otherwise undesired
binding occurs, which may be avoided by the somewhat more cumbersome formula:

(*) |N | = (λQet.(λP et.(λxe.[Q(x)∧ P (x)]))) (|N ′|) (|A|)

Clearly, for the case that x /∈ Fr(|N ′|) ∪ Fr(|A|), (*) is equivalent to the translation
given in (26).
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If N is a (complex) noun consisting of an intersective adjective A
and a (possibly complex) noun N ′, then:
|N | = (λxe.[|N ′|(x) ∧ |A|(x)])

Apart from the position and the categories of the constituents involved, (26)
resembles the semantics (9)of relative clause attachment; in both cases the
intersection of the extensions (conceived as sets) is formed. This, of course,
presupposes that the extension of the adjective can be construed as a set in
the first place. In the case of türkisch [≈ Turkish] this is a straightforward
assumption – by adding the adjective the extension of the noun obviously
gets restricted to individuals with Turkish nationality. But the combination
of an adjective and a (sortal) noun cannot always be described along the
lines of (26):

(27) Ein junger Anwalt verteidigt einen angeblichen Hochsta-
pler.
[≈ A young lawyer is defending an alleged conman.]

(27) is true of situations in which there are no conmen at all; all it takes is
someone who is alleged to be one. Moreover, it is irrelevant for the truth
of (27) whether there are any necrophiliacs in the situation at hand. And
it is easy to imagine situations to which (27) applies and in which there are
neither conmen nor necrophiliacs and no one is alleged of desecreting corpses.
In particular, the following sentence does not apply to such situations:

(28) Ein junger Anwalt verteidigt einen angeblichen Leichen-
schänder.
[≈ A young lawyer is defending an alleged necrophiliac.]

Since (27) and (28) may differ in their truth values in the same situation,
angeblich [≈ alleged] cannot be an intersective adjective. For the exten-
sions of Hochstapler [≈ conman] and Leichenschänder [≈ necrophiliac]
coincide in such a situation – and thus so do those of [A Hochstapler] and
[A Leichenschänder] if A is an adjective interpreted according to (26), as
is easily shown in an exercise.

A similar argument shows that the other adjective in (27) and (28) cannot
be interpreted by intersection either.11 For, as will become clear by solving
one of the exercises (if not earlier), if jung [≈ young] were an intersective
adjective, the young politicians would have to form a subset of the young
lawyers in a situation in which all politicians happen to be lawyer. But even
under such circumstances the truth of (27) does not necessarily imply that
(29) is also true:12

11Thanks to Dina Voloshina for spotting a flaw in the example used in an earlier versions
of these class notes.

12It ought to be mentioned that, according to a view that is common among semanticists,
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(29) Ein junger Politiker verteidigt einen angeblichen Hochsta-
pler.
[≈ A young politician is defending an alleged conman. ]

(27) may apply to a situation if said interviewer is young for a politician
without being at the same time young for a lawyer. If, e.g., the average age
for politicians in a certain country at a certain time were 63, a 55-year old
party leader would still be a comparatively young politician, but she would
no longer be a young lawyer if the average age of that occupational group was
around 50 years. In other words: being a young politician is not the same
as being a politician who is young – in an absolute sense; rather, a young
politician is someone who is both a politician and young for a politician.
In the case of adjectives like jung [≈ young], then, the set with which the
extension of the modified noun gets intersected thus seems to depend on
which noun it is. Under the assumption that someone is young relatively to
a comparison group if his or her age is clearly below the average age of that
group, the extension of a complex noun of the form jung- N [≈ young N ]
can be determined by intersecting the extension of the sortal N with the
set of persons whose age lies clearly below the average age of the elements
in the extension of N . As in the case of an intersective adjective, then, the
adjective’s contribution to the extension determined is a set of individuals
which gets intersected with the extension of the head modified; but in the
case of adjectives like jung [≈ young] – as opposed to those like türkisch [≈
Turkish] – this set also depends on the extension of the modified noun. Since
the set with which the extension of the noun must be intersected depends
on this extension itself, the extension of an adjective like jung [≈ young]
cannot itself be an object of type et (a set of individuals). Rather, it must
be a set depending on a noun extension – i.e., a set-dependent set, and thus
an object of type (et)(et) – which in the course of modifying a noun is both
applied to the latter’s extension and intersected with it. We will call such
adjectives extensionally subsective. Their contribution to the modification of
nominal extensions can be described as follows:

(30) Indirect Interpretation of Attaching Extensionally Subsectives Adjec-
tives
If N is a (complex) noun consisting of an extensionally subsective
adjective A and a (possibly complex) noun N ′, then:
|N | = (λxe.[|N ′|(x) ∧ |A|(|N ′|)(x)]).

the difference between (27) and (28) is of a pragmatic nature. In this view, the adjective
jung [≈ young] is intersective but highly context-dependent : its extension consists of
those individuals whose age is below some given standard, where the use of one or the
other modified sortal – Anwalt [≈ lawyer] vs. Politiker [≈ politician] – makes such
a standard salient. We will briefly return to this analysis in the next chapter but one
[which still needs to be written] but ignore it for the time being – mainly for didactic
reasons.
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An indirect interpretation of the adjective jung [≈ young] under scrutiny
then looks like this:

(31) a. |jung| = Ji, where J is a constant of type s((et)(et)).
b. ‖J‖ = λs.λM.λx. ` αMs � αs(x) a, where αs(x) is the age of

the individual x in the situation s and αMs is the average value
of the age function αs over the elements of the set M .13

Adjectives like jung [≈ young] are called extensionally subsective because
the intersection they contribute to determining the extension only depends
on the extension of the noun modified. For if two nouns have the same
extension, then the average age within this extension is the same and thus
so are the extensions of their modification by jung [≈ young] as determined
by (30) and (31). Things stand differently in the case of an intensionally
subsective adjective like begabt [≈ gifted], where an intersection with the
extension of the modified noun N is formed too though it does not depend
on the extension of N but on its intension; for even if all sculptors happened
to be engravers and vice-versa, a gifted sculptor still would not have to be a
gifted engraver. Hence (30) cannot be applied to the constellation begabt-
N [≈ gifted N ]; instead we need:

(32) Indirect Interpretation of Attaching Intensionally Subsective Adjec-
tives
If N is a (complex) noun consisting of an intensionally subsective
adjective A and a (possibly complex) noun N ′, then:
|N | = (λxe.[|N ′|(x) ∧ |A|(λi.|N ′|)(x)]).

This time the type of the adjective is (s(et))(et).14 However, in this case
it is much harder to find a general rule determining the extension of the
adjective. We content ourselves with a partial characterisation:

(33) a. |begabt| = Bi, where B is a constant of type s(s(et))(et)).
b. For any s ∈ LS and any P of type s(et) the following hold:

if there is an activity such that for all s′ ∈ LS and all individuals
x satisfy:

P (s′)(x) = 1 iff x regularly performs this activity,
then for all s′ ∈ LS and all individuals x: ‖B‖(s)(P )(x) = 1 iff
in s, x proves to be gifted in performing said activity.

13In other words: αM
s = 1

M
·
∑

y∈M αs(y), where M is again the number of elements of
the set characterised by M , which we take to be finite for simplicity. ‘n � m’ stands
for the admittedly vague claim that the number n clearly exceeds m. Of course, (31)
assumes a homogeneous numerical age measure – e.g., in (fractions of) seconds, years,
etc.

14– not to be confused with the intension type s((et)(et)) of extensional adjectives like
jung [≈ young ]!
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(33b) appears complicated, but becomes accessible when applied to a specific
example. If, e.g., we choose P to be the intension of the noun Gitarrist
[≈ guitarist], we may first observe that the underlined condition in (33b) is
indeed met: P (s′)(x) is 1 precisely if x is a guitarist in s′, i.e., regularly plays
the guitar; so the activity in question is guitar-playing. According to (33b),
applying the extension of begabt [≈ gifted] to the intension of Gitarrist [≈
guitarist], then, (in a given situation s) results in (the characteristic function
of) the set of those individuals x who display a certain talent in performing
this activity – in other words: the set of gifted guitarists. So at least in this
case (33) seems to work correctly.

(33b) says that the denotation of the constant B is a function of a particular
type and what the values of this functions for particular arguments are. This
leaves open what happens if the extension of B is applied to a P that does
not meet the underlined condition – the intension of Tisch [≈ table], say.
Moreover, it is by no means always clear that the characterisation of the
functional values is always unequivocal even where the underlined condition
is satisfied. Thus, e.g., a (Catholic) priest regularly performs certain activi-
ties that are reserved to (Catholic) priests alone. But then even if someone
is a priest just in case he [sic! ] regularly holds services, someone who does
this with an exceptional talent still does not have to be a gifted priest. The
example might not be fully convincing: after all, there might be priests that
do not regularly perform any of the activities characteristic of this profes-
sional group. It still points to a hidden assumption in (33b) that may not be
entirely unproblematic – viz., that the activity evaluated is uniquely deter-
mined by the intension of the noun. It is, however, unclear whether begabt
[≈ gifted] could also be used if this requirement is not met.

Incomplete characterisations of semantic values, as in (33b), are called mean-
ing postulates. They are invoked whenever spelling out all details of a lexical
meaning is irrelevant, cumbersome, or difficult, while at the same time some
of its properties need to be fixed. The partial characterisation of the in-
tension of the noun Junggeselle [≈ bachelor] is a classical case in point:15

(34) a. |Junggeselle| = Gi, where G is a constant of type s(et).
b. For any s ∈ LS and any individual x the following holds:

if ‖G‖(s)(x) = 1, then x is s an unmarried mal adult person in

15Meaning Postulates was the title of a paper by Rudolf Carnap published in 1952, from
where the term originates. – In the context of indirect interpretation meaning postulates
are usually written as type-logical formulae. (34b) would then be replaced by:

(*) (∀i)(∀xe)[Gi(x) → [¬|verheiratet|(x)∧ |Mann|(x)]]

A corresponding type-logical representation of (33b) would lead to far astray.

214



CHAPTER 6. MODIFICATION

s.

According to (34) the extension of Junggeselle [≈ bachelor] only contains
unmarried men, which leaves open which ones precisely: all of them, in-
cluding widowers, the pope. . . . ? Despite this sketchiness a postulate like
(34b) may prove handy – e.g., when it comes to explaining the weirdness of
sentences like (35):

(35) Fritz kennt einen Junggesellen, der verheiratet ist.
[≈ Fritz knows a bachelor who is married. ]

In a similar way, one may exploit (33b) to explain why (36) sounds out-
landish:

(36) Fritz kennt einen begabten Pianisten, der des Klavierspie-
lens nicht mächtig ist.
[≈ Fritz knows a gifted pianist who is not capable of playing the piano. ]

The meaning postulates (33b) and (34b) serve to capture at least some se-
mantic aspects of the two lexemes under scrutiny. In both cases a full-fledged
specification of the intension does not seem to be easy – albeit for different
reasons. In the case of Junggeselle [≈ bachelor ] it is hard to identify
clearly sufficient conditions under which someone belongs in the extension;
in particular, it is unclear which criteria make the literal meaning of and
which are but pragmatic frills. Such problems of conceptual determination
are typical for the lexical domain and show that the assumed reconstruction
of meanings as functions in Logical Space is an extreme idealisation made by
Logical Semantics. The problems mentioned above in connection with the
specification of the meaning of begabt [≈ gifted] are of a different nature
though, in that they do not only concern the incompleteness of the partial de-
scription (33b) of the intension but its correctness.16 Such problems in turn
are not quite atypical of the use of meaning postulates in logical semantics
and are often indicative of a mistake in the analysis of a construction or in
the assignment of an extension type. In Section 6.5 [to be written] we will
come across an alternative analysis of adjectives like begabt [≈ gifted] that
can do without a postulate like (33b).

At this point, however, we will turn to the above adjective angeblich [≈
alleged], the semantic analysis of which is still due. As one can easily see, it
does not fall into any of the three above adjectival categories; for according
to the construction interpretations (26), (30) and (32) the extension of a
complex noun of the form A N (construed as a set) is always a subset of the
extension of the modified noun N – no matter whether A is intersective or

16. . . which does not exclude that there are problems of conceptual determination on top of
this – like the question of what it means that someone pursues an activity (sufficiently)
regularly.
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(intensionally or intensionally) subsective. But an alleged conman does not
have to be a conman. Rather, an alleged conman is someone who is alleged
to be a conman. Thus the following two sentences share the same intension:

(37) a. NN ist ein angeblicher Hochstapler.
[≈ NN is an alleged conman. ]

b. Es ist angeblich so, dass NN ein Hochstapler ist.
[≈ It is allegedly the case that NN is a conman.]

In order to guarantee this intensional identity for arbitrary names NN, we
will first analyse (37b). The laborious formulation in terms of clausal em-
bedding ought to help interpreting the construction by Hintikka Semantics.
For like the impersonal construction with scheinen [≈ seem ] considered in
the previous chapter, the clause-embedding use of angeblich [≈ alleged ]
can be interpreted by way of an alternative relation17 of type s(st), where
we keep notation and terminology as parallel as possible:

(38) a. |schein-| = (λpst.(∀j)[EVI∗i (j) → pj]) [= 5.7, (130)]
b. |angeblich| = (λpst.(∀j)[ASS∗i (j) → pj])

(39) a. ‖EVI∗‖ = λs0.λs1. ` s1 is an evidenial alternative in s0 a [=
5.7, (127)]

b. ‖ASS∗‖ = λs0.λs1. ` s1 is an assertoric alternative in s0 a

The constant ASS∗ used in the analysis (38b) of angeblich [≈ alleged] is
meant to be based on a subject-dependent alternative relation called ASS
(of type e(s(st))) underlying the extension of the attitude verb behaupten
[≈ claim]:

(40) a. |behauptet| = (λpst.(λxe.(∀j)[ASS(x)(i)(j) → pj]))
b. ‖ASS‖ = λx.λs0.λs1. ` s1 is an assertoric alternative for x in

s0 a

Here an assertoric alternative is a situation that is in line with a claim made
by the subject (in the situation at hand); the details of the characterisation
of ASS are supplied later, as part of an exercise. As in the case of EVI∗

the notation of ASS∗ is supposed to indicate that the missing subject is
understood. Accordingly, the assertoric alternatives mentioned in (39b) are
the assertoric alternatives of a person not further specified.18 Hence the
proposition expressed by (37b) consists of the situations in which this person
claims (or has recently claimed) that NN is a conman. By the Hintikka
17. . . or accessibility relation: cf. fn. 33 in Chapter 5. – Again, we simplifyingly assume
that only the word angeblich [≈ alleged ] makes a semantic contribution to the matrix
clause.

18The relation between ASS and ASS∗ can be accounted for more thoroughly by the
methods introduced in Chapter 8 [to be written].
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Semantics of (subjectless) attitudes, (37b)can now be represented in two-
sorted type logic as follows:

(41) (∀j)[ASS∗i →Hj(n)]

where we have assumed that |Hochstapler| = Hi and |NN| = n. In view
of the assumed intensional identity, (41) should then also be equivalent to
the type-logical translation of (37a). This observation immediately leads
to an analysis of the complex noun angeblicher Hochstapler [≈ alleged
conman] whose extension – like that of the predicate ist ein angeblicher
Hochstapler [≈ is an alleged conman] – obviously consists of the individuals
x for which it holds that x is an alleged conman:

(42) |angeblicher Hochstapler|
≡ |ist ein angeblicher Hochstapler|
≡ (λxe.(∀j)[ASS∗i →Hj(x)])

Now, in order to compositionally derive the extension of the noun, it must be
composed of the translation of Hochstapler [≈ conman] and the analysis
of the adjective angeblich [≈ alleged] given in (38b). The following chain
of type-logical equivalences shows the way:

(43) (λxe.(∀j)[ASS∗i →Hj(x)]) eigen-conversion
≡ (λx.(∀j)[ASS∗i → (λj.Hj(x))(j)]) λ-conversion
≡ (λx.(λpst.(∀j)[ASS∗i → p(j)])(λj.Hj(x))) bound renaming
≡ (λx.(λp.(∀j)[ASS∗i → p(j)])(λi.Hi(x)))
≡ (λx.|angeblich|(λi.|Hochstapler|(x)))

In the first step eigen-conversion is used to put the formula to the right of the
arrow in the form α(j), where α is is a formula of type st in which j does
not occur (freely). The matrix of the whole formula – the part after λx. –
now essentially has the structure of the translation of angeblich [≈ alleged]
given in (38b), with the twist that the position of the λ-bound variable p
is now occupied by said α. In the next step this α gets abstracted from by
replacing it by aλ-bound variable and applying this λ-term to α again; as
a result the translation of the adjective becomes a part of the formula. (It
should be noted that this abstraction process must happen with the scope
of λx., since the variable x is free in α!) The bound renaming in the final
step only serves to bring in the translation of the noun Hochstapler [≈
conman], which contains the variable i, after all.

It is immediate from the final formula in (43) how the translations of the
adjective an the modified noun combine. Generalising from this case, we
then get to the following interpretation of the construction, which turns out
to be intensional, due to the introduction of the λi.:
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(44) Indirect Interpretation of Attaching Simple Adverbial Adjectives
If N is a (complex) noun consisting of an adverbial adjective A and
a (possibly complex) noun N ′, then:
|N | = (λxe.|A|(λi.|N ′|(x))).

Adjectives like angeblich [≈ alleged] are called adverbial (here) because
their function is that of sentence adverbs, which we will briefly address in
Section 6.5 [to be written]. Roughly speaking, sentence adverbs can make a
claim about the proposition expressed by the whole (remaining) sentence. In
the case of angeblich [≈ alleged] we have seen this by way of the paraphrase
(37b), which in a way shows that angeblich [≈ alleged] there relates to
the predication NN ist ein Hochstapler [≈ NN is a conman]. Apart
from angeblich [≈ alleged] there are a number of further adjectives that
semantically behave like sentence adverbs, as the following (approximate)
paraphrase pairs are meant to indicate:

(45) a. Hans ist ein denkbarer Kandidat.
[≈ Hans is a conceivable candidate. ]

b. Es ist denkbar, dass Hans ein Kandidat wäre.
[≈ It is conceivable that Hans be a candidate. ]

(46) a. Aus dem Nebenzimmer war ein gelegentliches Räus-
pern zu hören.
[≈ An occasional hem could be heard from the next room. ]

b. Gelegentlich war aus dem Nebenzimmer ein Räuspern
zu hören.
[≈ Occasionally a hem could be heard from the next room. ]

(47) a. Die Parteispitze traf sich an einem geheimen Ort.
[≈ The top-ranking party members met at a secret place. ]

b. Es war geheim, an welchem Ort sich die Parteispitze
traf.
[≈ It was kept secret at which place the top-ranking party members
met. ]

Not all of them – this, too, will be shown in an exercise – can be accounted for
by the construction meaning given in (44), though; thence the qualification
simple.

In the case of angeblich [≈ alleged] we had seen that the extension of a
noun modified by an adverbial adjective does not have to be a subset of the
extension of the (unmodified) noun itself: an alleged conman is not neces-
sarily a conman. Intersective and (extensionally or intensionally) subsective
adjectives are different in this respect: if they modify a noun, the resulting
extension is always a subset of the extension of the bare noun: a Turkish
female course participant is necessarily a female course participant; a young
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lawyer must in particular be a lawyer; and a gifted pianist always needs to be
a pianist. The above interpretation of the three adjective classes mentioned
accounts for this fact in that the adjectives A interpreted according to it
always satisfy:

(48) ↓‖|A N |‖g ⊆ ↓‖|N |‖g

where N is a noun. (Exercise!) However, the adverbial adjectives are not the
only ones for which (48) is inadequate. As a case in point, something in the
extension of halbes Hähnchen [≈ half a chicken] is not in the extension of
Hähnchen [≈ chicken]; still a sentence like (49a) can hardly be paraphrased
along the lines of (49b), where X is some attitude corresponding to the
adjective halb [≈ half a]:

(49) a. Fritz kauft ein halbes Hähnchen.
[≈ Fritz is buying half a chicken.]

b. Es ist X, dass Fritz ein Hähnchen kauft.
[≈ It is X that Fritz is buying a chicken.]

Instead halb [≈ half a] seems to modify its head noun N in a way so that
the extension consists of halves of objects that are in the extension of N .
The following interpretation captures this idea:

(50) a. |halb| = Hi, where H is a constant of type s((et)(et)).
b. ‖H‖ = λs.λP.λx. ` there is a y such that y is as big as x and

P (x⊕ y) = 1 a

Here ‘x⊕ y’ designates the fusion of the objects x and y, which is an object
that consists of the parts x and y and has no further parts (= parts that do
not overlap with x or y).19 The idea behind (50) is that the application of
the extension of halb [≈ half a] to that of Hähnchen [≈ chicken] is (the
characteristic function of) the set of objects that together with another object
of the same size make up for a chicken. At first blush, this characterisation
of the intension of halb [≈ half a] may appear plausible; however, we will see
in a second that it is not correct. Before this we first notice that although,
according to (50), halb [≈ half a] has the (extension) type of jung [≈
young], but still is not extensionally subsective – since half a chicken is not
a chicken after all. In other words, modification by halb [≈ half a] must

19The notation ‘⊕’ originates from mereology (the logic of the part-whole relation); of
course, it has nothing to do with the ad-hoc use of the same symbol in Section 2.2.
– The notion of size in (50b) depends on the object under scrutiny: in the case of a
chicken, weight and volume are decisive, for a circle it is its perimeter, for a time span
its length, etc. The last example also shows that the complementing second half needs
not be uniquely determined: the time x between 6pm and 7pm is half an hour but there
are two distinct y of the same length that complement x to an element x ⊕ y of the
extension of Stunde [≈ hour], viz., the immediately preceding half hour and the one
that immediately follows.
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not be interpreted in terms of (30); for otherwise the effect described in (48)
would occur. Instead, the extension of the adjective must be applied to that
of the noun without intersecting at the same time:

(51) Indirect Interpretation of Attaching Extensionally Modifying Adjec-
tives
If N is a (complex) noun consisting of an extensionally modifying
adjective A and a (possibly complex) noun N ′, then:
|N | = |A|(|N ′|).

(51) must not be read as an addition to the above translation rules, but may
instead replace (30) – provided the lexical interpretations of the extension-
ally subsecting adjectives are adapted. Though an interpretation of junger
Politiker [≈ young politician] according to (51) and on the basis of the
indirect interpretation (31) of jung [≈ young] will not lead to the desired
result (as will be shown in an exercise), the following revision of (31a) will:

(52) a. |jung| = (λP et.λxe.[P (x) ∧ Ji(P )(x)]),
where J is a constant of type s((et)(et)).

b. ‖J‖ = λs.λM.λx. ` αMs � αs(x) a, where αs(x) is the age of
the individual x in the situation s and αMs is the average value
of the age function αs over the elements of the set M .

(It should be noted that the interpretation of the constant J has not changed:
(31b) and (52b) are identical!) Corresponding revisions of the lexical mean-
ings can obviously be carried out for all subsective adjectives, which are then
construed as extensionally modifying and thus subject to (51). In this sense
(51) can be applied to all extensionally subsective adjectives, but the rule
actually fails on the example originally motivating it: despite appearances –
and the interpretation given in (50) – halb [≈ half a] is not extensional after
all. For even if all bread rolls in a bakery (situation) were poppy seed bread
rolls and thus the extension of Brötchen [≈ bread roll] andMohnbrötchen
[≈ poppy seed bread roll] coincided, not all bread roll halves would have to
be poppy seed bread roll halves – maybe there is still half a sesame seed
bread roll lying around somewhere. The example also shows a fundamental
flaw in the above analysis (50) of halb [≈ half a]. For there we had taken
it for granted that for each half of an object a complementing counterpart
always exists, or had existed. But where the building of a bridge was unfin-
ished, half a bridge may have me into existence without there ever being or
having been the other half. The half-built bridge is merely an object half of
which – a matching piece of equal size – is missing to be a bridge. Rather
than investigating the details of the lexico-semantic analysis of halb [≈ half
a], we will leave it at that and merely state that it cannot be an exten-
sionally modifying adjective but instead (apparently) must be interpreted as
intensionally modifying, with extension type (s(et))(et) but without being
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intensionally subsective. For the modification by adjectives of this type a
construction meaning parallel to (51) can obviously be assumed:

(53) Indirect Interpretation of Attaching Intensionally Modifying Adjec-
tives
IF N is a (complex) noun consisting of an intensionally modifying
adjective A and a (possibly complex) noun N ′, then:
|N | = |A|(λi.|N ′|).

As in the extensional case, the lexical analyses of all intensionally subsective
adjectives may now be modified so as to be covered by (53); an exercise will
illustrate this with the example begabt [≈ gifted].

Let us take stock. From a semantic point of view, adjectives fall into different
classes, at least some of which we have encountered here:

• Intersective adjectives have extensions of type et and combined with
their head nouns like restrictive relative clauses.

• Extensionally modifying adjectives are combined by functional applica-
tion; their extension type is accordingly (et)(et). Extensionally sub-
sective adjectives, whose application narrows down the extension of
the head noun, may be construed as a special case of the extensionally
modifying adjectives.

• In the case of intensionally modifying adjectives the extension is ap-
plied to the intension of the head noun; their extension type is ac-
cordingly (s(et))(et). Intensionally modifying adjectives, whose ap-
plication narrows down the extension of the head noun, may again be
construed as a special case.

• Adverbial adjectives have the extension type (st)t of sentence adverbs;
in simple cases they directly combine with their head noun and apply
to the proposition expressed by predication.

In the next section we will see how this heterogeneity in the type assignment
can be avoided for the price of a certain abstractness. The techniques to be
introduced there are quite general and can also be used outside the semantics
of adjectives. However, before leaving this area, it should be mentioned that
we have left quite a few semantic phenomena out of account. In particular,
apart from the prenominal (or attributive) position considered here, most
adjectives can also be used predicatively :

(54) a. ?Selin ist türkisch.
[≈ Selin is Turkish.]

b. Der Anwalt war jung.
[≈ The lawyer was young.]
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c. *Mancher Hochstapler ist angeblich.
[≈ *Some conmen are alleged.]

d. Fritz ist sehr begabt.
[≈ Fritz is very gifted.]

e. Der Treffpunkt war geheim.
[≈ The meeting place was secret.]

We will not go into this construction because it is not a modification. In a
similar vein, we will ignore a number of further phenomena that are char-
acteristic for (some) adjectives – like comparison and antonymy. The ambi-
guities in (55) and the acceptability contrasts in (56) are just supposed to
substantiate that these areas, too, are full of semantic secrets:

(55) a. Fritz kennt bessere Schachspieler als Hans.
[≈ Fritz knows better chess players than Hans.]

b. Hans läuft schneller als Fritz denkt.
[≈ Hans runs faster that Fritz thinks.]

c. Meier hat die meisten Treffer erzielt.
[≈ Meier achieved (the) most hits.]

(56) a. Das Haus ist 10 Meter höher als breit.
[≈ The house is 10 meters higher than broad.]

b. ?Das Haus ist 10 Meter schmaler als hoch.
[≈ ?The house is 10 meters narrower than high.]

c. Das Haus ist 20 Meter hoch.
[≈ ?The house is 20 meters high.]

d. ??Das Haus ist 10 Meter schmal.
[≈ ??The house is 10 meters narrow.]

6.3 Type Shifts

Given the differences in their semantic behaviour, we assigned different ex-
tension types to different adjectives. As a consequence of this semantic
differentiation, we distinguish between (at least) four different syntactic con-
structions of adjectival modification, which accordingly are interpreted in
different ways. In this respect the situation does not fundamentally differ
from the interpretation of subject or object attachment, where we also distin-
guished between predication, quantification, and raising or opacity. In each
of these cases we had assumed that the syntactic structure somehow codes –
by suitable features maybe – which subcase is at stake. In the current section
we will get acquainted with several methods of flexible interpretation that
allow for making the semantic differentiations mentioned without syntactic
help.

We had seen in connection with (29) that it is not possible to interpret jung
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[≈ young] as an intersective adjective and instead assigned to it the extension
type (et)(et). From this it does not follow, though, that the extension
of jung [≈ young] and that of an intersective adjective like türkisch [≈
Turkish] cannot be of the same type. For although this common type cannot
be et , it is quite possible to analyse the extensions of both adjectives as
objects of type (et)(et). To see how this works, we first recall from Section
5.1 the technique of replacing simultaneous application of a binary function
to successive application of two unary functions. This trick, better known as
Currying allowed us to construe the extension of und [≈ and] as a function
of type t(tt). Even though we had been assuming a ternary coordinate
structure as in (57a) we could just as well have transferred the binary and
successive procedure to syntax, e.g., by using the bracketing in(57b):

(57) a. S

S1 und S2

b. S

SAdv

S1 und

S2

With the alternative bracketing (57b) the left (main) node serves as a kind
of sentence adverb that modifies the second conjunct. The compositional
indirect interpretation of (57b) is as obvious as before:

(58) a. |und|(|S1|)(|S2|)

|S1| |und| |S2|

b. |und|(|S1|)(|S2|)

|und|(|S1|)

|S1| |und|

|S2|

In (58b) the first conjunct and the conjunction und [≈ and] together form
an expression of their own, whose extension is applied to the truth value of
the second conjunct. As one can easily see, the extension of this constituent
(classified as SAdv) must then be of type tt .

Though modification by intersective adjectives is not a ternary construction,
it is interpreted by simultaneous application of a binary function, intersec-
tion, which for reasons of transparency we will abbreviate by the correspond-
ing settheoretic symbol:

(59) a. Adj N

Adj N

b. ∩(|Adj|)(|N |)

|Adj| |N |

In (59b) ∩ is a constant of type (et)((et)(et)) denoting the operation on
characteristic functions that corresponds to set intersection:20

20For the sake of accuracy, it should be mentioned that the symbol ‘∩’ is used to indicate
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(60) ‖∩‖ = λP.λQ.λx. ` P (x) = Q(x) = 1 a

With this notation the above example türkisch [≈ Turkish] comes out as
follows:

(61) a. türkische Kursteilnehmerin

türkische Kursteilnehmerin

b. ∩(Ti)(Ki)

Ti Ki

where T and K are the constants of type s(et)) interpreted in (24). As in
the transition from a. to b. in (58), we can now compress the extension of
the left consituent in a single binary operation – intersection, in the case at
hand:

(62) ∩(Ti)(Ki)

∩Ti Ki

Unlike the one (58b), the left daughter node in (62) does not branch; for it is
not the result of a combination of two expressions. Instead, we may construe
it as the translation of the adjective türkisch [≈ Turkish] itself. The above
translation (25a) would then have to be replaced by:21

(25a) |türkisch∩| = Ti
(63) |türkischext| = ∩(Ti) ≡ (λP et.(λxe.[Ti(x) ∧ P (x)]))

It is readily seen that according to (63), the adjective türkisch [≈ Turkish]
has the extension type (et)(et). It can then be classified as extensionally
modifying without affecting the result of meaning composition. Of course,
this was the very idea behind passing from (61a) to (62):

(64) |türkische Kursteilnehmerin| by (26)
= (λxe.[|Kursteilnehmerin|(x) ∧ |türkisch∩|(x)]) by (24)
= (λx.[Ki(x) ∧Ti(x)]) λ-conversion
≡ (λP et.(λx.[P (x) ∧Ti(x)]))(Ki) λ-conversion
≡ (λQet.(λP.(λx.[P (x) ∧Q(x)])))(Ti)(Ki) exercise
≡ ∩(Ti)(Ki) by (63)
≡ |türkischext|(Ki) by 5.5, (74)
≡ |türkischext|(|Kursteilnehmerin|) by (51)
≡ |türkischext Kursteilnehmerin|

What we did using türkisch [≈ Turkish] as an example, can principally be

arbitrary intersections and, in particular, does not stand for a set-theoretic function.
21We distinguish the two variants of indirectly interpreting the surface form türkisch [≈
Turkish] by corresponding subscripts on the underlying forms, in order to be able to
apply the same translation function to them – and not to postulate an ambiguity.
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done with all intersective adjectives: if they get assigned type-logical transla-
tions à la (63), they can all be subsumed under the extensionally modifying
adjectives, thus proving redundant the assumed specific modification con-
struction (26) for intersective adjectives.

The process of unifying the constructions considered from the previous sec-
tion does not have to stop here. We had already seen that extensionally
subsective adjectives like jung [≈ young] could be interpreted as extension-
ally modifying once pertinent arrangements have been made in their lexical
analysis; in a similar vein, it was shown (in an exercise) that intensionally
subsective adjectives like begabt [≈ gifted] can be interpreted as intension-
ally modified. But even the modifying adjectives in toto may be reduced to a
common denominator. For although an intensional adjective like begabt [≈
gifted] cannot be reduced to a function of type (et)(et)(as an exercise will
prove in detail), one can reversely assign extensions of type (s(et))(et) to
adjectives like jung [≈ young] (or türkisch [≈ Turkish]) without changing
the result of modification. In a situation s, these ‘new’ extensions only need
to operate on the intension instead of the extension of the noun they modify;
but given such s, the intension fully determines the extension. An exten-
sionally modifying adjective Aext may thus be re-interpreted as intensionally
modifying:

(65) |Aint| = (λΦs(et).|Aext|(Φi))

As a case in point, we obtain the following interpretation of nominal modi-
fication by jung [≈ young]:

(66) |jungerint Politiker| by (53)
= |jungint|(λi.|Politiker|) P of type s(et)
= |jungint|(λi.Pi) η-conversion, cf. (73e) in Section 5.4
≡ |jungint|(P) by (65)
≡ (λΦs(et).|jungext|(Φi))(P) λ-conversion
≡ |jungext|(Pi) see above
≡ |jungext|(|Politiker|) by (51)
≡ |jungerext Politiker|

And, of course, (65) can also be applied to intersective adjectives after they
have been re-classified as in (63):

(67) |türkischeint Kursteilnehmerin| by (53)
= |türkischint|(λi.|Kursteilnehmerin|) by (24)
= |türkischint|(λi.Ki) η-conversion, cf. (73e) in Section 5.4
≡ |türkischint|(K) by (66)
≡ (λΦs(et).|türkischext|(Φi))(K) λ-Konversion
≡ |türkischext|(Ki) by (64)
≡ |türkische∩ Kursteilnehmerin|
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Now that we have seen that the intersective and the extensionally modifying
adjectives can all be treated as special cases of the intensionally modify-
ing ones, the adverbial adjectives form the only remaining exceptional case
among the classes considered in the previous section. But even they can be
reduced to the common denominator of intensional modification. To see how
this works, let us recall (44), which translates modifications of a noun N by
an adverbial adjective Aadv into type logic:

(68) |Aadv N | = (λxe.|Aadv|(λi.|N |(x)))

In order to obtain the same result by applying an intensionally modifying
version of Aadv to the intension of N , the latter must merely be put in
argument position:

(69) (λxe.|Aadv|(λi.|N |(x))) eigen-conversion
≡ (λx.|Aadv|(λi.(λi.|N |)(i)(x))) λ-conversion
≡ (λΦs(et).(λx.|Aadv|(λi.Φ(i)(x)))) (λi.|N |)

This is not the first time that we exploit the idea behind the equivalent
reformulation in (69):22 in order to represent the entire formula as a result
of applying a function to an intension – in this case that of N , the latter must
first be formed from the translation of the extension using eigen-conversion,
whereupon the result can be λ-abstracted. The remaining function then has
precisely the type (s(et))(et) of the intensional adjective and can thus be
used for re-categorising Aadv:

(70) |Aint| = (λΦs(et).(λxe.|Aadv|(λi.Φ(i)(x))))

The correctness proof of (70) in the style of (66) and (67) is left to an exercise
this time.

The unification of adjectival semantics presented above is a special case of
an interpretive strategy that runs by the name of generalising to the worst
case.23 According to it, (if possible) all expressions of a given syntactic cate-
gory receive extensions of the same type, viz., the smallest type in which all
extensions of expressions of this category are representable. Here, represen-
tation must be understood as embedding, i.e., a function definable in purely
logical terms that maps all objects of one (‘smaller’) type to objects of an-
other (‘larger’) type without ever mapping distinct objects to the same one,
and doing so in a manner as natural as possible. Such mappings are known
as type shifts in semantics.24 The re-interpretations used for re-categorising
22The first time was in determining the extension of the rasing verb scheinen [≈ seem];
cf. (133) in Section 5.7.

23This self-explanatory term appears to have originated with Barbara Partee and describes
the spirit behind the unified type assignments in Richard Montague’s The Proper Treat-
ment of Quantification in Ordinary English (1973).

24A comprehensive systematic account of the theory of type shifting can be found in Johan
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various adjectives can thus be seen as type shifts from a ‘smaller’ input type
a to a ‘larger’ output type a∗:

(71)
Input type Output type Shift
et (et)(et) (λQet.(λP et.(λxe.[P (x) ∧Q(x)]))) cf. (63)
(et)(et) (s(et))(et) (λM (et)(et).(λΦs(et).M(Φ(i)))) cf. (65)
(st)t (s(et))(et) (λO(st)t.(λΦs(et).(λxe.O(λi.Φ(i)(x))))) cf. (70)

(71) is to be understood as saying that by applying the type shift given, an
arbitrary object of input type a is represented as an object of output type
a∗. We have written the type shifts themselves as type-logical formulae to
ensure that they are functions of type (aa∗) that are definable by purely
(type-) logical means. If, e.g., the formula given in the first line is applied
to the translation of the intersective version of türkisch [≈ Turkish]25, the
result is the interpretation of the adjective as extensionally modifying as
given in (63):

(72) (λQet.(λP et.(λxe.[P (x) ∧Q(x)]))) (|türkisch∩|) by (25a)
= (λQ.(λP.(λx.[P (x) ∧Q(x)]))) (Ti) λ-conversion
≡ (λP.(λx.[P (x) ∧Ti(x)])) cf. (63)
≡ |türkischext|

Given the result achieved in (72), the second line of (71) may then apply in
the same way to shift from (et)(et) to (s(et))(et) – and with the known
result expounded in(67). A further type shift ensues by plugging the two
processes together:

(71+)
Input type Output type Shift
et (s(et))(et) (λP et.(λΦs(et).(λxe.[P (x) ∧ Φ(i)(x)])))

Adjectival nominal modification is not the only place where type shifts may
be employed. Thus, e.g., the shift (63) from et to (et)(et) may equally be
applied to (restrictive) relative clauses – thereby bringing them closer to the
unified adjectives:

(73) (λP et.(λΦs(et).(λxe.[P (x) ∧ Φ(i)(x)])))
(|die in der zweiten Reihe sitzt|) by (11a)

≡ (λP.(λΦ.(λx.[P (x) ∧ Φ(i)(x)]))) (Zi) λ-conversion
≡ (λΦ.(λx.[Zi(x) ∧ Φ(i)(x)]))

Thus type-shifted, the relative clause and then be attached to the noun in

van Benthem’s bookh Language in Action (1991).
25Strictly speaking, it is not the type-logical formulae themselves that are applied to each
other but their semantic values. We ignore such object-meta-language subtleties in the
interest of perspicuity.
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analogy to intensionally modifying adjectives, thus replacing the above rule
(9):

(9) Indirect Interpretation of the Attachment of Restrictive Relative Clauses
If N is a (complex) noun consisting of a (possibly complex) noun N ′

and a relative clause M , then:
|N | = (λxe.[|N ′|(x) ∧ |M |(x)]).

(74) Indirect Interpretation of Attaching of Type-Shifted Relative Clauses
If N is a (complex) noun consisting of a (possibly complex) noun N ′

and a type-shifted relative clause M+, then:
|N | = |M+|(λi.|N ′|).

The final result is, of course, equivalent again to the original result of intersec-
tion – but it comes about on the basis of a unified semantics of modification:

(75) |Kursteilnehmerin, die in der zweiten Reihe sitzt+| by (74)
= |die in der zweiten Reihe sitzt+| (λi.|Kursteilnehmerin|)

see above
≡ |die in der zweiten Reihe sitzt+| (λi.Ki) η-conversion
≡ |die in der zweiten Reihe sitzt+| (K) by (73)
≡ (λΦs(et).(λxe.[Zi(x) ∧ Φ(i)(x)])) (K) λ-conversion
≡ (λx.[Zi(x) ∧Ki(x)]) propositional logic
≡ (λx.[Ki(x) ∧ Zi(x)]) cf. (8)
≡ |Kursteilnehmerin, die in der zweiten Reihe sitzt|

The unification of the semantics of adjectival modification and modification
by (and attaching) restrictive relative clauses is somewhat dubious of course
inasmuch the latter are assigned obviously unnecessarily complex semantic
values. We will return to questions like this one towards the end of the
section, after taking a look at further fields of application for type shifts.

We have come across several extension types within the same category be-
fore. In particular, we assumed a fundamental distinction between proper
names and quantifying noun phrases that is reflected in the semantic type
as well as in meaning composition. Yet as in the case of adjectives, in this
case too, a common denominator type can be found for the two syntactic
categories. Here the quantifying noun phrases with their visibly more com-
plex type form the worst case. In otder to represent the extensions of proper
names – i.e., the name bearers of type e – bearers of type (et)t of quanti-
fiers, we must only perform the corresponding subtractions on sentence and
predicate etensions. The extensions of type shifted proper names N∗ then
come out as functions that assign to the extensions of arbitrary predicates
P the respective truth values of the sentences N VP, which in turn result
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from functional application:26

(71∗)
Input type Output type Shift
e (et)t (λxe.(λP et.P (x)))

Obviously, the proper names type-shifted by (71∗) not only have the ex-
tension type of quantified noun phrases; the can also be interpreted like
the latter in the compositional process, as the following example illustrates,
where the typeshifted names have been marked by an asterisk:

(76) |Eike∗ trifft Fritz∗| by 5.5, (88), quantifier in subject position!
= |Eike∗|(|trifft Fritz∗|) by 5.5, (89), quantifier in object position!
= |Eike∗|(λxe.|Fritz∗|(λye.|trifft|(y)(x))) by (71∗)
= (λxe.(λP et.P (x)))(|Eike|)(λx.

(λxe.(λP et.P (x)))(|Fritz|)(λy.|trifft|(y)(x))) by 5.5, (74)
= (λx.(λP.P (x)))(e)(λx.(λx.(λP.P (x)))(f)(λy.|trifft|(y)(x)))
≡ . . . exercise
≡ Ti(f)(e) cf. 5.2, (15)
≡ |Eike trifft Fritz|

One can see from (76) how the type-shifted names act as quantifiers in sub-
ject and object positions. The shift (71∗) can also be applied to those
constructions that we had reserved to quantifying nouns in the preceding
chapter, viz., the subject position of raising verbs and the object position
of opaque verbs; this will be done in an exercise.27 In the meantime we
turn to the opaque verbs themselves, for which we established the exten-
sion type (s((et)t))(et) in Section 4.6. Since suchen & Co. [≈ seek & its
ilk] morpho-syntactically behave like ordinary transitive verbs, the question
arises whether their type e(et) could also be shifted to the obviously more
complex type of opaque verbs. This is precisely what the following type shift,
which had come across before in disguise28 and which we will not bother to
derive here does precisely this:

(71′∗)
Input type Output type Shift
e(et) (s((et)t))(et) (λRe(et).(λ℘s((et)t).(λxe.℘i(λy

e.R(x, y)))))

The exemplary correctness proof of the type shift has become a matter of
routine by now; we leave the proper names unscathed this time:

26The type shift defined in (71∗) is also known as Montague Lifting. We had already
encountered it in an exercise at the end of Chapter 3.

27We will return to the interpretation of proper names in the object position of opaque
verbs in the next chapter [which still needs to be written].

28– to wit, in Section 3.5, (92), where one can find an extensional variant of (71′∗) formu-
lated in terms of direct interpretation.
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(77) |Eike kennt∗ jeden Mann| by 5.5, (78): predication
= |kennt∗ jeden Mann|(|Eike|) by 5.7, (142): opaque verb!
= |kennt∗|(λi.|jeden Mann|)(|Eike|) by 5.5, (90): quantifying noun

phrase
= |kennt∗|(λi.|jeden|(|Mann|))(|Eike|) by (71)′∗

= (λRe(et).(λ℘s((et)t).(λxe.℘i(λy
e.R(x, y)))))(|kennt|)

(λi.|jeden|(|Mann|))(|Eike|) cf. 5.5, (74) & (76d), 5.6, (104) &
(107)

= (λR.(λ℘.(λx.℘i(λy.R(x, y)))))(Ki)
(λi.(λQet.(λP et.(∀xe)[Q(x) → P (x)]))(Mi))(e) λ-conversion

≡ (λ℘.(λx.℘i(λy.Ki(x, y))))
(λi.(λQ.(λP.(∀x)[Q(x) → P (x)]))(Mi))(e) λ-conversion

≡ (λ℘.(λx.℘i(λy.Ki(x, y))))
(λi.(λP.(∀x)[Mi(x) → P (x)]))(e) λ-conversion

≡ (λx.(λi.(λP.(∀x)[Mi(x) → P (x)]))(i)(λy.Ki(x, y)))(e) λ-
conversion

≡ (λi.(λP.(∀x)[Mi(x) → P (x)]))(i)(λy.Ki(e, y)) eigen-conversion
≡ (λP.(∀x)[Mi(x) → P (x)])(λy.Ki(e, y)) λ-conversion
≡ (∀x)[Mi(x) → (λy.Ki(e, y))(x)] λ-conversion
≡ (∀x)[Mi(x) → Ki(e, x)] routine
≡ . . .
≡ |Eike kennt jeden Mann|

In view of such complex types, the homogeneity forced by type shifts like
(71∗) and, above all, (71′∗) seems to be little more than a formalistic game.
But uniformity can also bring along serious advantages. This will become
clear if we take a look at a construction type mentioned at the beginning of
this section: coordination.

6.4 Direct Coordination

Obviously, the conjunctions und [≈ and] and oder [≈ or] are not exclusively
flanked by sentences but may connect expressions of any kind – as long as
they belong to the same category:29

(78) a. Maria raucht eine Zigarette und sieht fern. predicates
[≈ Maria is smoking a cigarette and watching TV.]

29The parenthetical additions are supposed to increase idiomaticity without affecting lit-
eral meaning. We take it that gar [≈ at all] is an emphatic strengthening of kein- [≈
no] (and that, consequently, gar kein- [≈ no . . . at all] is a complex determiner), while
entweder [≈ either] and oder [≈ or] form one single morpheme that is synonymous
with oder [≈ or] alone. Neither assumption is totally unproblematic, but in the current
context they are quite harmless. – It should be noted that in (78c) Sport [≈ sport] is
used in the sense of the sortal Sportart [≈ form of sport] and not as a mass noun, as
in the proverbial Sport ist Mord [≈ Sport is murder].
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b. Alain kauft oder mietet ein Zimmer. transitive verbs
[≈ Alain is buying or renting a room.]

c. Die meisten Deutschen mögen [entweder] jeden oder
[gar] keinen Sport. determiners
[≈ Most Germans [either] like every or no form of sport at all.]

d. Hans besitzt ein Moped oder ein Fahrrad. quantifying
nominals
[≈ Hans owns a moped or a bicycle.]

e. Fritz und Eike wohnen in Tübingen. proper names
[≈ Fritz and Eike live in Tübingen.]

The examples in (78) obviously cannot be accounted for in terms of coordi-
nation as clausal combination. However, the following paraphrases indicated
that these usages are not totally different after all:

(79) a. Maria raucht eine Zigarette, und Maria sieht fern.
[≈ Maria is smoking a cigarette and Maria is watching TV.]

b. Alain kauft ein Zimmer, oder Alain mietet ein Zimmer.
[≈ Alain is buying a room or Alain is renting a room.]

c. Für die meisten Deutschen gilt: sie mögen jeden Sport,
oder sie mögen keinen Sport.
[≈ For most Germans it holds that they like every form of sport or
that they like no form of sport.]

d. Hans besitzt ein Moped, oder Hans besitzt ein Fahrrad.
[≈ Hans owns a moped or Hans owns a bicycle.]

e. Fritz wohnt in Tübingen, und Eike wohnt in Tübingen.
[≈ Fritz lives in Tübingen and Eike lives in Tübingen.]

In order to see the systematicity in passing from (78) to (79), let us first
scrutinise case a. (78a) and (79a) say the same and can both be rendered
by the type-logical formula (80a), where for simplicity we have assumed
R[aucht] [≈ smokes] and G[lotzt] [≈ goggles] constants of type s(et):

(80) a. [Ri(m) ∧Gi(m)]

Unlike (78a), (79a) is a simple predication, which means that the truth
value is obtained by applying the extension of the predicate raucht eine
Zigarette und sieht fern [≈ is smoking a cigarette and watching TV] to
that of the subject Maria. Type-logically speaking, this means that (80a)
must be represented by a combination of m with the translation of the
predicate. The latter would thus have to consist of (80a) minus m – or more
precisely denote that function which yields (80a) when applied to m:30

30This formulation is misleading in that there are a host of such functions. But then the
one that is meant delivers something analogous to (80a) when applied to other constants
than m.
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(81) |raucht und sieht fern|
≡ (λxe.[Ri(x) ∧Gi(x)])
≡ (λXet.(λY et.(λx.[X(x) ∧ Y (x)])))(Ri)(Gi)

Under the assumption that the predicate in (81) results from coordinating
raucht [≈ smokes] and sieht fern [≈ watches TV],the reformulation in the
third line brings out how its extension can be determined from the extensions
of its three (immediate) parts: by applying the underlined functor to the
extensions of the two coordinated predicates. Hence the functor ought to
be the type-logical translation of the conjunction und [≈ and], which in the
interest of clarity we have adorned with a subscript in (82), to distinguish
it from the clausal conjunction und [≈ and], the interpretation of which is
repeated in (83):

(82) |undVP| = (λXet.(λY et.(λxe.[X(x) ∧ Y (x)])))

(83) |undS| = (λvt.(λut.[u∧ v])) [≡ ∧; cf. (75a), in Section 5.5]

We skip a the details of an analogous discussion concerning the coordination
of two transitive verbs. Both (78b) and (79b) can be represented by (80b),
which in turn leads to the decomposition of verb coordination in (84) and
ultimately to the interpretation (85) of the corresponding use of oder [≈
or]:

(80) b. [(∃ye)[Zi(y) ∧Ki(a, y)] ∨ (∃ye)[Zi(y) ∧Mi(a, y)]]
by predicate logic

≡ (∃y)[Zi(y) ∧ [Ki(a, y) ∨Mi(a, y)]]

(84) |kauft oder mietet|
≡ (λye.(λxe.[Ki(x, y) ∨Mi(x, y)]))
≡ (λRe(et).(λSe(et).(λy.(λx.[R(x, y) ∨ S(x, y)])))) (Ki) (Mi)

(85) |oderVtrans | = (λRe(et).(λSe(et).(λye.(λxe.[R(x, y)∨S(x, y)]))))

The reformulation given in (80b) is crucial in that it explains the synonymy
of (78b) and (79b). A look at the following variants makes this clear:

(78b′) Alain kauft oder mietet jedes Zimmer.
[≈ Alain is buying or renting every room.]

(80b′) (∀ye)[Zi(y) → [Ki(a, y) ∨Mi(a, y)]]
6≡ (∀ye)[Zi(y) → Ki(a, y)] ∨ (∀y)[Zi(y) → Mi(a, y)]

(79b′) Alain kauft jedes Zimmer, oder Alain mietet jedes Zimmer.
[≈ Alain is buying every room or Alain is renting every room.]

(78b∗) Alain kauft und mietet ein Zimmer.
[≈ Alain is buying and renting a room.]

(80b∗) (∃ye)[Zi(y) ∧ [Ki(a, y) ∧Mi(a, y)]]
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6≡ (∃ye)[Zi(y) ∧Ki(a, y)] ∧ (∀y)[Zi(y) ∧Mi(a, y)]

(79b∗) Alain kauft ein Zimmer, oder Alain mietet ein Zimmer.
[≈ Alain is buying a room and Alain is renting a room.]

The paraphrase strategy chosen in (79d) thus fails in these cases. Still the
analysis (85) of the use of oder [≈ or] for coordinating transitive verbs also
works for (78b′):

(86) |Alain kauft oder mietet jedes Zimmer| by 5.5, (78)
= |kauft oder mietet jedes Zimmer|(|Alain|) by 5.5, (89)
= (λxe.|jedes Zimmer|(λye.|kauft oder mietet|(y)(x))) (|Alain|)

by 5.5, (90)
= (λx.|jedes|(|Zimmer|)(λy.|kauft oder mietet|(y)(x))) (|Alain|)

in analogy to clausal coordination in 5.5, (77)
= (λx.|jedes|(|Zimmer|)(λy.|oderVtrans |(|kauft|)(|mietet|)(y)(x)))

(|Alain|) indirect interpretation of (non-logical) lexical expressions: 5.5,
(74)

= (λx.|jedes|(Zi)(λy.|oderVtrans |(Ki)(Mi)(y)(x)))(a)
indirect interpretation of jedes [≈ every]: 5.5, (76d) plus conventions 5.6,
(104) and 5.6, (107)

= (λx.(λY et.(λXet.(∀xe)[Y (x) →X(x)]))(Zi)(λy.
|oderVtrans |(Ki)(Mi)(y)(x)))(a) by (85)

= (λx.(λY.(λX.(∀x)[Y (x) →X(x)]))(Zi)(λy.
(λRe(et).(λSe(et).(λye.(λxe.[R(x, y) ∨ S(x, y)]))))
(Ki)(Mi)(y)(x)))(a) λ-conversion

≡ (λY .(λX.(∀x)[Y (x) →X(x)]))(Zi)(λy.
(λR.(λS.(λy.(λx.[R(x, y) ∨ S(x, y)]))))(Ki)(Mi)(y)(a))

λ-conversion
≡ (λX.(∀x)[Zi(x) →X(x)])(λy.

(λR.(λS.(λy.(λx.[R(x, y) ∨ S(x, y)]))))(Ki)(Mi)(y)(a))
two λ-conversions

≡ (λX.(∀x)[Zi(x) →X(x)])
(λy.(λy.(λx.[Ki(x, y) ∨Mi(x, y)]))(y)(a)) λ-conversion

≡ (∀x)[Zi(x) → (λy.(λy.(λx.[Ki(x, y) ∨Mi(x, y)]))(y)(a))(x)]
eigen-conversion

≡ (∀x)[Zi(x) → (λy.(λx.[Ki(x, y) ∨Mi(x, y)])(a))(x)]
λ-conversion

≡ (∀x)[Zi(x) → (λy.[Ki(a, y) ∨Mi(a, y)])(x)] λ-conversion
≡ (∀x)[Zi(x) → [Ki(a, x) ∨Mi(a, x)]]

In a similar vein, one can show by adapting the analysis (85) of oderVtrans

[≈ orVtrans ] for undVtrans [≈ andVtrans ] (in an exercise) that the translation
of (78b∗) is equivalent to the first line of (80b∗).

In the cases (78c) and (78d), too, corresponding interpretations of the con-
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junction oder [≈ or] can be found. A similar reasoning as for the coordi-
nation of predicates (78a) and transitive verbs (78b) leads to the following
results:

(87) |oderDet|
= (λD(et)((et)t).(λE(et)((et)t).(λY et.(λXet.[D(Y )(X)∨E(Y )(X)]))))

(88) |oderQNP| = (λX(et)t.(λY(et)t.(λXet.[X(X) ∨ Y(X)])))

We skip the derivations of the analyses (87) and (88), and merely test them
on the examples:

(89) |Die meisten Deutschen mögen jeden oder keinen Sport|
by 5.5, (88)

= |Die meisten Deutschen|(|mögen jeden oder keinen Sport|)
by 5.5, (89)

= |Die meisten Deutschen|
(λxe.|jeden oder keinen Sport|(λye.|mögen|(y)(x)))

by 5.5, (90)
= |Die meisten|(|Deutschen|)

(λx.|jeden oder keinen Sport|(λy.|mögen|(y)(x)))
by 5.5, (90)

= |Die meisten|(|Deutschen|)
(λx.|jeden oderDet keinen|(|Sport|)(λy.|mögen|(y)(x)))

in analogy to clausal coordination in 5.5, (77)
= |Die meisten|(|Deutschen|)

(λx.|oderDet|(|jeden|)(|keinen|)(|Sport|)(λy.|mögen|(y)(x)))
indirect interpretation of (non-logical) lexical expressions: 5.5, (74)

= |Die meisten|(Di)(λx.|oderDet|(|jeden|)(|keinen|)(Si)
(λy.Mi(y)(x)))
by 5.5, (76e), 5.5, (76d) plus conventions 5.6, (104) and 5.6, (107), and 5.5
(76a)

= MOST(Di)(λx.|oderDet|(λY et.(λXet.(∀xe)[Y (x) →X(x)]))
(λY et.(λXet.¬(∃xe)[Y (x) ∧X(x)]))(Si)(λy.Mi(y)(x))) by
(87)

= MOST(Di)(λx.(λD(et)((et)t).(λE(et)((et)t).
(λY et.(λXet.[D(Y )(X) ∨E(Y )(X)]))))
(λY.(λX.(∀x)[Y (x) →X(x)]))
(λY.(λX.¬(∃x)[Y (x) ∧X(x)]))(Si)(λy.Mi(y)(x)))

. . . several λ- and eigen-conversions . . .
≡ MOST(Di)(λx.(∀ye)[Si(y) → Mi(x, y)]∨

¬(∃ye)[Si(y) ∧Mi(x, y)])

It is not hard to see that this formula comes close to the paraphrase (79c),
for which we still lack the means of interpretation, though – due to the
pronoun sie [≈ they]. But then one may also check directly that the type-
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logical translation of (78c) determined in (89) correctly accounts for the truth
conditions of the sentence: roughly speaking, more than 50% of the persons
in the extension of Deutscher [≈ German] would have to be in the union
of the sets of sport-lovers and sport-haters.

The Analysis (88) also leads to the desired result for the sample case (78d):

(90) |Hans besitzt ein Moped oder ein Fahrrad| by 5.5, (78)
= |besitzt ein Moped oder ein Fahrrad|(|Hans|) by 5.5, (89)
= (λxe.|ein Moped oderQNP ein Fahrrad|(λye.|besitzt|(y)(x)))(

|Hans|) in analogy to clausal coordination in 5.5, (77)
= (λx.|oderQNP|(|ein Moped|)(|ein Fahrrad|)

(λy.|besitzt|(y)(x)))(|Hans|) by 5.5, (90)
= (λx.|oderQNP|(|ein|(|Moped|))(|ein|(|Fahrrad|))

(λy.|besitzt|(y)(x)))(|Hans|) by 5.5, (74)
= (λx.|oderQNP|(|ein|(Mi))(|ein|(Fi))

(λy.Bi(y)(x)))(h) by 5.5, (76b)
= (λx.|oderQNP|

((λY et.(λXet.(∃xe)[Y (x) ∧X(x)]))(Mi))
((λY et.(λXet.(∃xe)[Y (x) ∧ X(x)]))(Fi)) (λy.Bi(y)(x)))(h)
by (88)

= (λx.(λX(et)t.(λY(et)t.(λXet.[X(X) ∨ Y(X)])))
((λY.(λX.(∃x)[Y (x) ∧X(x)]))(Mi))
((λY.(λX.(∃x)[Y (x) ∧X(x)]))(Fi)) (λy.Bi(y)(x)))(h)

9 λ-conversions
≡ (∃x)[Mi(x) ∧Bi(h, x)] ∨ (∃x)[Fi(x) ∧Bi(h, x)]

It should not come as a surprise that the above analyses can be carried out
both for the conjunction and [≈ and] and for oder [≈ or]. We thus get:

(91) |oderVP| = (λY et.(λXet.(λxe.X(x)∨Y (x)))) in analogy to (82)

(92) |undVtrans | = (λRe(et).(λSe(et).(λye.(λxe.R(x, y) ∧ S(x, y))))
like (85) & exercise

(93) |undDet| cf. (87)
= (λD(et)((et)t).(λE(et)((et)t).(λY et.(λXet.[D(Y )(X)∧E(Y )(X)]))))

(94) |undQNP| = (λX(et)t.(λY(et)t.(λXet.[X(X) ∧ Y(X)]))) see (88)

Before turning to the coordination of proper names exemplified in (78e), let
us briefly stop and compare the analyses so far. It is conspicuous that they
are all of the same form:

• The start with two abstractions, which (hardly surprisingly) corre-
spond to the two arguments, i.e., the extensions of the constituents to
be coordinated – schematically:
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(λAc.(λBc. . . .

It should be noted that the variables abstracted at this point need to
be of the same type, for only expressions of the same category can be
coordinated.

• Next comes another sequence of abstractions:

(λxc1.(λxc2. . . .

Here the types c1, c2, . . . match the (potential) arguments of the con-
stituents to be coordinated: in the cases of quantifying NPs (type
((et)t)) and predicates (type (et)), there is only one argument, with
the respective type c1 = et and c1 = e ; in the case of a transitive
verbs (type e(et)), c1 and c2 both equal e ; for determiners (type
(et)((et)t)) we have c1 = c2 = (et); for ditransitive verbs (type
e(e(et))) one would presumably get c1 = c2 = c3 = e ; and for atti-
tude verbs (type (st)(et)), it would have to be c1 = st and c2 = e .
(The last two conjectures will be checked in an exercise!)

• Finally the matrix follows, which is a formula of the form [ϕ∧ψ] or, as
the (disjunctive) case may be [ϕ∨ψ], where in ϕ und ψ the arguments
of the coordination get applied to their own potential arguments:

ϕ = Ac(xc1)(xc2) . . . ; ψ = Bc(xc1)(xc2) . . . .

The strategy behind the cross-categorial generalisations of and is thus to
keep supplying potential arguments to the extensions of the expressions co-
ordinated until they deliver truth values to which ultimately the clausal
connective is applied. Thus the two constituents are construed as gappy
sentences, as it were, whose gaps are filled immediately: when the coordina-
tion is applied to an argument, the latter ends up in both clauses coordinated.
Of course, this strategy only works if both constituents are of the same type
and if this type is such that it delivers a truth value once all arguments have
been supplied; in other words, the type must be of the form (c1, (c2,. . . t)).
Such types are called Boolean31 or conjoinable.

Since the conjoinable types happen to be just those that end in a t , the
prototypical non-Boolean type is the extension type e of proper names, which
thus cannot be captured by the above cross-categorial generalisation. But
then how can the coordination in (78e) and its apparent paraphrasability
(79e) in terms of Boolean conjunction be explained?

The answer to this question can be found in the type shifting techniques
introduced in the previous section. There we showed that, somewhat per-

31After the logic 19th century English logic pioneer mentioned in fn. 38 (Section 1.7).
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versely, the strategy of obtaining extensions by abstraction can also be ap-
plied to proper names – under the pretence that their extensions are un-
known. As a result the (prototypical) name Fritz then ends up as having
a Quantifier extension, i.e., [the characteristic function of] a set of [charac-
teristic functions of] sets of individuals. More specifically we get (for any
situation s):

(95) JFritzQuantKs = λX.X(Fritz); JEikeQuantKs = λX.X(Eike)

which translates into indirect interpretation as:

(96) |FritzQuant| = (λXet.X(f)); |EikeQuant| = (λXet.X(e))

where f and e are the ordinary Ty2-translations of Fritz and Eike as Proper
N ames:

(97) f = |FritzPN| ∈ Cone ; e = |EikePN| ∈ Cone

What is important to notice about the otherwise somewhat awkward and
unmotivated analysis (96) is that, unlike the traditional analysis (97), the
type it assigns to the extension of the name is the type of quantifying noun
phrases – and thus conjoinable. And indeed, on the basis of (96) the co-
ordination in (78e) can be analysed in terms of the above pattern (94) of
generalised coordination; and, what is more, it comes out as desired:

(98) |FritzQuant undQNP EikeQuant wohnen in Tübingen| 5.5, (88)
= |FritzQuant undQNP EikeQuant|(|wohnen in Tübingen|)

in analogy to clausal coordination in 5.5, (77)
= |undQNP|(|FritzQuant|)(| EikeQuant|)(|wohnen in Tübingen|)

by (94)
= (λX(et)t.(λY(et)t.(λXet.[X(X)∧Y(X)])))(|FritzQuant|)(| EikeQuant|)

(|wohnen in Tübingen|) by (96)
= (λX.(λY.(λX.[X(X) ∧ Y(X)])))(λXet.X(f))(λXet.X(e))

(|wohnen in Tübingen|) 2 λ-conversions
≡ (λX.[(λX.X(f))(X)∧(λX.X(e))(X)]) (|wohnen in Tübingen|)

2 eigen-conversions
≡ (λX.[X(f) ∧X(e)]) (|wohnen in Tübingen|) λ-conversion
≡ [|wohnen in Tübingen|(f) ∧ |wohnen in Tübingen|(e)]

Readers are invited to convince themselves that the truth conditions of (78e)
are indeed captured correctly by this type-logical translation; and while they
are at it, they may also work out the details for the disjunctive variant, i.e.:

(78) f. Fritz oder Eike wohnt in Tübingen. proper names
[≈ Fritz or Eike lives in Tübingen.]

Moreover, with the unified treatment of proper names and quantifying noun
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phrases, it is also possible to account for mixed coordinations like the follow-
ing, which come out adequately:

(78) g. Fritz oder eine Semantkerin wohnt/-en in Tübingen.
[≈ Fritz or a female semanticists live/-s in Tübingen.]

proper name + quantifier
h. Mindesten drei Semantikerinnen und Eike wohnen in

Tübingen.
[≈ At least three female semanticists and Eike live in Tübingen]

quantifier + proper name

The detailed derivation of the truth conditions of (78f-h) is left to the readers
as an exercise.

It may be noted in passing that (78e) and (78f) not only differ in the choice
of connective, but also in number: while names coordinated with und [≈
and] trigger plural agreement, corresponding disjunctions do not (or only
marginally so). One may take this contrast between (78e) and (78f) to be a
morphosyntactic whim of German (and English alike), if it were not for the
fact, that plural agreement in general tends to be concomitant with certain
semantic effects that are also observed with names conjoined by und [≈ and]
– but not if the flank oder [≈ or]. In particular, apart from the expected
Boolean reading derivable in analogy to (98), the following sentences also
have additional (and sometimes more obvious) construals that cannot be so
obtained:

(99) a. Fritz und Eike sind verheiratet.
[≈ Fritz and Eike are married.]

b. Fritz und Eike rufen eine Polizeidienststelle an.
[≈ Fritz and Eike make a phone call to a police station.]

c. Fritz und Eike wiegen mehr als 100 kg.
[≈ Fritz and Eike weigh more than 100 kilos.]

According to its Boolean reading, (99a) is already true if both Fritz and Eike
are married, no matter who their partners are; the more prominent reciprocal
reading has it that they are married to each other. This ambiguity can be
observed with most verbs whose extensions are always symmetric and which
may be used intransitively.32 – (99b) is most likely understood as saying
that Fritz and Eike together call the police. This collective reading is not
captured by combining the conjunction (94) of undQNP [≈ andQNP] with
the quantifier versions (96) of the proper names Fritz and Eike. Yet on
top of it, (99b) has two distinct Boolean readings, due to scopal interaction
of the quantifier eine Pizza [≈ a pizza] and the conjunction undQNP [≈

32Adapting standard terminology of mathematical logic, a function R of type e(et) is
called symmetric iff R(x)(y) = R(y)(x), for any individuals x and y.
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andQNP]: on both readings, Fritz and Eike are making separate phone calls,
but on only one of them both calls have to be directed to the same police
station. The details are sorted out in an exercise. – (99c) may be about
Fritz’s and Eike’s respective weights, or it may be about their joint weight.
Only the former reading can be directly captured by (94) and (96), but the
other, cumulative reading cannot.

Interestingly, the the phenomena observed in (99) can also be observed if the
coordinated names are replaced by plural definites like die Hamms [≈ the
Hamms]; and some persist if a singular, group-denoting description like das
Paar [≈ the couple] is used instead. We cannot go into these matters here,
since a full treatment of the semantic effects of pluralisation lies far beyond
the aims of this introductory text. Moreover, as things stand today, these
matters are far from settled: precisely how the additional readings in (99)
relate to each other and to Boolean conjunction is not fully understood in
current semantics – despite numerous attempts of settling the matter and a
number of insights gained since the late 1970s.33 We thus have to leave the
matter open and only note that no analogous behaviour can be observed with
disjunction for which the cross-categorial account described above seems to
be less problematic.34

6.5 Adverbial Modification

[to be written]

33Primary references include:

• Godehard Link’s work on plural; cf. his contribution to the 1991 de Gruyter
handbook of Semantics (edited by Arnim von Stechow & Dieter Wunderlich).

• Wolfgang Sternefeld’s 1998 article on cumulation (though in a slightly different
sense from ours) in Natural Language Semantics (‘Reciprocity and Cumulative
Predication’).

• Yoad Winter’s spectacular reduction of collective readings to Boolean conjunction
in his 1996 Linguistics and Philosophy article ‘A Unified Semantic Treatment of
Singular NP Coordination’.

34. . . which does not mean that the semantic analysis of oder [≈ or] is without prob-
lems. Interested readers may consult the survey by Maria Aloni in the (online) Stanford
Encyclopedia of Philosophy .
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