Montague Grammar: 50 years after

Thomas Ede Zimmermann *UCI, March 19th*, 2018

1 Intensions

Priniciples of Frege-Carnap Semantics

Frege (1892), Carnap (1947)

- The extensions of sentences and individual terms coincide with their (Fregean) referents.
- Compositionality can often be achieved by constructing ever more complex functional extensions to be applied to more basic extensions.
- Whenever extensions do not behave compositionally, they are substituted by corresponding intensions.
- (1) |Mary is asleep| = F(|Mary|, |is asleep|)
- (2) \vdash Mary is asleep \dashv = F(m, |is asleep|)|
- (3) |N is asleep| = F(|N|,|is asleep|)
- (5) |N is asleep| = APP(|is asleep|, |N|)
- = |is asleep|(|N|)
- $= \vdash N \text{ is asleep} \dashv$
- (6) |N|(|P|) = |P|(x)
- (7) $[N \text{ is asleep }]^{w,t} = APP([\text{is asleep }]^{w,t}, [N]^{w,t})$
- = $\begin{bmatrix} \text{is asleep } \end{bmatrix}^{w,t} (\llbracket N \rrbracket^{w,t})$
- $= \vdash N \text{ is as leep in } w \text{ at } t \dashv$
- (8) [N is asleep](w,t) = APP([is asleep](w,t), [N](w,t))
- (9) a. Jones seeks a unicorn.
 - b. Jones seeks a horse such that it speaks.
- (10) $[\text{seek a unicorn}]^{w,t} = F([\text{seek}]^{w,t}, [\text{a unicorn}]^{w,t})$
- (11) $[seek a unicorn]^{w,t} = F([seek]^{w,t}, [a unicorn])$
- (12) $\|\text{seek a unicorn}\|^{w,t} = \|\text{seek}\|^{w,t} (\|\text{a unicorn }\|)$

Types Montague (1970b)

a) Starting with the basic types e and t, one may form new types by either pairing them (as before) – from given types a and b to a functional type $\langle a,b \rangle$ – or adding an s to them: from given types a to intensional type $\langle s,a \rangle$.

- b) A more general system adds s as a third basic type (alongside e and t) and keeps the general rule that types are closed under pairs: from given types a and b to a functional type $\langle a,b \rangle$.
- (13) John reports that Mary thinks that every member of the soccer team is red-headed.

 Bäuerle (1983)
- (14) $[\![\text{think}]\!]^w(\{w' \mid [\![\text{every}]\!]^{w'}([\![\text{m.o.t.s.t.}]\!]^w)([\![\text{red-headed}]\!]^{w'}) = 1\})(m) = 1$
- $(15) \quad \text{a.} \quad \{w' \mid \llbracket \text{every} \rrbracket^{w'}(\llbracket \text{m.o.t.s.t.} \rrbracket^{w'})(\llbracket \text{red-headed} \rrbracket^{w'}) = 1\} \\ \quad \text{b.} \quad \{w' \mid \llbracket \text{every} \rrbracket^{w'}(\llbracket \text{m.o.t.s.t.} \rrbracket^{w})(\llbracket \text{red-headed} \rrbracket^{w'}) = 1\}$

Strategies for overcoming Bäuerle's problem

- i. Nouns and other constituents may be allowed to take intensional scope at LF.

 Groenendijk & Stokhof (1982)
- ii. Compositional contributions to intensional environments may be obtained by locating them higher up in the hierarchy of intensions. Zimmermann (t.a.)

 $\equiv report_i'(John', \lambda j. think_j'(Mary', \lambda k. m.o.t.s.t._j' \subseteq red-headed_k'))$

 $\mathbf{A}^{0}(\mathbf{A}^{0}(\mathbf{R})(\mathbf{A}^{1}(\mathbf{A}^{1}(^{\wedge}\mathbf{T})(\mathbf{A}^{2}(\mathbf{A}^{2}(^{\wedge^{2}}\mathbf{ALL})(^{\wedge^{2}_{1}\mathbf{V}^{2}\wedge^{2}}\mathbf{M}))(^{\wedge^{2}}\mathbf{R})))(^{\wedge}\mathbf{m})))(\mathbf{j})$

Montague Grammar: 50 years after

2 **Types**

- (17)John slept. a.
 - John didn't sleep b.
- (18)**POS-PAST** a. John sleep
 - **NEG-PAST** b.

- $PST^{+}([\![N]\!])([\![V]\!])(w,t) = 1$ $[\![N]\!]^{w,t'}([\![V]\!]^{w,t'}) = 1$, for some t' before t. (19)a.
 - b.
 - $PST^{-}(\llbracket N \rrbracket)(\llbracket V \rrbracket)(w,t) = 1$ $\llbracket N \rrbracket^{w,t'}(\llbracket V \rrbracket^{w,t'}) = 0, \text{ for all } t' \text{ before } t.$
- (20)a.

b.

- $[POS-PAST]^{w,t}([N])([V]) = PST^{+}([N])([V])(w,t)$ (21) a.
 - $[\![NEG-PAST]\!]^{w,t}([\![N]\!])([\![V]\!]) = PST^{-}([\![N]\!])([\![V]\!])(w,t)$ b.
- (22)a.

b.

 $[\![POS\text{-PAST}]\!]^{w,t}([\![S]\!]) = 1 \text{ iff } [\![S]\!]^{w,t'} = 1, \text{ for some } t' \text{ before } t.$ $[\![NEG\text{-PAST}]\!]^{w,t}([\![S]\!]) = 1 \text{ iff } [\![S]\!]^{w,t'} = 0, \text{ for any } t' \text{ before } t.$ (23)a. b.

3 Models

- (24) The president of the largest country is asleep. a.
 - b. The author of the longest novel is awake.

Model-theoretic Semantics

Montague (1970b); cf. Zimmermann (2011)

- More and more 'degenerate' models are eliminated.
- The Logical Spaces of the remaining 'realistic' models offer a wide variation of extensions (albeit within certain limits).
- (12) $[seek a unicorn]^{w,t} = [seek]^{w,t}([a unicorn])$
- (2) \vdash Mary is asleep \dashv = F(m, |is asleep|)
- (3) |N is asleep| = F(|N|,|is asleep|)
- (4) $|\text{is asleep}|(x) = \vdash x \text{ is asleep} \dashv$
- (25) Nobody is asleep.
- (26) | Nobody is asleep| = F(|nobody|, |be asleep|)
- (27) |nobody|(|is asleep|) = 1 iff |is asleep| = 0, for any person x.

References

Bäuerle, Rainer. 1983. Pragmatisch-semantische Aspekte der NP-Interpretation. In Manfred Faust, Roland Harweg, Werner Lehfeldt & Götz Wienold (eds.), *Allgemeine Sprachwissenschaft, Sprachtypologie und Textlinguistik*, 121–131. Tübingen: Narr.

Carnap, Rudolf. 1947. Meaning and Necessity. Chicago/London: University of Chicago Press.

Frege, Gottlob. 1892. Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik NF 100. 25–50.

Groenendijk, Jeroen & Martin Stokhof. 1982. Semantic Analysis of WH-Complements. *Linguistics and Philosophy* 5. 175–233.

Montague, Richard. 1970a. English as a Formal Language. In Bruno Visentini (ed.), *Linguaggi nella società e nella tecnica*, 189–223. Milan: Edizioni di Comunitá.

Montague, Richard. 1970b. Universal Grammar. Theoria 36. 373–398.

Zimmermann, Thomas Ede. 2011. Model-theoretic Semantics. In Claudia Maienborn, Klaus von Heusinger & Paul Portner (eds.), *Semantics. An International Handbook of Natural Language Meaning*, vol. 1, 762–801. Berlin: DeGruyter.

Zimmermann, Thomas Ede. t.a. Fregean Compositionality. In Ball Derek & Brian Rabern (eds.), *The Science of Meaning*, Oxford: Oxford University Press.