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On PTQ 
In a series of papers published between 1970 and 1973, the late Richard Montague 
developed a mathematical theory of semantics and its interface with syntax. The theory, 
later to be called Montague Grammar (or Montague Semantics), was brought to the 
attention of a larger linguistic community only after its originator’s death, and chiefly 
through Barbara Partee’s (1975). Montague Grammar was not only intended as an 
alternative to contemporary generative grammar but also designed so broadly as to cover 
both natural language and systems of formal logic. An outline of the theory was contained in 
the short and somewhat hermetic essay ‘Universal Grammar’ (= Montague 1970b). 
However, it was the slightly more accessible descriptive application in Montague’s last 
publication that was to define the vantage ground of semantic research for at least the next 
decade: ‘The Proper Treatment of Quantification in Ordinary English’, vulgo (and henceforth) 
PTQ.1 
  The following survey can only provide a rather superficial glimpse of PTQ and the 
theory behind it without doing full justice to its linguistic, philosophical, and logical depth 
and breadth. For more on the topic readers should consult a decent Montague Grammar 
text (e.g., Link 1979, Dowty et al. 1981, or Partee 1997) or, in case they are not easily scared 
off by mathematical jargon and density, Montague’s original papers.  

PTQ was presented as both an illustration of the power of the general theory 
expounded in Montague (1970b) and as a contribution to the semantic description of 
English, thereby extending the range of phenomena addressed in Montague’s earlier papers, 
Montague (1970a) and (1970b). So there is both a general theoretical and a more specific 
descriptive aspect to PTQ. For ease of presentation, the following two sections will tease 
these two aspects apart – sometimes artificially, and not always quite in line with 
Montague’s original views. As we go along, later developments in formal semantics will be 
addressed that were arguably provoked by inadequacies in the theoretical apparatus and 
descriptive details of PTQ.   
 
1. Theoretical aspects: the framework 
In a nutshell, Montague Grammar may be characterized as an (v) indirect, (iii) model-
theoretic approach to the (i) compositional behavior of (ii) extensions and intensions in a 
hierarchy of (iv) functional types. The following five sub-sections will address these 
theoretical aspects in the order indicated. 
 
1.1 Compositionality: the algebra of constructions 
Montague’s work is generally seen as marking the beginning of modern compositional 
semantics.2 In fact, his algebraic characterization of the interface between syntax and 
semantics basically boils down to the tenet that the meanings of non-lexical expressions can 
be obtained by combining the meanings of their immediate parts. In order to achieve this, 
Montague assumed that, underlying any constituent, there is a disambiguated expression 
from which its immediate parts and the way they have been combined can be determined; 
and it is this underlying disambiguated expression that eventually receives a compositional 
interpretation. In this respect, Montague’s disambiguated expressions are like May’s (1977) 
LFs, especially as featured in Heim & Kratzer (1998).  

 
1 See Partee (2011) and Caponigro (to appear) for the historical and biographical background of Montague 
Grammar. 
2 The term ‘compositionality’ only seems to have gained currency in the 1980s though; Thomason (1980) might 
be the earliest source. 
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In PTQ certain tree graphs were introduced that specify both the (semantically relevant) 
part-whole structure and the ways in which the (immediate) parts are combined – roughly 
corresponding to (semantically relevant) grammatical constructions. Thus, the following two 
trees (redrawn from PTQ, p. 228), are disambiguated expressions underlying the surface 
string John	tries	to	find	a	unicorn:  

 
(1) a.     b. 

  
 
In (1), the numbers n following the boldface surface strings of complex (disambiguated) 
constituents refer to the pertinent syntactic operation (or construction), called Fn. Thus, F2 is 
the operation of pre-posing the appropriate form of the indefinite article – i.e., a or an – to 
(the surface string of) a disambiguated expression and it is regulated by a rule S2 to the 
effect that applying F2 to a (not necessarily lexical) noun results in a determiner phrase. F2 is 
unary: the article does not count as a lexical expression but as ‘logical material’ that marks 
the operation of forming an indefinite from a noun. Analogous constructions F0	and F1 are 
used to form DPs of the forms ‘every N’ and ‘the N’. We will get to the semantic effect of 
these constructions in due course, but already at this point one difference between the 
Montagovian approach and type-driven frameworks along the lines of Klein & Sag (1985) or 
Heim & Kratzer (1998) becomes apparent: in disambiguated expressions, unary branching 
does not always represent a meaning-preserving operation.  

The other constructions in (1) are all binary. F4 brings together subject and predicate 
to form a sentence. F5 combines a transitive verb with (the accusative form of) its direct 
object to construct a verb phrase. F6 attaches an infinitival object to a control verb, again to 
produce a verb phrase.  Finally, F10,n is the predecessor of May’s (1977) Quantifier Raising, 
where n is the subscript of the trace (which in PTQ surfaces as an indexed pronoun); by F10,n, 
a DP is woven into a sentence to form another sentence, in which the DP takes widest scope. 
The morpho-syntactic details of these binary operations are formulated in a somewhat ad 
hoc manner – which is why they are not worth going into here.3 

Semantic interpretation in Montague Grammar proceeds by moving up trees like 
those in (1) that represent derivations by the operations mentioned at their nodes: the way 
the meanings of the immediate constituents of an expression are combined is determined 
by the syntactic operation that combines them. In particular, the same expressions may 
stand in different grammatical constructions that differ in their meanings. As a case in point, 
in addition to the simple subject-predicate construction F4, PTQ has five operations F11 – 
F15, which introduce negation, non-present tense (future or past), or both.  

 Generally speaking, to any syntactic operation F there corresponds some semantic 
operation G on meanings so that the result of combining any disambiguated expressions 

 
3 Montague (1970b: 388ff.) offers a more principled approach to subject-verb agreement by parallel recursion. 
See von Stechow (1979) for a general account of feature matching in German along those lines.  

] | E x p r | [ B 6 4 X X x F e H B y f F s j Y i B A Y G J i I 1 9 i I 1 9 i I 1 9 9 K S E j I G I k T D x j I y A j K C 4 i I C p + O i A 7 Y l A 4 J m M 1 N S F K b 2 h u I H R y a W V z f A 0 J f C B 0 b y B m a W 5 k I G E g d W 5 p Y 2 9 y b i Z j N T U q L E w g N H 0 o I S Z j N T U h S m 9 o b n 1 e P G M j I C M o L H R y e S B 0 b y B m a W 5 k I G F 8 D Q l 8 I H V u a W N v c m 4 m Y z U 1 K i x M I D Z 9 K C E m Y z U 1 I X R y e X 1 e P G M j I C M o K G Z p b m Q g Y S B 1 b m l j b 3 J u J m M 1 N S o s T C A 1 f X w N C X w o I S Z j N T U h Z m l u Z H 1 e P G M j I C I o J m E g d W 5 p Y 2 9 y b i Z j N T U q L E w g M n 0 o I S Z j N T U h d W 5 p Y 2 9 y b n 1 9 f X 1 9 f A 0 J f H 0 m I G I h K C B i I j A g Y i M 4 I G I k Q C B i J U g g Y i Z Q I F d X f V 1 8 W w 0 = ] | [

John tries to find a unicorn, 4

John try to find a unicorn, 6

try find a unicorn, 5

find a unicorn, 2
unicorn ] | E x p r | [ B 6 4 X X x F e H B y f F s j Y i B A Y G J f X 1 9 9 K S E j I G I k T D x j I y A j K D A i I C p + O i A 7 Y l A 4 J m M 1 N S F K b 2 h u I H R y a W V z I H R v I H w N C X x m a W 5 k I G E g d W 5 p Y 2 9 y b i Z j N T U q L E w g M T A s T D B 9 X j x j I y A i K C Y m Y z U 1 I W E g d W 5 p Y 2 9 y b i Z j N T U q L E w g M n 0 o I X w N C X w m Y z U 1 I X V u a W N v c m 5 9 f V 4 8 Y y M g I y g s S m 9 o b i B 0 c m l l c y B 0 b y B m a W 5 k I C Q o I W h p b X 1 e J m M 1 N S I w X y Z j N T U q L E x 8 D Q l 8 I D R 9 K C E m Y z U 1 I U p v a G 5 9 X j x j I y A j K C p 0 c n k g d G 8 g Z m l u Z C A k K C F o a W 1 9 X i Z j N T U i M F 8 m Y z U 1 K i x M I D Z 9 K C F 8 D Q l 8 J m M 1 N S F 0 c n l 9 X j x j I y A j K C Z m a W 5 k I C Q o I W h p b X 1 e J m M 1 N S I w X y Z j N T U q L E w g N X 0 o I S Z j N T U h Z m l u Z H 1 e J H w N C X w o I W h l f V 4 m Y z U 1 I j B f f X 1 9 f X 0 m I G I h K C B i I j A g Y i M 4 I G I k Q C B i J U g g Y i Z Q I F d X f V 1 8 W w 0 = ] | [

John tries to find a unicorn, 10,0

a unicorn, 2
unicorn

John tries to find him0, 4

John try to find him0, 6

try find him0, 5

find he0



 3 

a1,…,an by F gets assigned the meaning that results from combining the meanings of 
a1,…,an by G: 

(2) ⟦𝐹(a!, … ,a")⟧ = 𝐺(⟦a!⟧, … , ⟦a"⟧) 
In mathematical parlance, (2) says that meaning (designated by the ‘semantic brackets’) is a 
homomorphism. So Montague’s (by now standard) criterion of compositionality is that (2) 
holds for all constructions F	operating on underlying disambiguated expressions. These 
remarks should suffice to give an impression of the general features of the compositional 
meaning assignment. The following sections will illustrate how the algebraic formulation (2) 
of the principle of compositionality is specified in PTQ in order to give an account of the 
meanings of disambiguated English expressions.4 
 
1.2 Frege’s functionality, California style: extensions and intensions 
The general approach to meaning pursued in PTQ can be traced back to the core piece of 
Montague’s Universal Grammar: the ‘Theory of Reference’ (Montague 1970b: 378ff.). 
Although presented as a development of Frege’s (1892) logical semantics, the roles of sense 
and reference are played by (generalized versions of) Carnap’s (1947) extensions and 
intensions. In particular, the intension of an expression a is a function (in the set-theoretic 
sense) that assigns to any point of evaluation a’s extension at that point, where a point of 
evaluation is an ordered pair of a possible world and a time.5 As a consequence, Montague’s 
intensions suffer from a certain lack of fine-grainedness vis-a-vis Frege’s realm of senses. 
However, the specific way in which extensions and intensions interact does give the 
approach a distinctly Fregean flavor: not the meanings, but the extensions of complex 
expressions are the outputs of compositional operations; and as a rule, the extensions of 
their parts form their inputs, though at times their intensions may do so. As a case in point, 
the conjunctive coordination S1 and S2 of two declarative sentences can be described by a 
truth-table which combines the extensions, i.e. the truth values, of the two immediate parts, 
S1 and S2 – or, as Frege (1892) would have put it: their ordinary referents (‘gewöhnliche 
Bedeutungen’). On the other hand, in order to determine the truth value of a causal 
connection S1 because S2, the informational contents of the two parts need to be taken into 
account, and these contents are (arguably) provided by their intensions – which thus play 
the role of indirect referents (‘ungerade Bedeutungen’) that Frege assigned to their senses. 
Hence, compositionality is, first and foremost, a matter of extensions, but intensions come 
to the rescue when everything else fails. In general, then, two fundamentally different ways 
of compositionally obtaining extensions need to be distinguished: in extensional (or direct) 
environments, extensions are combined, in intensional (or indirect) constructions, intensions 
are employed to obtain the extensions of larger expressions. It is this interplay of the two 
basic semantic values that Montague took to be central to his semantic theory and that he 
called ‘Frege’s functionality principle’.6 

 
4 Actually, PTQ deviates from the general framework of Montague (1970b) to some extent. In particular, the 
construction-driven character of compositionality is at times traded for a rule-driven account, which comes 
close to Janssen’s (1983: 41ff.) approach in terms of sorted algebras; the interpretation of quantifying 
determiner phrases and the scope-taking mechanisms are cases in point. We will gloss over these details here. 
5 There is no specific term for such pairs in PTQ; I am indebted to Zoltán Szabó for suggesting point of 
evaluation.  
6 See Montague (1970c: 75f.), where the principle is characterized with reference to certain formal languages: 
‘the extension of a formula is a function of the extensions […] of those of its parts not standing within indirect 
contexts […], together with the intensions […] of those parts that do stand within indirect contexts.’ A few 
paragraphs earlier (ibid., p. 75), Montague makes the connection between extension and Frege’s [gewöhnliche] 
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 Although extensions are the results of the compositional operations used in semantic 
analysis, they are not themselves the meanings that the principle of compositionality (2) is 
about: after all, the extension of a sentence is its truth value, and while speakers ideally 
know the meanings of all sentences, they can hardly be expected to know of all of them 
whether they are true, and certainly not solely on the basis of their linguistic competence. 
Fortunately, though, there is a direct route from extensional compositionality to the 
compositionality of intensions: if the extension of a complex expression can be determined 
from the extensions of its parts, then so can its intension from the intensions of its parts. 
Again, conjunction is a case in point: the fact that the extension of S1 and S2 can be 
calculated by a truth table implies that its intension can be obtained by a Boolean operation 
on propositions (construed as sets of points of evaluation): intersection in the case at hand 
(or, rather, the corresponding operation on characteristic functions). More generally, writing 
‘⟦a⟧#,%’ for the extension of the expression a at point <w,t>, the extensional 
compositionality (3) of a construction F (at arbitrary points of evaluation) in terms of some 
operation H, is easily seen to imply the existence of a corresponding meaning combination G 
satisfying (2) above – provided that meanings are identified with intensions: 

(3) ⟦𝐹(a!, … ,a")⟧#,% = 𝐻(⟦a!⟧#,% , … , ⟦a"⟧#,%) 
For on the basis of (3), G can be defined in a pointwise fashion: the intension G assigns to the 
intensions ⟦a!⟧, … , ⟦a"⟧	 is the function that takes each point <w,t> to the corresponding H-
value: 

(4) 𝐺(⟦a!⟧, … , ⟦a"⟧)(< 𝑤, 𝑡 >) = 𝐻(⟦a!⟧#,% , … , ⟦a"⟧#,%) 
Since each extension ⟦a&⟧#,% is merely the value of ⟦a&⟧ at <w,t>, i.e., ⟦a&⟧(<w,t>), (4) is 
indeed a pointwise definition of G in terms of the intensions of the parts a!, … ,a". And a 
fortiori, a similar recipe can be given for intensional constructions, where the extensions 
already depend on the intensions of (some of) the parts. Hence, the (allegedly Fregean) 
strategy of obtaining extensions from the extensions or intensions of the parts of 
expressions guarantees the compositionality of meanings – at least to the extent that the 
meanings of expressions coincide with their intensions. 
 But do meanings and intensions coincide? In PTQ, Montague seems to have given a 
positive answer to this question, since his semantic account of English largely consists in a 
recursive characterization of the intensions of expressions. Hence, the PTQ framework has 
rightly been seen as being in the spirit of what Putnam (1975: 133ff.) called ‘California 
semantics’: the meanings speakers grasp as part of their mastery of a language are identified 
with intensions, which in turn enable them to identify corresponding extensions on the basis 
of further factual knowledge. However, two qualifications to the identification of meaning 
and intension should be made, even according to Montague: 

• The intensions of expressions containing deictic material depend on the 
utterance context. 

• The intensions of formulae with free variables depend on a variable assignment. 
In view of these two exceptions, Montague (1970b) actually identified meanings with 
functions from utterance contexts and (or, rather: including) variable assignments to 
intensions. However, since PTQ features no deictic expressions, the context dependence of 
intensions has been suppressed throughout. On the other hand, variables do play a role in 
the interpretation of quantifier scope constructions like F10,0 in (1) above; and these 
variable-binding operations are known to not conform to extensional or Fregean 
compositionality. For ease of presentation, however, we will follow semantic mainstream 

 
Bedeutung (which he translates as [ordinary] extension), and also mentions that Frege did not intend his 
functionality principle to apply to variable binding. 
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and ignore the compositionality complications arising from variable binding, for which the 
interested reader is referred to Chapter 10 of Zimmermann & Sternefeld (2013). 
 In PTQ, then, even though intensional constructions are in focus (and variable binding 
occurs), it is extensions that play first fiddle: meaning composition is (largely) described in 
terms of operations deriving the extensions of complex expressions from the extensions, 
and sometimes the intensions, of their parts. The format in which these extensions and 
intensions are defined will be addressed in Section 1.5. 
 
1.3 A touch of structuralism: model theory 
Whether or not they are identified with intensions, Montagovian meanings ultimately serve 
the purpose of determining referents and truth values, thereby connecting words and 
worlds. However, the general theory behind PTQ is set up in such a way that any semantic 
account of any (formal or natural) language is bound to leave out the details of this con-
nection: not the meanings of the expressions under scrutiny but only some of their 
structural features and relations are specified. This surprising omission is a design feature of 
the model-theoretic framework, according to which the interpretation of a language is not a 
mapping from expressions to their meanings but a family of mappings from expressions to 
objects that share (part of) their set-theoretic structure but may hugely disagree as to what 
the objects and points of evaluation are. These families of mappings to meaning-like objects 
are called models, and in PTQ [p. 230] they come in the form of quintuples <A,I,J,≤,F> whose 
components are sets representing objects that play the roles of: potential referents of 
individual terms (A); possible worlds (I); moments of time (J); the temporal order (≤); and the 
lexical meaning assignment (F), whose extrapolation to complex expressions will be 
addressed in Section 1.5 below. All of these components are arbitrary sets, which means 
that they do not have to contain any physical objects, worlds, or times. Yet while none of the 
A-components in a model M of the above form may contain wolves or sheep, the roles of 
these animals (at certain points of evaluation) will be played by the elements of the 
extensions determined by F(wolf) and F(sheep); yet in another model of the same structure 
at least some of the wolves according to F play the roles of sheep. And both of these models 
count as equally legitimate representations of the form-meaning mapping in English. In 
terms of classic structuralism, it is only (set-theoretic) structure that counts in model-
theoretic interpretation, not the (set-theoretic) material that displays it.7 On the other hand, 
the model-theoretic interpretation of English in PTQ does not fully specify the structure of 
the meaning assignment. In fact, it comes with a huge class of models that not only vary as 
to their substance but are also structurally divergent. Thus, e.g., apart from demanding non-
emptiness of the domains A, I, and J, nothing is said about their sizes. As a consequence, 
there are models with only one (object playing the role of an) individual in their domain as 
well as infinite sets of (representatives of) individuals of any cardinality, and similarly for 
worlds and times. Moreover, given a selection of domains A, I, and J, a lexical item a may 
receive any meaning constructed from them, as long as F(a) is of the type matching a’s 
category (about which more in the next subsection) and certain ‘reasonable’ meaning 
postulates [PTQ, p. 235] are respected to take care of semantic effects like:8 

 
7 Cf. Saussure’s (1916: 122) famous dictum that ‘language is a form, not a substance’ [la langue est une forme 
et non une substance]. 
8 To be sure, the labels are anachronistic. The rigidity schema can already be found in Montague (1970b: 393); 
hence Montague’s treatment of proper names as ‘‘logically determinate‘’ [PTQ, p. 235, in scare-quotes] 
foreshadows Kripke’s (1972) rigid designators. – Transparency blocks both non-specific and intensional 
readings in verbs like find (and unlike seek) and in prepositions like in (and unlike about); it should be noted, 
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• Rigidity: the intensions of proper names should be constant across all points of 
evaluation; 

• Transparency: the complements of certain verbs and prepositions should take scope 
over them;  

• Lexical decomposition: seek can be paraphrased in terms of try and find.  
The PTQ meaning postulates are formulated in terms of higher-order intensional logic and 
exert their effect on the expressions of English by way of the indirect interpretation 
mechanism to be addressed in Section 1.5; in particular, they are not expressed in the object 
language itself, nor can they be without loss of substance (cf. Zimmermann 1985).   

Even given the above meaning postulates (and others to be addressed in Section 2), 
the type assignment and the nine schematic postulates leave a lot of wiggle room for 
potential meaning assignments. As a case in point, according to some models with a 
singleton domain of individuals, the sentence Some	man	is	not	Bill comes out as false at 
every point of evaluation; the same effect will arise in a model according to which the 
extension of man coincides with the (characteristic function of) the singleton of the (rigid) 
extension of Bill at every point of evaluation. Clearly, such ‘degenerate’ models (Rooth 
1985: fn. 13) can be eliminated by ad hoc postulates but there seems to be no general 
systematic way for doing so short of assuming a fixed intended model whose meaning 
assignment would be fully isomorphic to the real thing – thereby in effect giving up the 
model-theoretic approach (cf. Zimmermann 2017).  
 Though rarely explicitly questioned, the value of the model-theoretic approach to 
natural language semantics is moot. In particular, in some of the most influential works in 
the (post-) Montagovian tradition, model classes are traded for material truth conditions 
and meaning assignments. As a case in point, the meaning assignments in Heim & Kratzer 
(1998) are given in terms of reference to persons and other concrete objects, as opposed to 
arbitrary set-theoretic constructions. In the remainder of this brief survey, reference to 
model-space will be largely suppressed too.  

 
1.4 The hierarchy of extensions: functional types 
According to Montague Grammar, the category of an expression not only determines its 
syntactic behavior but also the kind of meaning it has. The rationale for carving up the realm 
of meanings into different types goes back to Frege’s (1891) strategy of distinguishing 
saturated [‘gesättigt’] expressions which, like names and sentences, have truth values or 
(individual) referents, from those whose extensions compositionally contribute to the 
referents or truth values of the expressions in which they occur, where these contributions 
are construed as functions assigning extensions of mother constituents to extensions of 
sister constituents. Thus, e.g., the extensions of verb phrases V come out as characteristic 
functions assigning truth values (of sentences with V as a predicate) to individuals (as the 
extensions of referential subjects of said sentences). By iteration, this strategy, which has 
become part of many textbook accounts of modern semantics, eventually leads to a whole 
hierarchy of ever more complex functional extensions, including: functions from individuals 
to truth values (VP-extensions); functions from individuals to VP-extensions (extensions of 
transitive verbs); functions from VP-extensions to truth values (quantifier extensions); etc. 

 
though, that non-specificity and intensionality are both theoretically and empirically independent, as pointed 
out, respectively, in Zimmermann (1983: 73, fn. 9) and Mador-Haim & Winter (2015).  – The lexical 
decomposition of seek goes back to Quine (1956; 1960: §32), where it is presented as a reductive analysis 
rather than an accidental observation; see Montague (1969: 174ff.) for criticism and den Dikken et al. (2018) 
for a recent revival of the Quinean spirit in syntactic terms. 
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For notational convenience, Montague used mnemonic labels for the layers of this hierarchy 
– his system of (functional) types, starting with the extension types e [entities] and t [truth 
values] for referential expressions and sentences, and labelling the layer of functions from 
layer a to layer b by the ordered pair of a and b: <a,b>. Hence, just for the record, the by 
now ubiquitous angular brackets per se do not have anything to do with types but merely 
serve to indicate ordered pairs; in particular, Montague did not use them to mark the 
ground types e and t themselves. In order to cope with intensional constructions by way of 
Fregean compositionality, the type hierarchy also needs to contain intensions, which serve 
as the compositional contributions of those constituents that give rise to substitution 
problems. Since, according to Montague (and presumably Frege, too), expressions of any 
category might in principle contribute their intensions, the functional type hierarchy 
contains intensions corresponding to any type of extension, i.e., functions from points of 
evaluation to any layer a of extensions, which, paying reverence to Frege (1892), Montague 
(1970b: 379) dubbed <s,a>; again for the record: the ‘s’ in the intension types stands for 
sense (or Sinn), not for situation, even though arguably this is what the points of evaluation 
that constitute their domains come down to.  

The set Type, then, contains the labels e and t as well as all pairs <a,b> and <s,b>, 
where a and b are members of Type, and nothing else [PTQ, p. 229]; and the (model-
dependent) domains Da of objects of any type – the possible denotations of that type – are 
then defined by the following recursion [PTQ, p. 230]: De is the set of individuals provided by 
the model; Dt is the set {0,1} of truth values; D<a,b> is the set of total functions from Da to Db, 
i.e., those functions that assign to each argument of type a a value of type b; and D<s,b> is the 
set of total functions from the (model-dependent) set of evaluation points to Db, i.e., those 
functions that assign to each pair <i,j>, where i is a world and j is a time, a value of type b.  
 It should be noted that Montague’s type hierarchy differs from later versions in that 
it does not treat s as a type of its own: due to their special function of determining 
extensions relative to logical space, points of evaluation do not count as objects of 
reference. By the same token, there are no functional extensions that would assign points of 
evaluation to extensions of potential sister nodes, and as a consequence, there appears to 
be no need for any types of the form <a,s>. It would certainly have been possible (for 
Montague or anyone) to include s in the type hierarchy as well as all pairs formed from the 
so-extended types – thus arriving at the more inclusive set Type2 of two-sorted types 
containing e, t, and s, as well as all pairs of members of Type2, and nothing else.9 In this 
extended hierarchy, intensions are merely special cases of functional extensions. One reason 
why Montague did not take this somewhat more straightforward route lies in his motivation 
to build the hierarchy of extensions as part of a reconstruction of Frege’s functionality 
principle in terms of Carnapian intensions. A further potential reason for this restriction on 
Types will be brought up in the next subsection. 

Given the motivation of types in terms of compositional contributions to extensions, 
it should not come as a surprise that expressions that behave syntactically alike also have 
extensions of the same type. In Montague Grammar, this connection between syntax and 
semantics is made by a type assignment called ‘ƒ’, which (as the term indicates) associates 
syntactic categories with corresponding functional types. One obvious condition on this 
association is that the category of sentences is matched with the type t of truth values. The 
theoretical framework of Montague (1970b) imposes no further restrictions on type 

 
9 The term two-sorted was introduced by Gallin (1975: 58) in this connection to reflect the fact that in Type2 
and its applications to type logic (more about which below), the sets De and Ds play a role analogous to that of 
sorts of individuals in many-sorted predicate logic. 
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assignments in general. However, in PTQ, Montague borrowed some semantically motivated 
notation from categorial grammar (Ajdukiewicz 1935, Bar-Hillel 1953, Lambek 1958) to 
replace the arbitrary category labels: sentence predicates (or verb phrases) fall under the 
category t/e, where (non-italicized) t stands for the category of sentences and e for the 
category of individual-denoting expressions. In classical categorial grammar, this 
categorization would have the consequence that putting a verb next to an expression of 
category e results in a sentence. But in PTQ, the notation merely indicates the type of 
extensions of expressions of a category. On the basis of numerous descriptive applications 
and extensions of Montague Grammar as well as several later developments, it is natural to 
assume that this type should be the type <e,t> of (characteristic functions of) sets of 
individuals.10 The reasons why, in PTQ, Montague decided otherwise, lies in his attempt to 
achieve a maximum of semantic uniformity in syntactic categories, to which we will now 
turn. 

Since in general, expressions with functional extensions may give rise to substitution 
problems, their sister constituents may have to contribute their intensions (rather than their 
extensions) to the extension of the mother constituent. Sentence adverbs are a case in 
point. In PTQ, they naturally fall under the category t/t, because they combine with a 
sentence to produce another sentence, with necessarily (construed in the logicians’ sense 
of everywhere in Logical Space) serving as the sole example in PTQ. Clearly, in this case the 
corresponding type needs to be <<s,t>,t>: the truth value of a sentence of the form 
‘Necessarily S’ cannot be determined on the basis of the truth value of S alone (not if S is 
true, that is). So the type assigned to sentence adverbs is that of functions taking intensions 
of the sister type to extensions of the mother type. However, this does not make them per se 
intensional: even negation (if it were a sentence adverb) could be regarded as an operator of 
type <<s,t>,t>: given a point of evaluation, its extension would assign the opposite truth 
value of whatever its sister assigns to that point.11 Of course, there is something hybrid to 
this construal of negation as operating on propositions, since it would do the very same job 
as the familiar truth table of type <t,t>. But it would unify the types of intensional and 
extensional sentence adverbs. And it is readily seen that, quite generally, at any point <i,j>, 
any function g∈D<a,b> could be ‘simulated’ by a hybrid function g+∈D<<s,a>,b> that does the 
same job: g+(x) = g(x(<i,j>)), whenever x∈D<s,a>. This elementary observation gives rise to 
PTQ’s [p. 232] unified treatment of the types ƒ(A/B) of expressions of a category A/B that 
combine with category B expressions to produce expressions of category A: whether or not 
they create intensional contexts, they are treated as operating on the intensions of their 
sisters (in LF, as it were) and thus receive the extension type <<s, ƒ(B)>,ƒ(A)>. Hence verb 
phrases, whose category is t/e, come out as having extensions of type <<s,e>,t>. Thus, at a 
given point of evaluation <i,j>, the extension of walk contains all functions of type <s,e> 
whose value for that point is an individual that walks at that point. If one thinks of such 
functions as intensions of descriptions or modes of presentation of objects, then the 
extension of walk may be said to contain each walking individual in any way this individual 
can be described or presented. This is certainly an overkill vis-à-vis the simpler extension 
that would merely collect the walking individuals themselves. But then the type <e,t> of that 
simpler extension would not work for intensional predicates. And, according to Montague, 
there are such predicates; we will turn to them in Section 2.3.4. 

 
10 See, e.g., Dowty et al. (1981) or Heim & Kratzer (1998). 
11 Cf. Thomason & Stalnaker (1973: 203), where actually is given as another example of an extensional 
sentence adverb besides negation. 
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The unification of the semantic types of extensional and intensional verb phrases is 
part of a general strategy that has aptly been described as ‘generalizing to the worst case’ 
(Partee 1997: 75): if a class K of expressions is syntactically homogenous enough to form a 
category, K is assigned the most complex type observed among the compositional 
contributions of its members, all of whose extensions are adapted to that type. The 
adaptions from the originally observed (or stipulated) types – <e,t> in the case at hand – to 
the most complex (or ‘worst’) one are known as type shifts. The map from sets of individuals 
to a corresponding set of individual concepts (of type <s,e>) is a case in point. Another type 
shift is the so-called Montague Lift that maps the referents of proper names to 
corresponding quantifiers. Here the relevant syntactic category is that of a Term, i.e., a 
nominal expression that may combine with a predicate (of category IV) to form a sentence 
(t), which is reflected in the label of this category: t/(t/e), abbreviated as T. Given the above 
intensionality-sensitive pattern of mapping categories to types, ƒ(T) comes out as ƒ(t/(t/e)) = 
<<s,ƒ(IV)>,t>, which spells out as: <<s,<<s,e>,t>>,t>. As a consequence, the extensions of 
names according to PTQ, are (characteristic functions of) sets of properties of individual 
concepts. More will be said about the exact nature of these sets later; for the time being we 
only note that they need to be defined in such a way that they fit the quantificational subject 
construal F4. 

While differences in the semantic behavior of syntactically similar expressions can be 
evened out by generalizing to the worst case, the semantic similarity among expressions 
does not imply syntactic uniformity. In particular, two distinct categories may be assigned 
the same extension type. In PTQ the category of nouns, whose extensions come out as sets 
of functions of type <s,e>, is a case in point. Given their different syntactic behavior, their 
category thus needs to be distinguished from the category of verb phrases while still wearing 
its extension type on its notational sleeves. Since the categorial label t/e has already been 
used up, Montague came up with the ad hoc device of adding another slash to distinguish 
the category of nouns from that of Intransitive Verbs and defined it as t//e. The same hack is 
used to distinguish adverbs (IV/IV) from control verbs (IV//IV), and again it is quite arbitrary 
which is which: one or two slashes, the effect on the extension type is the same: ƒ(A/B) = 
ƒ(A//B) = <<s, ƒ(B)>,ƒ(A)>, for any categories A and B [PTQ, p. 232].  

 
1.5 Translating into IL: indirect interpretation 
Montague Grammar owes much of its flavor to the particular format used to specify 
extensions (and intensions), viz. by formulae of the language of intensional type logic – IL, 
for short.12 In the PTQ-grammar, as already in Montague (1970b), an algorithm is specified 
that translates the expressions of English into IL-formulae, whose (model-dependent) 
denotations are specified independently and carry over to the English sources. Crucially, the 
algorithm proceeds in a compositional fashion so as to guarantee the compositional 
behavior of the English expressions it translates. This means that the translation into IL 
constitutes a detour on the way from natural language to meaning – and hence an indirect 
interpretation. Yet despite its eliminability, the procedure offers a number of advantages, 
not the least of which is that IL (or whichever language is chosen as a medium) may serve as 
a lingua franca for the semantic community. However, indirect interpretation must not be 

 
12 This by now common name appears to be due to Gallin (1971). In Montague (1970b), the system was called 
L0, and no shorthand name was used for the slightly extended version in PTQ. We will also follow semantic 
practice and use the term (IL-) formula for all terms or ‘meaningful expressions’ [PTQ: passim] of that language, 
not just for truth-valued ones (of type t: see below), as logicians would prefer. 
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misconstrued as representationalism: the meanings of English expressions are the model-
theoretic interpretations of their IL-translations, not the IL-formulae themselves.  

The algebraic details of indirect interpretation, and particularly its compositionality 
and eliminability, are beyond this short survey, in which the translation algorithm will only 
be presented by way of examples.13 The same goes for the language IL itself. The following 
remarks are mainly meant as a help to decipher the formulae used in the PTQ-translation. 
 The formulae of IL are stratified by their Types; the idea is that the translation of an 
English expression of any category A will be an IL-formula of type ƒ(A) denoting an object of 
that type. Thus, sentences translate as formulae of type t; verb phrases as formulae of type 
<<s,e>,t>; etc. As a rule of thumb, lexical expressions get translated by corresponding 
constants, whereas the translations of complex expressions are obtained by combining the 
translations of their immediate parts in accordance with the syntactic constructions by 
which they have been built. Thus, e.g., the verb try and the verb sleep translate as certain 
constants of types <<s,<<s,e>,t>>,<<s,e>,t>> (= ƒ(IV//IV)) and <<s,e>,t> (= ƒ (IV)), which in PTQ 
are referred to as try’ and sleep’, respectively. As a consequence, their extensions may vary 
wildly across the class of all models (though not necessarily across the worlds within one 
model; cf. Zimmermann 2017). While such wide ranges of extensions appear to reflect the 
inferential behavior of non-logical lexical items, it would be inappropriate in worst case 
generalizations. Thus, e.g., a type-shifted name should not be able to denote an arbitrary 
quantifier: if, say, the extension of John (at some point of evaluation in some model) were 
the same as that of no	entity, the inference from John	walks to Some	entity	walks would 
not go through. To capture their inferential behavior, then, proper names like John are 
translated by type-theoretic formulae of the form c*, where c is a constant of type e and the 
*-operator expresses Montague Lifting in IL. Before getting into the specifics of this type 
shift, it will be instructive to take a brief look at how complex expressions of English are 
translated into IL. As a first step in this direction, let us adorn the tree in (1a) with type-
logical translations: 

 
13 The algebraic aspects of indirect interpretation are expounded in Montague (1970b: 383f.). An interesting 
generalization (in terms of ‘safe derivers’) can be found in Chapter II of Janssen (1983). 
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(5) IL-translation of (1a) 
 

 
 
Apart from a few minor notational variations,14 (5) displays the stepwise IL-translation of 
(1a) according to the PTQ-algorithm, plus some logical reductions (following the triple bars). 
Readers unfamiliar with the IL-formalism may prefer the following equivalent representation 
in terms of a more transparent notation that makes explicit reference to points of evaluation 
by way of variables, a notation known as Ty2 (for two-sorted type theory):  

 
14 Thus, Montague uses capitalized versions of the connectives ‘Ù’ and ‘Ú’ to denote universal and existential 
quantification, where we use the more common inverted ‘A’s and ‘E’s. Moreover, we have given mnemonic 
names to the constants and omitted predictable brackets around l-terms. 

] | E x p r | [ B 6 4 X X x F e H B y f F s j Y i B A Y G J f X 1 9 9 K S E j I G I k T D x j I y A j X l s k I S E o L i I g K n 4 6 I D t i U D g m Y z U 1 K U p v a G 4 g d H J p Z X N 8 D Q l 8 I H R v I G Z p b m Q g Y S B 1 b m l j b 3 J u J m M 1 N S o s T C A 0 f S h i I E g t O y I h U 3 l t Y m 9 s X j o h J m M o I C B s O i A m Y z U 1 M l A m Y z U 1 K i x O f A 0 J f C A k X i 0 7 X 1 4 6 I S Z j K C A g L z o 6 I C Z j N T U y U C 0 9 J m M 1 N S o s S C 0 + J m M 1 N S l q J m M 1 N S o s S S 0 9 I C x I L T 4 m Y z U 1 K V R 8 D Q l 8 J m M 1 N S o s S C 0 + J m M 1 N S l G J m M 1 N S o s S C 0 + O i E m Y y g g I G w 6 I C Z j N T U y U C Z j N T U q L E 4 g L E g 6 I S Z j K C A g L E Q 6 I C Z j N T U y e X w N C X w m Y z U 1 K i x J I C 0 7 J m M 1 N S l V J m M 1 N S o s S C Z j N T U y e S Z j N T U q L E k g O i E m Y y g g I C 8 5 O i A m Y z U 1 K i A k X i 0 7 X 1 4 6 I S Z j K C A g L z p 8 D Q l 8 O i A m Y z U 1 M l A t P S Z j N T U q L E g m Y z U 1 M n k m Y z U 1 K i x J L T 0 s S S x J L E l 9 X j o h J m M o I C A u W i g @ O i A m Y z U 1 K V Q m Y z U 1 K i x I f A 0 J f C 0 + J m M 1 N S l q J m M 1 N S o s T C 0 + O i E m Y y g g I G w 6 I C Z j N T U y e C Z j N T U q L E 4 g L E g 6 I S Z j K C A g L E Q 6 I C Z j N T U y e S Z j N T U q L E l 8 D Q l 8 I C 0 7 J m M 1 N S l V J m M 1 N S o s S C Z j N T U y e S Z j N T U q L E k g O i E m Y y g g I C 8 5 O i A m Y z U 1 K i A k X i Z j N T U p R l 4 m Y z U 1 M i x K f A 0 J f F 8 m Y z U 1 K i x I J m M 1 N T J 4 L E x 5 J m M 1 N S o s S S 0 9 L E l 9 I S E h I S A h I C A g I C A g I C A g I C A g I C A g I C A g f V 5 b I i E h K C F 8 D Q l 8 J m M 1 N S l K b 2 h u f S g r O i E m Y y g g I G w 6 I C Z j N T U y U C Z j N T U q L E 4 g J F 4 t O 1 9 e O i E m Y y g g I C 8 6 O i A m Y z U 1 M l A t P X w N C X w m Y z U 1 K i x I L T 4 m Y z U 1 KW o m Y z U 1 K i x J f S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 e P G M j I C N e W y Q h I S g s f A 0 J f C Z j N T U p d H J 5 I H R v I G Z p b m Q g Y S B 1 b m l j b 3 J u J m M 1 N S o s T C A 2 f S g 7 J m M 1 N S l U J m M 1 N S o s S C 0 + J m M 1 N S l G J m M 1 N S o s S C 0 + f A 0 J f D o h J m M o I C B s O i A m Y z U 1 M l A m Y z U 1 K i x O I C x I O i E m Y y g g I C x E O i A m Y z U 1 M n k m Y z U 1 K i x J I C 0 7 J m M 1 N S l V J m M 1 N S o s S H w N C X w m Y z U 1 M n k m Y z U 1 K i x J I D o h J m M o I C A v O T o g J m M 1 N S o g J F 4 t O 1 9 e O i E m Y y g g I C 8 6 O i A m Y z U 1 M l A t P S Z j N T U q L E h 8 D Q l 8 J m M 1 N T J 5 J m M 1 N S o s S S 0 9 L E k s S X 1 e O i E m Y y g g I C 5 a K D w 6 I C Z j N T U p V C Z j N T U q L E g t P j o h J m M o I C B s O i A m Y z U 1 M n h 8 D Q l 8 J m M 1 N S o s T i A s S D o h J m M o I C A s R D o g J m M 1 N T J 5 J m M 1 N S o s S S A t O y Z j N T U p V S Z j N T U q L E g m Y z U 1 M n k m Y z U 1 K i x J f A 0 J f C A 6 I S Z j K C A g L z k 6 I C Z j N T U q I C R e J m M 1 N S l G X i Z j N T U y L E p f J m M 1 N S o s S C Z j N T U y e C x M e S Z j N T U q L E k t P S x J f S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 8 D Q l 8 X l s i I S E o I S Z j N T U p d H J 5 f V 5 U I S E h I S A h I C A g I C A g I C A g I C A g I C A g I C A g f V 4 8 Y y M g I 1 5 b J C E h K C h m a W 5 k I H w N C X x h I H V u a W N v c m 4 m Y z U 1 K i x M I D V 9 K D k m Y z U 1 K U Y m Y z U 1 K i x I L T 4 6 I S Z j K C A g b D o g J m M 1 N T J Q J m M 1 N S o s T i A s S H w N C X w 6 I S Z j K C A g L E Q 6 I C Z j N T U y e S Z j N T U q L E k g L T s m Y z U 1 K V U m Y z U 1 K i x I J m M 1 N T J 5 J m M 1 N S o s S S A 6 I S Z j K C A g L z l 8 D Q l 8 O i A m Y z U 1 K i A k X i 0 7 X 1 4 6 I S Z j K C A g L z o 6 I C Z j N T U y U C 0 9 J m M 1 N S o s S C Z j N T U y e S Z j N T U q L E k t P S x J f V 4 6 I S Z j K C A g L l p 8 D Q l 8 K D h s O i A m Y z U 1 M n g m Y z U 1 K i x O I C x I O i E m Y y g g I C x E O i A m Y z U 1 M n k m Y z U 1 K i x J I C 0 7 J m M 1 N S l V J m M 1 N S o s S H w N C X w m Y z U 1 M n k m Y z U 1 K i x J I D o h J m M o I C A v O T o g J m M 1 N S o g J F 4 m Y z U 1 K U Z e J m M 1 N T I s S l 8 m Y z U 1 K i x I J m M 1 N T J 4 f A 0 J f C x M e S Z j N T U q L E k t P X 0 h I S E h I C E g I C A g I C A g I C A g I C A g I C A g I C B 9 X l s i I S E o I S Z j N T U p Z m l u Z H 1 e R i E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 8 D Q l 8 X j x j I y A i X l s i I S E o J m E g d W 5 p Y 2 9 y b i Z j N T U q L E w g M n 0 o O D o h J m M o I C B s O i A m Y z U 1 M l A m Y z U 1 K i x O I C x I O i E m Y y g g I C x E f A 0 J f D o g J m M 1 N T J 4 J m M 1 N S o s S S A t O y Z j N T U p V S Z j N T U q L E g m Y z U 1 M n g m Y z U 1 K i x J I D o h J m M o I C A v O T o g J m M 1 N S o g f A 0 J f C R e L T t f X j o h J m M o I C A v O j o g J m M 1 N T J Q L T 0 m Y z U 1 K i x I J m M 1 N T J 4 J m M 1 N S o s S S 0 9 f S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 8 D Q l 8 X l s i I S E o I S Z j N T U p d W 5 p Y 2 9 y b n 1 e V S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 9 f X 1 9 f A 0 J f H 0 m I G I h K C B i I j A g Y i M 4 I G I k Q C B i J U g g Y i Z Q I F d X f V 1 8 W w 0 = ] | [

John tries to find a unicorn, 4
[hP. [�P](^j)] (^T(^F(^hP. (�y) [U(y) � [�P](y)])))

>
T(^j,^hx. (�y) [U(y) � F*(x,y)])

John
hP. [�P](^j)

try to find a unicorn, 6
T(^F(^hP. (�y) [U(y) � [�P](y)]))

>
T(^hx. (�y) [U(y) � F*(x,y)])

try
T

find a unicorn, 5
F(^hP. (�y) [U(y) � [�P](y)])

>
hx. (�y) [U(y) � F*(x,y)]

find
F

a unicorn, 2
hP. (�x) [U(x) � [�P](x)]

unicorn
U
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(6) Ty2-translation of (1a) 

 

    
 
The ubiquitous index i	is a variable ranging over points of evaluation; and subscripting is 
merely a (common) notational variant for functional application, Ui being shorthand for U(i), 
etc. The logical formulae in (6) are built up using bold-face constants of the appropriate 
intension types. Thus, given that the extension of the noun unicorn is of type ƒ(t/e), U is of 
type <s,<<s,e>,t>>. Slightly deviating from the PTQ type assignment (see below), the 
constant F in (6) denotes the intension of a binary relation between individual concepts and 
is thus of type <s,<<s,e>,<<s,e>,t>>>. And given that the verb try is of category (IV//IV), the 
constant T is of type <<s,ƒ(IV)>, ƒ(IV)> (= <<s,<<s,e>,t>>,<<s,e>,t>>); as a consequence (to 
which we will also return), the constant j that fills the ‘subject’ argument of T, is of type 
<s,e>. The rest of the notation is hopefully self-explanatory. In particular, the triple bar 
between the type-logical translations and their reduced forms stands for logical equivalence; 
the suggested reductions all make use of the familiar laws of l-conversion.15 

Readers may feel that the formulae in (5) are somewhat simpler than those in (6), 
particularly because they seem to do without the evaluation-point variable i. As a matter of 
fact, though, rather than being absent, it is cleverly hidden. Its suppression is the main 
feature that distinguishes IL from the seemingly more complicated notation in (6). Closer 
inspection of the translations of all parts of (1a) but the embedded verb reveals how the 
evaluation-point variable can be made to reappear by a systematic procedure:  

• IL-constants c of any extension type a correspond to constellations of the form	‘ci’, 
where c is a homographic Ty2-constant of the corresponding intension type <s,a> 
and i is a fixed variable of the (non-Montagovian but) two-sorted type s. 

• The cup operator preceding the variable ‘P’ (of type <s,<<s,e>,t>>) corresponds to  
application of the homographic Ty2-variable ‘P’ to the evaluation-point variable i; in 

 
15 The leftmost equivalence (below John) also takes advantage of the fact that λ𝑖. 𝐣! reduces to j, due to the 
logical law of h-conversion, which reflects the extensionality of set-theoretic functions. 

] | E x p r | [ B 6 4 X X x F e H B y f F s j Y i B A Y G J f X 1 9 9 K S E j I G I k T D x j I y A j X l s k I S E o L i I g K n 4 6 I D t i U D g m Y z U 1 K U p v a G 4 g d H J p Z X N 8 D Q l 8 I H R v I G Z p b m Q g Y S B 1 b m l j b 3 J u J m M 1 N S o s T C A 0 f S h i I F I t O y I h U 3 l t Y m 9 s X j o h J m M o I C B s O i A m Y z U 1 M l A m Y z U 1 K i x O f A 0 J f C A k X i Z j N T U y U F 5 p X y Z j N T U q L E g 6 I S Z j K C A g b D o g J m M 1 N T J p J m M 1 N S o s T i R e J m M 1 N S l q X i Z j N T U y a V 8 m Y z U 1 K i x J f A 0 J f C 0 9 L E g 6 I S Z j K C A g b D o g J m M 1 N T J p J m M 1 N S o s T i A k X i Z j N T U p V F 4 m Y z U 1 M m l f J m M 1 N S o s S D o h J m M o I C B s O i A m Y z U 1 M m l 8 D Q l 8 J m M 1 N S o s T i A 6 I S Z j K C A g b D o g J m M 1 N T J 4 J m M 1 N S o s T i A s S D o h J m M o I C A s R D o g J m M 1 N T J 5 J m M 1 N S o s S S A t O 3 w N C X w k X i Z j N T U p V V 4 m Y z U 1 M m l f J m M 1 N S o s S C Z j N T U y e S Z j N T U q L E k g O i E m Y y g g I C 8 5 O i A m Y z U 1 K i A k X i Z j N T U p R n w N C X x e J m M 1 N T J p X y Z j N T U q L E g m Y z U 1 M n g s T H k m Y z U 1 K i x J L T 0 s S S x J f V 4 6 I S Z j K C A g L l o o Y i B A J F 4 6 I C Z j N T U p V H w N C X x e J m M 1 N T J p X y Z j N T U q L E g m Y z U 1 KW o m Y z U 1 K i x M I D o h J m M o I C B s O i A m Y z U 1 M m k m Y z U 1 K i x O I D o h J m M o I C B s f A 0 J f D o g J m M 1 N T J 4 J m M 1 N S o s T i A s S D o h J m M o I C A s R D o g J m M 1 N T J 5 J m M 1 N S o s S S A t O y R e J m M 1 N S l V X i Z j N T U y a V 9 8 D Q l 8 J m M 1 N S o s S C Z j N T U y e S Z j N T U q L E k g O i E m Y y g g I C 8 5 O i A m Y z U 1 K i A k X i Z j N T U p R l 4 m Y z U 1 M m l f J m M 1 N S o s S H w N C X w m Y z U 1 M n g s T H k m Y z U 1 K i x J L T 0 s S X 0 h I S E h I C E g I C A g I C A g I C A g I C A g I C A g I C B 9 X l s k I S E o I S Z j N T U p S m 9 o b n 1 8 D Q l 8 K C w 6 I S Z j K C A g b D o g J m M 1 N T J Q J m M 1 N S o s T i A k X i Z j N T U y U F 5 p X y Z j N T U q L E g 6 I S Z j K C A g b D o g J m M 1 N T J p J m M 1 N S o s T n w N C X w g J F 4 m Y z U 1 KW p e J m M 1 N T J p X y Z j N T U q L E l 9 X j o h J m M o I C A u W i g o J m M t N S p s O i A m Y z U 1 M l A s T i A k X l B e a V 8 s S H w N C X w m Y z U 1 KW o m Y z U 1 M i x J f S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 e P G M j I C N e W y I h I S g s J m M 1 N S l 0 c n k g f A 0 J f H R v I G Z p b m Q g Y S B 1 b m l j b 3 J u J m M 1 N S o s T C A 2 f S g @ J F 4 m Y z U 1 K V R e J m M 1 N T J p X y Z j N T U q L E g 6 I S Z j K C A g b D o g J m M 1 N T J p f A 0 J f C Z j N T U q L E 4 g O i E m Y y g g I G w 6 I C Z j N T U y e C Z j N T U q L E 4 g L E g 6 I S Z j K C A g L E Q 6 I C Z j N T U y e S Z j N T U q L E k g L T t 8 D Q l 8 J F 4 m Y z U 1 K V V e J m M 1 N T J p X y Z j N T U q L E g m Y z U 1 M n k m Y z U 1 K i x J I D o h J m M o I C A v O T o g J m M 1 N S o g J F 4 m Y z U 1 K U Z 8 D Q l 8 X i Z j N T U y a V 8 m Y z U 1 K i x I J m M 1 N T J 4 L E x 5 J m M 1 N S o s S S 0 9 L E l 9 I S E h I S A h I C A g I C A g I C A g I C A g I C A g I C A g f X w N C X x e W y I h I S g h J m M 1 N S l 0 c n l 9 X i R e V F 4 m Y z U 1 M m l f I S E h I S A h I C A g I C A g I C A g I C A g I C A g I C A g f V 4 8 Y y M g I 1 5 b I i E h f A 0 J f C g o J m M 1 N S l m a W 5 k I G E g d W 5 p Y 2 9 y b i Z j N T U q L E w g N X 0 o O D o h J m M o I C B s O i A m Y z U 1 M n g m Y z U 1 K i x O I C x I O i E m Y y g g I C x E f A 0 J f D o g J m M 1 N T J 5 J m M 1 N S o s S S A t O y R e J m M 1 N S l V X i Z j N T U y a V 8 m Y z U 1 K i x I J m M 1 N T J 5 J m M 1 N S o s S S A 6 I S Z j K C A g L z l 8 D Q l 8 O i A m Y z U 1 K i A k X i Z j N T U p R l 4 m Y z U 1 M m l f J m M 1 N S o s S C Z j N T U y e C x M e S Z j N T U q L E k t P X 0 h I S E h I C E g I C A g I C A g I C A g I C A g I C A g I C B 9 f A 0 J f F 5 b I i E h K C E m Y z U 1 KW Z p b m R 9 X i R e R l 4 m Y z U 1 M m l f I S E h I S A h I C A g I C A g I C A g I C A g I C A g I C A g f V 4 8 Y y M g I l 5 8 D Q l 8 W y I h I S g m J m M 1 N S l h I H V u a W N v c m 4 m Y z U 1 K i x M I D J 9 K D Y 6 I S Z j K C A g b D o g J m M 1 N T J Q J m M 1 N S o s T i A s S D o h J m M o I C A s R H w N C X w 6 I C Z j N T U y e C Z j N T U q L E k g L T s k X i Z j N T U p V V 4 m Y z U 1 M m l f J m M 1 N S o s S C Z j N T U y e C Z j N T U q L E k g O i E m Y y g g I C 8 5 f A 0 J f D o g J m M 1 N S o g J F 4 m Y z U 1 M l B e a V 8 m Y z U 1 K i x I J m M 1 N T J 4 J m M 1 N S o s S S 0 9 f S E h I S E g I S A g I C A g I C A g I C A g I C A g I C A g I H 1 8 D Q l 8 X l s i I S E o I S Z j N T U p d W 5 p Y 2 9 y b n 1 e J F 5 V X i Z j N T U y a V 8 h I S E h I C E g I C A g I C A g I C A g I C A g I C A g I C B 9 f X 1 9 f X w N C X x 9 J i B i I S g g Y i I w I G I j O C B i J E A g Y i V I I G I m U C B X V 3 1 d f F s N ] | [

John tries to find a unicorn, 4
[hP. Pi(hi.ji)](hi. Ti(hi. hx. (�y) [U i(y) � Fi(x,y)]))

>
Ti(j, hi. hx. (�y) [U i(y) � Fi(x,y)])

John
hP. Pi(hi. ji)

>
hP. Pi(j)

try to find a unicorn, 6
Ti(hi. hx. (�y) [U i(y) � Fi(x,y)])

try
Ti

find a unicorn, 5
hx. (�y) [U i(y) � Fi(x,y)]

find
Fi

a unicorn, 2
hP. (�x) [U i(x) � Pi(x)]

unicorn
U i
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fact, any IL-formula of the form ‘[∨a](b)’ corresponds to a*(i)(b*), where a* and b* 
correspond to a and b.16 

• The cap operator preceding intensional arguments corresponds to the prefix ‘li.’. 
Using these three correspondence rules and leaving everything else as is, almost any IL-
formula can be translated into the more transparent Ty2-notation.17 The one remaining 
difference between (5) and (6) then concerns the translation of find, which is a constant of 
the worst case for transitive verbs, which take Term intensions of the dazzlingly complex 
type <s,ƒ(T)> = <s,<<s,<<s,e>,t>>,t>> as their arguments. The justification for this type 
assignment will be supplied later (Section 2.3.2). However, like its namesake in (6), the 𝐅 in 
(5) merely relates individual concepts represented by 𝑥 and 𝑦 – except that the type of the 
latter has been adapted by a Montague Lift. It is this binary relation between x and y	that 
features in the translation tree (5):18 

(7) 	𝐅∗: = [λ𝑦. λ𝑥. 𝐅(𝑥, 𝑦∗)] 
where the upper asterisk again indicates a Montague Lift, the definition of which can be 
gleaned from the translation of the subject in (5): 

(8) a* := [lP. [∨P](^a)] 
In PTQ, equation (7) is implemented as (a consequence of) a meaning postulate – an IL-
formula that is supposed to be true at points of evaluation of all (“reasonable”) models. The 
same effect could have been achieved by taking the right-hand side of (7) as the translation 
of find, instead of having a constant F (which, it should be recalled, is the IL-version of the 
Ty2-formula Fi). Indeed, for the translation of proper names, Montague [PTQ, p. 233, T1.(d)] 
followed this alternative strategy and put: 

(9) John’ :=	j*, 
where j is a constant of type e (and thus, again, abbreviates ji) and the asterisk is defined as 
in (8). 

The type reduction in (7) can be used to express that any quantificational object of find 
will be interpreted so as to take scope over the verb – which is precisely what the 
transparency postulate demands [PTQ, p. 235, (4)]: 

(10) 𝐅 = [λ℘. λ𝑥. [ ℘]∨ (^λ𝑦. 𝐅∗(𝑥, 𝑦))] 
(10) offers an alternative route to what Heim & Kratzer (1998: 178) famously dubbed ‘the 
problem of quantifiers in object position’. The Term is interpreted in situ (and by functional 
application) but still manages to quantify over objects found by the subject. This is possible 
because the verb (or its IL-translation F) does not denote the relation of finding between 
individuals but a type-shifted relation between individual concepts x and Term intensions ℘, 
viz. the relation that holds if the property of being a y that is found by x is in the extension of 
the quantifier – where the underlined condition is expressed in terms of  𝐅∗, not F.  

These illustrations must suffice to give readers a glimpse of how the indirect 
translation process works. For the specifics of the translation algorithm and the target 
language IL, they are referred to PTQ itself or the surveys mentioned in the Introduction.  

 
16 In PTQ the constellation ‘[∨a](b)’ is usually abbreviated as ‘a{b}’. 
17 Tense and modal operators need a special treatment, thence ‘almost’; see, e.g., Köpping & Zimmermann (to 
appear). – The correspondence, which is a special case of the so-called standard translation of modal logic 
(Fine 1975: 19), was first described in Gallin (1975: 61); given that the system Ty2 is the obvious substratum 
underlying the very construction of IL, Montague was certainly aware of it, though. 
18 In fact, by the meaning postulate (4) given in PTQ [p. 235], 𝐅∗ even downgrades finding to a relation between 
individuals (instead of individual concepts); however, we refrain from doing so here for expository reasons. 
Similar remarks apply to (10). 
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Before we get to the descriptive aspects of the PTQ grammar, a word is in order 
about the very choice of an intensional target language over its obvious – and obviously 
more transparent – two-sorted rival. For apart from being shorter and at times closer to 
predicate logic, the IL-formulae have little to recommend them. In particular, they are much 
harder to manipulate: the principle of l-conversion, which is vital when it comes to 
reduction for readability, is not valid in its familiar form, the reason being that the 
suppressed evaluation point variable may lead to a variable clash but cannot be renamed. 
Pertinent examples can be found in any good reference text.19 Another, less frequently 
noticed deficiency of IL is revealed in connection with the rigidity of proper names, which in 
Ty2 can be dealt with by type shifting constants from e to <s,e> – but not in IL, because IL-
constants have intension types only (Zimmermann 1993: 160, fn.20).  

Given these problems with Montague’s IL, one may wonder whether the 
simplification is worth the trouble.20 One potential reason for still using the language – and 
possibly Montague’s own main motivation – may be seen in its restricted expressivity: IL 
avoids apparently unnecessary types like <<s,t,>,s> and has only one ‘invisible’ evaluation-
point variable (i) at its disposal. So if the intensional language suffices for indirect 
interpretation, its limitations might tell us something about the complexity of natural 
language, viz. that its combinatory power is below full two-sorted type theory. There are, 
however, two reasons that might speak against such an interpretation. On the one hand, it is 
quite uncertain that the two-sorted types omitted by IL or its avoidance of multiple (free) 
variables of type s is even descriptively adequate (cf. Cresswell 1990). On the other hand, 
the expressivity gap between IL and Ty2 is much smaller than it may appear: ignoring 
multiple evaluation-point variables and non-intensional types, anything that can be 
expressed in Ty2 can also be expressed in IL – but usually in a much more roundabout and 
much less conspicuous way (cf. Zimmermann 1989). Hence there is every reason to do away 
with Montague’s elegant but hard to read and manipulate intensional logic and use the 
much more transparent two-sorted version in indirect interpretation – as many semanticists 
have done since the 1980s. 
 
2. Descriptive aspects: the fragment 
The semantic phenomena covered by the PTQ fragment of English are too varied to all be 
addressed here. We will therefore concentrate on a few of the most innovative and 
influential descriptive contributions. It needs to be mentioned though that, apart from 
Montague’s previously published work, as a precise account of compositional semantics, 
PTQ was without precedent. In that sense, practically everything in that paper was both 
original and innovative.  
 
2.1 Extensional constructions 
Although Frege (1879) had characterized quantification as second-order predication and 
Russell (1905) had extended Frege’s approach to definite descriptions, thereby rejecting 
Frege’s (1892) own, referential treatment, Richard Montague is usually credited with the 

 
19 See, e.g., Dowty et al. (1981: 167). The correct, restricted version of l-conversion in IL has first been 
formulated in Gallin (1975: 19) as an axiom schema. 
20 The questions in this paragraph are addressed in more detail in Zimmermann (to appear), where relevant 
references can be found too. 
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first systematic compositional interpretation of nominal quantification.21 Given this 
achievement, it is somewhat surprising that his treatment of quantificational Terms does not 
proceed by a binary composition of determiner and noun, but rather lifts the latter to 
quantifier status by one unary operation per determiner. We thus have:  

(11) 𝐹)(𝐮𝐧𝐢𝐜𝐨𝐫𝐧) = 𝐞𝐯𝐞𝐫𝐲	𝐮𝐧𝐢𝐜𝐨𝐫𝐧,  
which translates as: 

(12) λ𝑃. (∀𝑥)[𝐔(𝑥) → [ 𝑃∨ ](𝑥)], 
which in turn is an instance of a general rule applying to translations a of nouns lifted by 𝐹) 
[PTQ, p. 233, T2]: 

(13) λ𝑃. (∀𝑥)[α(𝑥) → [ 𝑃∨ ](𝑥)] 
And we do not have anything like: 

(14) 𝐹!))(𝐞𝐯𝐞𝐫𝐲, 𝐮𝐧𝐢𝐜𝐨𝐫𝐧) = 𝐞𝐯𝐞𝐫𝐲	𝐮𝐧𝐢𝐜𝐨𝐫𝐧,  
which would translate as:  

(15) 𝐞𝐯𝐞𝐫𝐲′(𝐔), 
where 𝐞𝐯𝐞𝐫𝐲′ is the following IL-formula of type <<<s,e>,t>,<<<s,e>,t>,t>>: 

(16) λ𝑄. λ𝑃. (∀𝑥)[[ 𝑄∨ ](𝑥) → [ 𝑃∨ ](𝑥)] 
 –  and similarly for the determiners a[n] and the.22 In other words, instead of forming one 
lexical category, determiners are treated as each indicating its own unary syntactic 
operation. Hence Montague’s analysis of nominal quantification does not lend itself so easily 
to the study of determiner denotations as the generalized quantifier theory it inspired, 
starting with Barwise & Cooper (1981). The reason why Montague preferred (12) over (15) 
may have to do with the logicality of determiners, which shows in their definability in terms 
of parameter-free type-logical formulae (i.e. formulae that do not contain any non-logical 
constants or free variables) and suggests that they be treated as part of the grammatical 
structure of language. However, the characterization of the distinction between lexical and 
grammatical meaning in terms of logicality is not part of the general theory of Montague 
(1970b).23  

As pointed out by Thomason (1974: 261, fn. 12), the translation (13) (like its variants 
for the other determiners) leads to undesired results: if a happens to contain a free pronoun 
with the same index n as the (fixed) variable ‘𝑥’, the universal quantifier would accidentally 
bind it – a case in point being:  a = unicorn	such	that	it	loves	himn, which according to (12), 
would result in quantification over the set of narcissist unicorns. The following corrected 
version of (13) takes care of this nuisance:24 

(17) [λ𝑁. λ𝑃. (∀𝑥)[𝑁(𝑥) → [ 𝑃∨ ](𝑥)]](α) 

 
21 Essentially the same account of nominal quantification (also covering the determiner no) was already given 
in Montague (1970b). There is evidence (Barbara Partee, p.c.) that it was motivated by, and started with, the 
compositional analysis of intensional transitives, as announced in Montague (1969: 177).   
22 A comparison of (12) and (16) nicely brings out the asymmetry between constants and variables in IL: in (12) 
the dependence on the point of evaluation is implicit in the constant U, which corresponds to Ui in Ty2, 
whereas in (16) it needs to be marked by the cup operator preceding Q. 
23 A distinction is still made though: according to the theory of reference in Montague (1970b), abstraction 
from context, with variable binding as a special case, is confined to semantic composition. – Definability in a 
suitable logical system is one way of characterizing logicality. Another, more popular approach goes back to 
Tarski (1986) and uses invariance with respect to permutations on the ground domains (i.e., the individuals and 
the points of evaluation); this criterion was first proposed for (lexical) determiners in Keenan & Stavi (1986: 
310f.).  
24 Thomason (ibid.) proposes to choose the variable x as depending on a, which is however not in line with 
Montague’s (1980b: 383f.) ‘polynomial’ construal of indirect interpretation. 
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Using (17), Montague’s analysis turns out to be identical to the by now standard generalized 
quantifier account (15) + (16). Moreover, it helps bringing out an elementary feature of the 
unary constructions 𝐹)	–	𝐹*: they are extensional in that the extensions of the quantifying 
Terms so constructed are determined solely on the basis of the extensions of their (unique) 
nominal parts. In (17) this shows in the position of the meta-variable a, which does not 
stand in the scope of any variable binder (l, ", $) or intensional operator (^, □,W, H). 
 Apart from the Term formation operations 𝐹)	–	𝐹*, there is only one other family of 
extensional constructions in the PTQ fragment of English, viz. the coordinations of 
sentences, verb phrases (IVs), and Terms; their PTQ treatment formed the starting point for 
numerous investigations into (generalized) Boolean conjunction and disjunction.25 We will 
not go into them here except for noticing that Term coordination in PTQ is restricted to 
disjunction (by T13 on p. 234), thereby evading any semantic problems posed by plural 
formation.26 

Interestingly though, the (later) so-called in situ interpretations of quantificational 
subjects and objects, both of which are listed among the rules of functional application [PTQ, 
p. 233], fall prey to Montague’s strategy of generalizing to the worst case, ending up as 
intensional constructions, which is why we will only turn to them in Section 2.3. Finally, the 
reader should bear in mind that, on account of the extension type <<s,e>,t> assigned to 
nouns and verbs, the IL-variable x in (13) ranges over individual concepts of type <s,e>. This 
peculiarity of the PTQ-treatment of nominal quantification will also be addressed in Section 
2.3. 

 
2.2 Binding and Scoping 
Failure of extensional substitution is not always caused by intensionality in the narrow 
sense. For apart from the point of evaluation, extensions also depend on context; and 
according to Montague’s (1970b) theory of reference, this dependence can be abstracted 
from by variable binding, where the assignment plays the role of context. In the PTQ 
fragment, there are two kinds of construction that are interpreted as variable-binding 
operations: (restrictive) relative clause formation and quantifier raising. On the syntactic 
side, both involve removing subscripts on pronouns, thus indicating their bound status; 
according to Montague’s (1970b) theory of reference, any remaining subscripted (‘free’) 
pronouns need to be interpreted by a contextually given assignment.27 
 The PTQ fragment does not really cover relative clauses but only circumlocutions like 
unicorn	such	that	it	speaks. The reason for this is presumably that, unlike the traces of 
relative pronouns, the bound anaphors in these circumlocutions do not call for any syntactic 
restrictions, as witnessed by unicorn	such	that	it	or	John	speaks.	On	the	semantic	side,	
Montague	implemented	Quine’s	(1960:	110f.)	suggestion	that	restrictive	relative	clause	
formation	and	modification	correspond	to	set	abstraction	and	intersection,	respectively,	
which	are	rolled	into	one	construction	F3,n,	translated	by	the	following	rule	[PTQ,	p.	233,	
T3]:	

 
25 See, in particular, Partee & Rooth (1983) and Hendriks (1990); Geach (1970) is an important predecessor. 
26 Barbara Partee (2011: 26) reports that ‘there are handwritten pages in [Montague’s] files from 1970 when 
he was working on PTQ that show failed attempts to treat quite a number of phenomena that never made it 
into PTQ. For example, he had intended to include a much larger class of quantifiers than the three (a, the, 
every) that ended up being treated in PTQ. But he abandoned the attempt to include a treatment of plural 
expressions in PTQ, which eliminated most quantifiers and eliminated term phrases conjoined with and, leaving 
only those three singular determiners and term phrases conjoined with or.’ 
27 This suggestion has since been taken up by many semanticists – see, e.g., Kaplan (1989b: 527) or Heim & 
Kratzer (1998: 242ff.); still, its coherence is debatable: cf. Wehmeier (2018). 
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(18) [λ𝑥". [α(𝑥") ∧ 	𝜑]] 
where a and j are the respective IL-translations of the modified noun and the relative 
clause (bar the such	that-prefix), and n is the index of the pronoun corresponding to the 
trace. It may be noted in passing that (18) suffers from similar problems as (13) above, and 
that analogous cures may be applied.28 
 As to scope construal, the PTQ fragment distinguishes three cases according to the 
landing site of the quantifying Term, which may take scope over (a) a sentence, (b) a noun, 
or (c) a predicate. Case (a), which applies in (1b) above, naturally generalizes the quantifier 
construal of predicate logic, by binding a variable in a ‘matrix’ sentence and then applying 
the quantifier to the resulting set: 

(19) Q(lxn.	j),	
where Q translates the quantifying Term and j the sentence from which it has been scope-
raised. To be sure, in (19) it is the l-operator and not the quantifier itself that binds the 
variable; but then the predicate logic notation (20) may be taken as shorthand for (19) 
anyway – it’s just that predicate logic lacks l-abstraction: 

(20) (Qxn)	j 
Due to the uniform type assignment, (19) is not quite the PTQ translation for scope-raised 
quantifiers of type (a) yet: since Terms are of category t/IV, their extension type comes out 
as <<s,ƒ(IV)>,t>, and thus their argument needs to be intensionalized. So we have (21) as 
translating case (a) – even though no intensionality effect is observed here:29 

(21) Q(^lxn.	j) 
Whenever a Term translation Q is inserted in (21), it so happens that the cap operator 
eventually washes out by a variant of l-reduction. (22), which is (equivalent to) the 
translation of (1b), is a case in point: 

(22) [λ𝑃. (∃𝑥)[𝐔(𝑥) ∧ [ 𝑃∨ ](𝑥)]]([^λ𝑥). 𝐓(^𝐣, ^λ𝑧. 𝐅∗(𝑧, 𝑥)))]) 
As readers should verify for themselves, using the above Ty2-representation of IL, (22) can 
be l-converted to (23), where the underlined formula has taken the place of the l-bound 
variable P: 

(23) (∃𝑥) �𝐔(𝑥) ∧	 [ [^λ𝑥). 𝐓(^𝐣, ^λ𝑧. 𝐅∗(𝑧, 𝑥)))]∨ ](𝑥)� 
The underlined part of (23) is in the scope of the cup operator, thus producing a formula of 
the form: [ [^α]∨ ], which in Ty2 spells out as: 

(24) [li. a*](i)	
which	in	turn	l-reduces	to	a*.30 As a consequence, the cup-cap sequence turns out to be 
redundant and we get the following logical law:31  

 
28 More specifically, (18) could either be traded for the more cumbersome (i), in analogy to (17), or the relative 
clause could be constructed independently, translated as (ii), in analogy to (15), and then get attached by 
predicate modification (in the sense of Heim & Kratzer 1998: 65): 

(i) [λ𝑃. λ𝑥#. [𝑃(𝑥#) ∧ 	𝜑]](α) 
(ii) [λ𝑥#. 𝜑] 

A third possibility is offered in Montague (1970b: 393, def. of H7), where the relative clause gets generalized to 
the worst case of an intensional modifier. 
29 In PTQ notation, (21) gets contracted to Θ(𝑥F#	φ). 
30 b-reduction always applies to constellations of the form [lx. a](x)	because x cannot be accidentally bound 
when it replaces a free occurrence of itself; moreover, the replacement α[𝑥 𝑥⁄ ] is obviously the same as α. 
31 The law – whose name goes back to (Dowty et al. 1981: 154) – features as an axiom schema in Gallin (1975: 
19) but is not mentioned in PTQ or Montague (1970b), although it is crucial for many of the reductions given 
there. – Incidentally, there is no ‘reverse’ law of up-down cancellation: [^[ α∨ ]] is generally not equivalent to a; 
where it is, it boils down to an instance of  h-conversion in Ty2. Readers are invited to construct their own 
counterexamples, starting by inspecting corresponding Ty2-constellations [li.	a(i)]. 
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(25) Down-up	cancellation	
For any IL-formula a: [ [^α]∨ ] ≡ α	

With the help of (25), (22) ultimately reduces to:  
(26) (∃𝑥)[𝐔(𝑥) ∧ 𝐓(^𝐣, ^λ𝑧. 𝐅∗(𝑧, 𝑥))] 

The same kind of spurious intensionality is built into the variants (b) and (c) of the scope-
mechanism, which allow Terms to quantify into nouns and IVs, respectively. These 
possibilities are needed to account for readings that cannot be obtained by quantifying into 
sentences, as in the following examples: 

(27) John	wishes	to	find	a	unicorn	and	eat	it		
(28) Every	man	such	that	a	woman	loves	him	such	that	he	loves	her	loves	a	

woman	
(27) is the example adduced in PTQ [p. 240] to motivate rule T16 [p. 234] that translates 
F10,n(T,P) as applying to a Term T and a predicate P, which themselves respectively translate 
as Q and a: 

(29) ly. Q(^lxn.	a(y)) 
Using (29), the indefinite a	unicorn	in (27) can receive a non-specific reading and at the 
same time bind the pronoun it by taking scope over the embedded infinitive. – (28) 
illustrates how quantifier raising to the noun level allows for anaphora across ‘stacked’ 
relative clauses.32 We leave it to the reader to figure out the details. 
 The flexibility concerning the landing sites is but one of a number of major 
differences between the PTQ construal of quantifier scope and later, more sophisticated 
approaches. Most importantly, it is completely unrestricted and thus allows for numerous 
unattested scope constellations such as (30), one PTQ translation of which reduces to (31): 

(30) A	woman	such	that	every	man	loves	her	loves	him	
(31) (∀𝑥)[𝐦𝐚𝐧+(𝑥) → (∃𝑦)	[𝐰𝐨𝐦𝐚𝐧+(𝑦) ∧ 𝐥𝐨𝐯𝐞+∗(𝑥, 𝑦) ∧ 𝐥𝐨𝐯𝐞+∗(𝑦, 𝑥)]] 

Moreover, due to restrictions on scope constellations corresponding to what was later going 
to be called c-command (Reinhart 1983), PTQ has no way of capturing the apparent 
covariation between indefinites and pronouns in so-called donkey sentences like: 

(32) Every	farmer	who	owns	a	donkey	beats	it	
Though the problem had been known since Geach (1962: 117ff., 128f), Montague apparently 
made no attempts at solving it; indeed, legend has it that he refused to even recognize the 
relevant reading of (32) [Terence Parsons, p.c.]. As it turns out, its solution seems to require 
a revision of several basic assumptions of Montague Grammar, including the treatment of 
indefinites as existential quantifiers, as first pointed out in Lewis (1975) and later 
systematized in so-called dynamic accounts starting with Kamp (1981) and Heim (1982). 
 
2.3 Intensionality 
The above examples already offered a glimpse of how intensionality – in the usual sense of 
substitution resistance on the level of extension – is treated in PTQ: in an intensional 
construction, substitution objectors get marked by a cap operator in front of their usual, 
extensional translation. Thus, in particular, object clauses of the form that	S	translate as IL-
formulae [^j], where j is of type t and translates the embedded sentence	S. Since the cap 
operator merely abbreviates l-abstraction from the invisible variable i, intensionality boils 
down to binding i, and substitution resistance turns out to be the result of a variable clash: if 
the translations Li(j,b) and Li(b,j) of Jane	loves	Bill and Bill	loves	Jane	happen to have the 

 
32 No justification for raising Terms above nouns is given in PTQ. (28) is inspired by Partee’s (1975: 236) Every	
man	who	has	lost	a	pen	who	does	not	find	it	will	walk	slowly, which however happens to receive the 
intended reading by such	that circumlocution if the second relative clause is attached to the noun pen. 
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same truth value under a given assignment, they may replace each other salva extensione – 
though not in the scope of li, "i or $i.  
 In a similar vein, tense morphology is translated into IL-operators that act on the 
proposition expressed by the whole sentence. As already mentioned in Section 1.1, this is 
achieved by a number of alternative subject-predicate construals that introduce temporal 
operators and/or negation. However, Frege’s functionality principle does not restrict or 
reduce intensionality to clausal embedding: any expression has an intension, which may in 
principle contribute to the extension of the mother constituent when combined with an 
intensional sister. Indeed, PTQ has several intensional constructions that do not operate on 
propositions, i.e., objects of type <s,t>, to which we now turn. 
 
2.3.1 Infinitival Complements 
As can be gleaned from the above examples, in PTQ, control verbs like try and want take 
uninflected predicates (as opposed to clauses with PRO-subjects) as arguments and their 
extension operates on the intension of the embedded infinitive. Interestingly, the ensuing 
complex type of control verbs has the semantic potential of differentiating infinitival 
embedding from propositional attitude reports. In particular, it is consistent with this 
approach that the relation denoted by T – the IL-constant of type <<s,ƒ(IV)>,ƒ(IV)> that 
translates try	–	cannot be reduced to a relation 𝐓∗ of type <<s,t>,ƒ(IV)> in the sense that the 
following equivalence would hold (for any individual concept x and any property Q of 
individual concepts):33 

(33) 𝐓(𝑥, 𝑄) = 	𝐓∗(𝑥, [^[ 𝑄∨ ](𝑥)]) 
In effect – and ignoring the fact that the ‘x’	stands for individual concepts – (33) says that for 
any individual x	and property	Q,	trying to have Q means trying for it to be the case that x has 
Q  – i.e., if Q happens to be the property of performing a certain action A: x tries to do A 
means x tries to bring it about that x does A. Crucially, PTQ is not committed to (33). This is 
good news insofar as it has been argued that, quite generally, the implicit subjects of 
infinitival objects – aka PRO – receive an irreducibly de se reading, according to which 
(roughly) the subject portrays the attitude holder as his or her own self (Chierchia 1989; 
Higginbotham 2003), which in turn means, following Lewis’ (1979) influential account of 
attitudinal self-identification, that the object of the attitude ought to be a property rather 
than a proposition – the property denoted by the infinitive, more likely than not. 
 That the PTQ treatment of control verbs is consistent with them irreducibly 
expressing de se attitudes does not mean that it implies it: the bad news about (33) is that it 
is as consistent with the PTQ approach as its negation. And though its absence from the list 
of meaning postulates might suggest that Montague had his doubts about it or even reasons 
to reject it, there is no indication that he did so, let alone to account for the de se reading of 
PRO.  
 Whether or not control verbs are interpreted as denoting propositional attitudes, 
infinitival embedding may be regarded as a variant of clausal embedding: with only the 
subject missing, the intension operated on is almost a proposition. In fact, given Lewis’ 
(1979) account, since properties are the proper objects of mental attitudes, they may well 
be regarded as epistemic propositions [David Kaplan, p.c.]. On that view, then, the PTQ 

 
33 Readers can test their IL proficiency by verifying that, according to the correspondence established in Section 
1.5, (33) is just shorthand for the following Ty2-formula: 𝐓!(𝑥, 𝑄) = 	𝐓∗(𝑖)(𝑥, [λ𝑖. 𝑄!(𝑥)]). 
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analysis of infinitival embedding confirms the propositionalist prejudice that intensionality is 
a matter of propositional attitude.34  
   
2.3.2 Intensional Transitive Verbs  
The connection between intensionality and propositional embedding is less clear in the case 
of intensional transitives, which to the semantically uninitiated seem to denote relations 
between individuals and objects of desire (aka intentional objects). As already pointed out in 
Montague (1969: 175), though, a compositional treatment of the non-specific (in Quine’s 
parlance: notional) reading of objects of intensional transitives can be obtained on the basis 
of Quine’s (1956) proposal to paraphrase them in terms of propositional embedding, and 
more specifically by: (a) analyzing the paraphrase, (b) isolating the contribution the 
unspecific object makes to that paraphrase, and (c) identifying the remainder of the 
paraphrase as the contribution of the intensional verb. As a case in point, (a) the IL-
translation (35) of (34) is taken to carry over to Quine’s paraphrase (36):  

(34) try	to	find	a	unicorn	
(35) 𝐓(^λ𝑥. (∃𝑦)[𝐔(𝑦) ∧ 𝐅∗(𝑥, 𝑦)])	
(36) seek	a	unicorn	

Next, (b) the infinitival complement may be dissected into the contributions of its immediate 
constituents, rendering (35) equivalent to: 

(37) 𝐓(^λ𝑥. [λ𝑃. (∃𝑦)[𝐔(𝑦) ∧ [ 𝑃]∨ (𝑦)]](^λ𝑧. 𝐅∗(𝑥, 𝑧)))	
The underlined formula marks the contribution of the indefinite a	unicorn	to	the infinitival 
complement in (34), which however does not coincide with its contribution to the entire 
predicate. This becomes clear if one tries to l-abstract from it: the following formula is not 
equivalent to (37): 

(38) [λ℘. 𝐓(^λ𝑥.℘�^λ𝑧. 𝐅∗(𝑥, 𝑧)�)](λ𝑃. (∃𝑦)[𝐔(𝑦) ∧ [ 𝑃]∨ (𝑦)])	
As the reader is invited to verify, the main argument in (38) contains two invisible 
occurrences of i, which would be bound by the cap operator in the body of the l℘-functor. 
To avoid this kind of variable clash, Montague frequently employed redundant 
reformulations in terms of Down-Up-Cancellation (25) – which also helps in the case at hand, 
turning (37) into: 

(39) 𝐓(^λ𝑥. [^[λ𝑃. (∃𝑦)[𝐔(𝑦) ∧ [ 𝑃]∨ (𝑦)]]]∨ (^λ𝑧. 𝐅∗(𝑥, 𝑧))) 
Now the underlined functor of type <s,ƒ(T)>, which refers to the intension of a	unicorn, can 
be l-abstracted, thereby isolating its contribution to the extension of the predicate try	to	
find	a	unicorn: 

(40) [λ℘. 𝐓(^λ𝑥. [ ℘]∨ (^λ𝑧. 𝐅∗(𝑥, 𝑧)))](^λ𝑃. (∃𝑦)[𝐔(𝑦) ∧ [ 𝑃∨ ](𝑦)]) 
Since, by assumption, (40) also represents the extension of	seek	a	unicorn, (c) the 
(underlined) main functor may be taken to be the contribution made by the intensional verb 
seek; and the construction of feeding it its (non-specific) object is interpreted by 
(intensional) functional application. Closer inspection of (40) reveals that the type of the 
underlined functor is <<s,ƒ(T)>,ƒ(IV)>, which thus features as the worst case for intensional 

 
34 The term ‘propositionalism’ originates with Forbes (2000), which marks the starting point of a still ongoing 
debate; cf. the contributions in Grzankowski & Montague (2018). – Lewis’ account also raises the question of 
how to deal with clausal embedding as reporting attitudes towards properties; see Schlenker (2011) for a 
survey. 
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verbs. In the end, then, seek gets translated by a constant S of that type, which is postulated 
to be equivalent to the functor in (40):35  

(41) 𝐒 = λ℘. 𝐓(^λ𝑥. [ ℘]∨ (^λ𝑧. 𝐅∗(𝑥, 𝑧))) 
In a nutshell, then, the PTQ treatment of seek is a compositional reformulation of Quine’s 
(1956) paraphrase in terms of possible worlds semantics. Montague would not have put it 
that way, though, pointing out that his account of intensional transitives does not 
necessitate their reducibility by propositionalist paraphrase. However, as in the above case 
of control verbs, even in the absence of reduction postulates like (41), Montague’s analysis 
of intensional transitives does not imply their irreducibility: contrary to Montague’s (1969: 
177) suggestions, an analysis without reduction is not an analysis of irreducibility but merely 
incomplete. Moreover, as Larson (2002) argued, given Montague’s abstract analysis, the fact 
that clear cases of irreducibly higher-order verbs seem hard to find appears somewhat 
mysterious.36 

Due to the non-specific reading of its object, seek	represents the worst case of a 
transitive verb. On the specific reading though, it behaves like an ordinary, extensional verb. 
In PTQ this ambiguity is captured by the general scope mechanism F10,n: as in the paraphrase 
(1b) above, the object a	unicorn can be raised above the verb (and its referential subject), 
leaving a trace of type <s,e>. Hence, using the notation introduced in (7) for ordinary 
transitive verbs like find, the specific reading of (42) comes out as in (43), which in the 
presence of (41), is indeed equivalent to the reduced translation (44) [≡ (26)] of (1b): 

(42) John	seeks	a	unicorn.	
(43) (∃𝑦)[𝐔(𝑦) ∧ 𝐒∗(^𝐣, 𝑦)]	
(44) (∃𝑦)[𝐔(𝑦) ∧ 𝐓(^𝐣, ^λ𝑥. 𝐅∗(𝑥, 𝑦))]	

Readings like (26) and (44), which are derived by raising a quantifying Term out of an 
intensional position (or, from a top-down perspective, quantifying it into that position), raise 
a vexing problem concerning the truth conditions. Due to the asymmetry of variables and 
constants in IL, the PTQ treatment of such constellations invariably predicts that the 
embedded proposition or property is about the object (= lat. de re) that the bound variable 
denotes, independently of how that object is described. When spelt out in possible worlds 
semantics and using Kripke’s (1972) familiar term, this means that the variable acts as a rigid 
designator.37 This assumption has been argued to be inadequate for various reasons; see, 
e.g., Kaplan (1968: 192ff.) or Lewis (1981). As it turns out, more adequate truth conditions 
for de re reports require a number of restrictions on the descriptive content contributed by 
the bound variable; see, e.g., Kaplan (1968: 197ff.), Lewis (1979: 538ff.), Aloni (2001: ch. 2), 
and many others. As a result, post-Montagovian semanticists have tried to implement these 
conditions in the semantics of de re reports, which has proven to be quite tricky; see, e.g., 
Cresswell & von Stechow (1982), Percus & Sauerland (2003), or Maier (2009).  

 
35 Actually, (41) merges the transparency postulate (4) for find and the reduction postulate (9) (of PTQ, p. 235); 
the latter is formulated as a bi-conditional rather than an equation. – According to Montague, the higher-order 
type <s,ƒ(T)> corresponding to the object position of intensional transitives can also be found in the subject 
position of raising verbs like appear. Generalizing to the worst case, then, all verbs end up as denoting 
operators acting on the intensions of their quantifying subjects. Apparently for reasons of presentation, this 
complication of the type assignment was avoided in PTQ [cf. p. 222] – though not in Montague (1970b). 
36 Another problem with the PTQ type of intensional transitives was noticed in Zimmermann (1993): given its 
generality, non-specific readings are expected to also occur with non-existential quantifiers – contrary to fact. 
See Schwarz (to appear) for a survey of alternative analyses.  
37 One may have hoped that this descriptive content is taken care of since the variable ranges over individual 
concepts. However, for one thing, the sole function of that type in PTQ is to deal with the data discussed in 
Section 2.3.4; and for another thing, the flexibility needed to cover de re constellations exceeds that provided 
by locally bound individual concepts.  
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2.3.3 Adverbial Modification 
In PTQ adverbs like slowly are in the syntactic category (IV/IV) of (potentially intensional) 
modifiers of verb phrases, which they share with PPs like in	London. The latter are 
interpreted by having the preposition operate on the intension of its Term argument. Rather 
than going into the details of this approach to adverbial modification, which was further 
elaborated by Thomason & Stalnaker (1973), it is worth pointing out some of its 
shortcomings that eventually led to various proposals to seriously revise the framework of 
Montague Grammar by invoking event arguments, in the spirit of Davidson (1967) and 
Parsons (1990). 

Since attitude predicates, including intensional transitives and control verbs, are 
supposed to have extensional subject positions, prepositions happen to be the only 
expressions in the PTQ fragment that may reveal double intensionality, a case in point being 
about. This seems well motivated. For one thing, the predicates in (45) and (46) are likely to 
differ in extension even though the underlined (non-specifically construed) indefinites do 
not: 

(45) talk	about	a	unicorn  
(46) talk	about	a	centaur 

For another thing, even if the talkers and the thinkers are the same persons, those who think 
about a unicorn do not have to talk about a unicorn (again in the non-specific sense): 

(47) talk	about	a	unicorn  
(48) think	about	a	unicorn 

As in previous cases, the intensionality of prepositions is only treated by omission: the 
absence of any transparency postulate for about blocks any extensional substitution. And 
again, neither does this treatment imply intensionality nor does it explain or describe just 
how the intensions of the arguments (Term and predicate) manage to determine the 
resulting extensions of the predicates in (45) – (48). 
 Moreover, the PTQ analysis of PPs as predicate modifiers encounters serious 
problems when it comes to apparently extensional prepositions like in (in its local reading), 
which, unlike about, is subject to a transparency postulate to the effect that its Term 
argument outscopes the VP argument, in analogy to (7) and (10):38 

(49) 𝐈∗: = [λ𝑦. λ𝑄. 𝐈(𝑄, 𝑦∗)] 
(50) 𝐈 = [λ℘. λ𝑄. [ ℘]∨ (^λ𝑦. 𝐈∗(𝑄, 𝑦))] 

To see why (50) cannot be the full story about the local preposition in, one may consider 
(51) whose in situ construal comes out as (52) (assuming a transparency postulate for meet): 

(51) John	meets	a	woman	in	Paris. 
(52) 𝐈∗(^λ𝑥. (∃𝑦)[𝐖(𝑦) ∧ 𝐌∗(𝑥, 𝑦)], 𝐩∗)(^𝐣) 

(52) roughly says that John’s meeting of some (unspecific) woman took place in Paris, but 
does not imply that John did meet a (specific) woman in Paris; this is easily repaired by the 
following, apparently harmless veridicality postulate: 

(53) 𝐈∗(𝑄, 𝑝)(𝑥) → [ 𝑄∨ ](𝑥)   
According to (53), what is done in a specific place (by a specific individual), is done simpliciter 
(by that individual). Given (53), (52) does imply that John meets a woman and that his 
meeting of some woman takes place in Paris; but this does not mean that there is a woman 

 
38 For reasons unknown to the author, the relevant PTQ postulate (8) (on p. 235), which is again formulated in 
terms of a bi-conditional and does not make use of the ∗-notation, does not reduce the predicate argument 
to a set but only to a property, albeit one of individuals. For simplicity, it has been left untouched in (50). 
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he meets in Paris. In other words, (52) does not imply (54); in fact, (52) is consistent with the 
negation of (54) even in the presence of (53):  

(54) (∃𝑦)[𝐖(𝑦) ∧ 𝐈∗(^λ𝑥.𝐌∗(𝑥, 𝑦), 𝐩)(^𝐣)] 
The problem is that the local adverbial in	Paris only seems to target the lexical verb meet, 
not its (existentially) quantifying object; and, as readers are invited to verify, this observation 
is independent of the kind of quantifier in object position. Again, it would seem that this gap 
could be closed, too; in fact, the following scope principle seems to do so:  

(55) 𝐈∗(^λ𝑥. [ ℘]∨ (^λ𝑦. [ 𝑅]∨ (𝑥, 𝑦), 𝑝))(𝑥) = [ ℘]∨ (^λ𝑦. 𝐈∗(^λ𝑥. 𝑅(𝑥, 𝑦), 𝑝)(𝑥))   
Roughly, (55) says that a quantificational object of a transparent verb takes scope over a 
referential local PP that modifies it. As it turns out, however, (53) and (55) together imply 
(54), which says that predicate modifiers like in	Paris are redundant – clearly an unwelcome 
result:39 

(56) 𝐈∗(𝑄, 𝑝)(𝑥) = [ 𝑄∨ ](𝑥) 
The only known safe way to avoid this embarrassment is to interpret adverbial modifiers as 
predicates on event arguments introduced by lexical verbs. 
 
2.3.4 The temperature paradox 
The intensional constructions discussed so far have in common that they all operate on 
predicative (or Boolean, or conjoinable) types, i.e. types <a1,…,<an,t>…> that end in a t and 
may thus be construed as hosting relations between objects of (not necessarily predicative) 
types a1,…,an. One may wonder whether intensionality is more general than that and also 
occurs with arguments of non-predicative types, i.e. those that end in e (given that all 
Montagovian Types end in either e or t). According to Montague, this is indeed so: in PTQ, 
[p. 239], he describes intensionality in first-order predicates, i.e. those that may combine 
with referential expressions, as ‘a kind of intensionality not previously observed by 
philosophers’, crediting Barbara Partee for its discovery.40 As already indicated, it is this type 
of intensionality that is responsible for the worst-case analyses of nouns and predicates as 
denoting sets of individual concepts rather than merely individuals. The following type of 
example (taken from PTQ, p. 239) motivates this decision: 

(57) The	temperature	is	ninety.	
(58) The	temperature	rises.	
(59) Ninety	rises. 

Like all Terms in PTQ, the definite descriptions in (57) and (58) are treated as generalized 
quantifiers and thus give rise to truth conditions à la Russell (1905). Moreover, following 
Quine (1960: 118), Montague decided to interpret the copula verb to	be uniformly as 
denoting identity. If, in addition, the extensions of predicates and nouns were sets of 
individuals, (57) and (58) would jointly entail (59). To escape this absurdity, Montague 
proposed to interpret the noun temperature as denoting a set of individual concepts – 
functions whose (numerical) values change across points of evaluation, thus in particular 
reflecting fluctuations over time. By the same token, the verb rise would have only certain 

 
39 See Zimmermann (1987), where Engesser (1980) is credited with the basic observations on adverbial 
modification in PTQ and (56) is proved for slowly in lieu of in	Paris.  
40 Partee (2004: 17) reminisces: ‘I first gave this example [i.e., (57)–(59), TEZ] […] to David Lewis […] He had 
stated (Lewis 1970) that intransitive verbs are never intensional […] So I […] came up with examples about the 
price of milk rising or changing and wondered why they didn’t count as intensional. And David told them to 
Montague […]’. The example may have had an influence on Montague’s decision to give up the Russellian 
approach to types advocated in Montague (1970a) in favor of a Fregean system – which would however have 
been premature in view of later equivalence proofs: see Kaplan (1975), Muskens (1989), and Liefke (2015).  
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such functions in its extension41 – but crucially no constant functions like the one denoted by 
ninety. As a consequence, (58) may be true while (59) comes out false. In order for (57) to 
also be true under the same circumstances, it would not express identity between individual 
concepts, but rather identity between their values (at a given point). The following IL-
translation of the copula achieves this [PTQ, p. 233: T1.(b)]: 

(60) λ℘. λ𝑥. [ ℘]∨ (^λ𝑦. [ 𝑥]∨ =	 [ 𝑦]∨ ) 
(60) generalizes the binary relation of value equivalence (between individual concepts) to 
the worst-case type of seek; in this way, the copula can be treated as an extensional 
transitive verb (for better or for worse). Given this construal and the Russellian approach to 
definite descriptions, (57) – (59) come out as follows: 

(61) �℩𝑦. 𝐓(𝑦)�	[ 𝑦]∨ = 𝐧 
(62) �℩𝑦. 𝐓(𝑦)�	𝐑(𝑦) 
(63) 𝐑(^𝐧) 

In the interest of readability, (61) and (62) make use of a common abbreviatory convention 
not found in PTQ: 

(64) (℩𝑦:	φ)	ψ ∶= 		 (∃𝑦)[(∀𝑥)[[λ𝑦. φ](𝑥) ⟷ 𝑥 = 𝑦] ∧ ψ] 
(64) expresses the Russellian truth condition that there is precisely one individual concept y 
that satisfies j and that every (or equivalently: some) y satisfying j also satisfies y.  

In (61) and (63), n is a constant of type e, whose extension is the value 90 at any 
point of evaluation; as a consequence, [^n] denotes a constant function, thus falsifying (63) 
throughout any decent model. However, for (61) and (62) to be true at one point, the 
(unique) temperature curve only needs to take the value 90 at a point and still increase. 
Such models, then, provide counter-examples to the alleged inference (57) –  (59) if 
construed along the lines of (61) –  (63). 

As repeatedly pointed out above, in PTQ individual concepts are required for the 
extensions of a few nouns (viz. temperature and price) as well as the verb rise which 
display the inference behavior observed in (57) –  (59). For all ‘ordinary’ nouns and verbs, 
sets of individuals would have sufficed as extensions. However, due to Montague’s strategy 
of generalizing to the worst case, the latter receive the extension type <<s,e>,t>, too. 
Interestingly, though, extensional nouns and verbs do not come out alike in PTQ. First of all, 
a closer look at the interpretation of the definite description the	temperature reveals that 
the Russellian uniqueness condition concerns individual concepts, not individuals: the noun 
needs to have a singleton extension whose member must be in the extension of rise, which 
in turn only contains individual concepts (by the very idea of the PTQ approach to the 
puzzle). For ‘ordinary’ nouns like woman that get lifted from (extension) type <e,t> to 
<<s,e,>,t>, this means that each individual in the original extension needs to be represented 
by precisely one individual concept in the type-lifted version; otherwise the uniqueness 
condition would not carry over. To achieve this, each individual u gets represented by the 
constant (or rigid) function that assigns u to any point of evaluation; thence the following 
schematic meaning postulate (PTQ, p. 235, (2)): 

(65) 	[𝛿(𝑥) → (∃𝑢)	𝑥 = ^𝑢], 
where d translates an ‘ordinary’ noun and x and u are variables of types <s,e> and e, 
respectively. So sets of individuals get represented by corresponding sets of rigid intensions. 
However, this representation does not work for ‘ordinary’ intransitive verbs like sleep, which 
also need to be type-adjusted from <e,t> to <<s,e,>,t>. For otherwise prices and 

 
41  To wit, those whose value at a given point of reference increases at that point. Moreover, the place, which is 
not part of the point of evaluation, needs to be fixed to make the point about (57) – (59). Such obvious details 
have been omitted from the PTQ analysis.  
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temperatures could never have mundane properties, like being even or, indeed, identical to 
90. As a consequence, the lifted predicate extensions need to contain all individual concepts 
whose value at a given point is in the original set of individuals. Again, this feature is 
captured by a postulate schema:42 

(66) [ 𝑥∨ = 𝑦∨ → [𝛿(𝑥) ↔ 𝛿(𝑦)]], 
where d translates an ‘ordinary’ verb and x and y are variables of type <s,e>. In particular, 
then, in PTQ two distinct roads from sets of individuals to sets of individual concepts co-
exist: ‘strategies of intensionalization’ (in van Benthem’s 1988 words) need not be uniform – 
pace de Groote & Kanazawa (2013). Still, as pointed out in PTQ (p. 236), the original set δ∗ of 
individuals can be uniformly retrieved from an extension d, no matter whether it satisfies 
(65) or (66): 

(67) δ∗ = λ𝑢. δ(^𝑢) 
A further strange feature of the PTQ solution to Partee’s temperature puzzle had apparently 
escaped its author: the double intensionality of nouns like temperature – both their 
intensions and the elements of their extensions abstract from the Logical Space of 
evaluation points – leads to the unwelcome consequence that the inference from (68) and 
(69) to (70) is not predicted to be valid, as argued by Anil Gupta and reported in Dowty et al. 
(1981: 284f.): 

(68) Necessarily	the	temperature	is	the	price.	
(69) The	temperature	rises.	
(70) The	price	rises.	

The source of this gap has been located in the intensional overkill indicated (Hansen 2016): 
since the temperatures and price values are already fully recorded within the extension of 
the nouns, their intension should not vary with the points of evaluation but rather needs to 
be rigid, thus in effect dislocating the original variation of the extension from the entire set 
to its individual members. The shift is possible because of the functionality of the noun in 
question: at any given point there is precisely one (relevant) temperature or price; on the 
other hand, in view of a number of related phenomena, it seems unlikely that it is lexically 
based, as the PTQ analysis would have it (Janssen 1984, Schwager 2007). 
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