<u>1. From a classical point of view</u>

a. Conditional donkeys

- (1) If a farmer owns a donkey, he beats it.
- (2) $(\forall x) (\forall y) [[x \text{ is a farmer } \& y \text{ is a donkey } \& x \text{ owns } y] \rightarrow x \text{ beats } y]$
- (3)

(3') $((\exists x) (\exists y) [\underline{farmer'(x) \& donkey'(y) \& own'(x, y)}] \Rightarrow beat'(x, y))$ ['If a farmer owns a donkey, then *x* owns *y*']

(4)

- (4') $(\exists x) (\exists y) [\text{farmer}'(x) \& \text{donkey}'(y) \& (\text{own}'(x, y) \Rightarrow \text{beat}'(x, y))]$ ['A certain farmer beats a certain donkey, if he owns it.']
- (5) [?]If a farmer owns every/each donkey, he beats it.

b. Relative donkeys

- (6) Every farmer who owns a donkey beats it.
- (7)

every farmer who owns a donkey beats it_v

every farmer who owns a donkey x he_x beats it_y farmer z he_z owns a donkey a donkey y he_z owns it_y

- (7') $(\forall x)$ ([farmer'(x) & $(\exists y)$ [donkey'(y) & own'(x,y)]] \rightarrow beat'(x,y)) ['Every farmer who owns a donkey beats y']
- (8)

- (8') $(\exists y) [donkey'(y) \& (\forall x) ([farmer'(x) \& own'(x, y)] \rightarrow beat'(x, y))]$ ['Every farmer who owns a certain donkey beats it']
- (9) [?]Every farmer who owns every/each donkey beats it.

Abusch/Zimmermann Aspects of Formal Semantics: Donkeys and Anaphora Copenhagen Summer School 1994

2. Discourse Anaphora

- (14) The man who gave his paycheck to his wife was wiser than the one who gave <u>it</u> [i.e., *his* pacheck] to his mistress.
- (15) (a) A boy owns a guinea-pig.
 (b) He [i.e., *the* boy who owns guinea-pig] likes it [i.e., *the* guinea-pig that he, the boy who owns guinea-pig, owns].
- (a') $(\exists x) (\exists y) [boy'(x) \& guinea-pig'(y) \& (own'(x,y))].$
- **(b')** like'((1*x*) [boy'(*x*) & ($\exists y$) [guinea-pig'(*y*) & (own'(*x*, *y*))]],

 $⁽v_{y})$ [guinea-pig'(y) & $(\exists x)$ [boy'(x) & (own'(x,y))]])

Abusch/Zimmermann Aspects of Formal Semantics: Donkeys and Anaphora Copenhagen Summer School 1994

(16)	(a) (b)	$ \begin{array}{ll} A \ farmer & \left\{ \begin{matrix} rides \ on \ a \ bicycle \\ cycles \end{matrix} \right\} & \cdot \\ It & \left\{ \begin{matrix} [the \ bicycle \ that \ the \ farmer \ who \ rides \ on \ a \ bicycle \ rides \ on] \\ & [the \ bicycle \ that \ the \ cycling \ farmer \ rides \ on] \end{matrix} \right\} & does \\ not \ belong \ to \ him & \left\{ \begin{matrix} [the \ farmer \ who \ rides \ on \ a \ bicycle] \\ & [the \ cycling \ farmer] \end{matrix} \right\} & \cdot \end{array} \right. $
(17)	(a)	A farmer rides on a bicycle.
	(b)	It does not belong to him.
	(a')	$\lambda R (\exists x) (\exists y) \text{ [farmer'}(x) \& \text{bicycle'}(y) \& \text{ride-on'}(x, y) \& \underline{R(x, y)} \text{]}$
	(b ')	$\hat{x} \hat{y} [\neg \text{belong}'(y,x) \& R(x,y)]$
(18)	(a) (b) (a') (b')	A farmer cycles. It does not belong to him. $(\exists x) (\exists y)$ [farmer'(x) & bicycle'(y) & ride-on'(x,y) & <u>R(x)</u>] $\hat{x} \hat{y}$ [\neg belong'(y,x) & R(x)]
(17')	(a)	$\hat{x} \hat{y}$ [farmer'(x) & bicycle'(y) & ride-on'(x, y)]
	(b)	$\hat{x} \hat{y} \neg \text{belong}'(y,x)$
	(c)	$\hat{x} \hat{y}$ [farmer'(x) & bicycle'(y) & ride-on'(x,y) & \neg belong'(y,x)]
(18')	(a) (b) (c)	\hat{x} ($\exists y$) [farmer'(x) & bicycle'(y) & ride-on'(x, y)] $\hat{x} \hat{y} \neg$ belong'(y, x) $\hat{x} \hat{y}$ [($\exists y$) [farmer'(x) & bicycle'(y) & ride-on'(x, y)] & \neg belong'(y, x)
(19)	(a) (b)	A man loves a woman. He kisses her. A man loves a woman. A man kisses her.

3. Adverbs of Quantification

(20)

If a farmer owns a donkey, he	always sometimes never	beats it.
	()	1

(21')

$ \begin{pmatrix} \forall xy \\ \exists xy \\ \neg \exists xy \\ \dots \end{pmatrix} $	([<i>x</i> is a farmer & <i>y</i> is a donkey & <i>x</i> owns <i>y</i>]	
--	--	--

$$\begin{pmatrix} \rightarrow \\ \& \\ \& \\ \dots \end{pmatrix} \quad x \text{ beats } y)$$

(21'')

$ \begin{cases} \forall \\ \exists \\ \neg \exists \\ \cdots \end{cases} $ $(\hat{x} \hat{y} ([x \text{ is a farmer } \& y \text{ is a donkey } \& x \text{ owns } y] $	$ \begin{pmatrix} \rightarrow \\ \& \\ \& \\ \dots \end{pmatrix} $	x beats y))
---	--	-------------

(22) If a farmer owns a donkey, he usually beats it.

(23) $\begin{pmatrix}
\forall \\
\exists \\
\neg \exists \\
MOST \\
...
\end{pmatrix}$ ($\hat{x} \, \hat{y} \, x \text{ is a farmer } \& y \text{ is a donkey } \& x \text{ owns } y, \quad \hat{x} \, \hat{y} \, x \text{ beats } y$)

(24)

If a boy draws a picture of a girl, he always sometimes never usually ...

(25) If
$$\varphi(a \ N_1, ..., a \ N_n)$$
, [then] ADV $\psi(it_1, ..., it_n) \mapsto$
ADV' $(\hat{x}_1, ..., \hat{x}_n \ [x_1 \text{ is a } N_1 \& ... \& x_n \text{ is a } N_n \& \varphi'(x_1, ..., x_n)], \ \hat{x}_1, ..., \hat{x}_n \\ \psi'(x_1, ..., x_n))$

(27) a farmer_x owns a donkey_y \mapsto [farmer'(x) & donkey'(y) & own'(x, y)] a farmer_x \mapsto farmer'(x) ('Indefinites as variables') a farmer owns a donkey \mapsto [(farmer' × donkey') \cap own'] a farmer_x \mapsto farmer' ('Indefinites as properties')

4. Asymmetries

(29) Most farmers who own a donkey beat it. (29) MOST($\hat{x} \hat{y}$ farmer'(x) & donkey'(y) & own'(x,y), $\hat{x} \hat{y}$ beat'(x,y))

(30) Every person who has a dime will put it in the meter. (30') \forall (\hat{x} \hat{y} person'(x) & dime'(x) & have'(x,y) & put-in-the-meter'(x,y)) $[= (\forall x) (\forall y) ([person'(x) \& dime'(x) \& have'(x,y)] \rightarrow$ put-in-the-meter'(*x*, *y*)) = $(\forall x)$ ([person'(x) \rightarrow $(\forall y)$ ([dime'(x) & have'(x, y)] \rightarrow put-in-the-meter'(x, y)])] (30") $(\forall x)$ ($(\exists y)$ [person'(x) & dime'(x) & have'(x,y)] \rightarrow $(\exists y)$ [person'(x) & dime'(x) & have'(x, y) & put-in-the-meter'(x, y)]) (31) everyⁿ_{universal}' = $\lambda R \lambda S (\forall x) (\forall y_2) \dots (\forall y_n) [R(x, y_2, \dots, y_n) \rightarrow S(x, y_2, \dots, y_n)]$ everyⁿ_{existential} = (32) $\lambda R \lambda S (\forall x) [(\exists y_2) \dots (\exists y_n) R(x, y_2, \dots, y_n) \rightarrow$ $(\exists y_2)...(\exists y_n) [R(x, y_2, ..., y_n) \& S(x, y_2, ..., y_n)]$ (33) Most persons who have a dime will put it in the meter. (33') MOST (\hat{x} ($\exists y$) [person'(x) & dime'(x) & have'(x, y)],

\hat{x} ($\exists y$) [person'(x) & dime'(x) & have'(x,y) & will-put-in-the-meter'(x,y))])

(34) EXISTENTIAL(Q^n) =

$$\begin{split} \lambda R \,\lambda S \,(Qx) \,\,((\exists y_2)...(\exists y_n) \,\,R(x,y_2,...,y_n) \,\,, \\ (\exists y_2)...(\exists y_n) \,\,[R(x,y_2,...,y_n) \,\,\& \,\,S(x,y_1,...,y_n) \,\,]) \\ [= \,\lambda R \,\lambda S \,\,Q(\hat{x} \,\,(\exists y_2)...(\exists y_n) \,\,R(x,y_2,...,y_n) \,\,, \\ \hat{x} \,\,(\exists y_2)...(\exists y_n) \,\,[R(x,y_2,...,y_n) \,\,\& \,\,S(x,y_1,...,y_n)] \,\,)] \end{split}$$

- (35) Every farmer who owns a donkey beats it.
- (35') $(\forall x) ((\exists y) [farmer'(x) \& donkey'(x) \& have'(x, y)] \rightarrow (\exists y) [farmer'(x) \& donkey'(x) \& have'(x, y) \& beat'(x, y)])$
- (36) Most people that owned a slave also owned his offspring.
- (36') MOST($\hat{x} \hat{y}$ [person'(x) & slave'(y) & own'(x,y)], $\hat{x} \hat{y}$ [person'(x) & slave'(y) & own'(x,y's offspring)])
- (37) MOST($\hat{x} (\exists y)$ [person'(x) & slave'(y) & own'(x,y)], $\hat{x} (\forall y)$ [[person'(x) & slave'(y) & own'(x,y)] \rightarrow own'(x,y's offspring)])

(38) UNIVERSAL $(Q^n) = \lambda R \lambda S (Qx) ((\exists y_2)...(\exists y_n) R(x, y_2, ..., y_n)), (\forall y_2)...(\forall y_n) [R(x, y_2, ..., y_n) \to S(x, y_1, ..., y_n)])$

(39) If a farmer owns a donkey he is usually rich.

(39') (MOST $\hat{x} \hat{y}$) ([farmer'(x) & donkey'(y) & own'(x,y)], rich'(x)])

(39'') (MOST \hat{x}) ($(\exists y)$ [farmer'(x) & donkey'(y) & own'(x, y), rich'(x)] (= (MOST \hat{x}) ($(\exists y)$ [farmer'(x) & donkey'(y) & own'(x, y), ($\exists y$) [farmer'(x) & donkey'(y) & own'(x, y) & rich'(x)]) = (EXISTENTIAL(MOST) \hat{x}) ([farmer'(x) & donkey'(y) & own'(x, y)],rich'(x)))

- (40) If a DRUMMER lives in an apartment complex, it is usually half empty.
- (40') (MOST \hat{y}) ($(\exists x)$ [apartment-complex'(x) & drummer'(y) & live-in'(y,x)],

 $(\exists y)$ [apartment-complex'(x) & drummer'(y) & live-in'(y,x) & half-empty'(y)])

['The majority of apartment complexes with a drummer in them are half empty.']

(41) If a drummer lives in an APARTMENT COMPLEX, it is usually half empty.

(41') (MOST \hat{x}) ($(\exists y)$ [apartment-complex'(x) & drummer'(y) & live-in'(y,x)],

 $(\exists y)$ [apartment-complex'(x) & drummer'(y) & live-in'(y,x) & half-empty'(y)]) ['The majority of drummers living in apartment complexes live in half empty apartment complexes']

5. Uniqueness

- (42) Every farmer who owns a donkey beats it.
- (42') $(\forall x)$ ([farmer'(x) & $(\exists y)$ [donkey'(y) & own'(x, y)]], beat'(x,(<u>1y)</u>[donkey'(y) & own'(x, y)]) ['Every farmer beats *the* donkey he owns']
- (43) Every woman who bought a sage plant bought eight others along with it.
- (44) No parent with a teenage son lends him the car.
- (45) If a woman buys a sage plant here, she always buys eight others along with it.
- (46) If a woman has a teenage son, she never lends him the car.

<u>1. Indirect interpretation</u>

MΓ Ν \rightarrow L ⊇ \Rightarrow natural *translation* formal class of *restricted by* 'good' interlanguage *algorithm* language *pretation* models meaning models (logic) postulates $\Gamma = \{ m \in M \mid M \mid = \Pi \} = \{ m \in M \mid \forall \phi \in \Pi \colon M \mid = \phi \}$ $m = (\mathbf{F}, i, c, g)$

2. Kinds of postulates

(2) $\phi = \phi(c_1, ..., c_n)$

(3)
$$be' = \hat{P}\hat{x} P\{\hat{y} | x = y\}$$

(4)
$$every' = \hat{P} \quad \hat{Q} \quad (\forall x) \quad [P\{x\} \rightarrow Q\{x\}]$$

(5b)
$$(\forall P) (\forall x) [slowly'(x) \rightarrow P\{x\}]$$

(6c)
$$(\exists R)$$
 find = $\hat{P}\hat{x} P(\hat{y} R\{x,y\})$

(7b)
$$(\exists x) Mary' = \hat{P} P\{x\}$$

(9) seek' =
$$\hat{F}\hat{x}$$
 try'(x, P{ \hat{y} find(x,y)})

Copenhagen Summer School 1994

- (10a) *Mary*' = $\hat{P} P(m)$
- (10b) Mary' = $\lambda i \lambda P P(\mathbf{m}(i))$
- (10c) Mary' = $\lambda i \lambda P P(\mathbf{m})$
- (10) $(\forall x) [bachelor'(x) \rightarrow \neg married(x)]$
- (11) $no' = \hat{P} \quad \hat{Q} \quad every'(P) \quad (\hat{x} \neg Q\{x\})$
- (12) $(\forall x) [pilot'(x) \to (\exists y) [plane'(y) \& fly'(x,y)]]$
- (13) $(\forall y) [plane'(y) \to (\exists x) [pilot'(x) \& fly'(x,y)]]$

3. Problems with postulates

(14a)	<u>John saw nobody smile.</u>
<i>.</i> .	There was nobody that John saw smile.

- (14b)
 There was nobody that John saw smile.

 ∴
 John saw nobody smile.
- (14c) $(\forall x) (\forall Q) (\forall P) [see'(x, \land Q(\hat{y} P\{y\})) \leftrightarrow Q(\hat{y} see'(x, \land P\{y\}))]$ $[= \dots [see'(x, \land (Qy) P\{y\}) \leftrightarrow (Qy) see'(x, \land P\{y\})]]$
- (15) John opened the drawer. Mary closed it again₂.
- (16) It rained again₁.
- (17) John opened the drawer. Mary had closed it again₂.
- (18) $(\forall x) (\forall P) (\forall p)$ [again₂(^ CAUSE(^P{x}), ^ BECOME(p))
 - $\leftrightarrow \quad \text{CAUSE}(^{P}\{x\}, ^{a} again_{1}(^{BECOME}(p)))]$
- (19) $\Box (\forall x) (\forall P) (\forall p)$ $[CAUSE(^ press-the-button(x)), ^ BECOME(water))$ $\leftrightarrow CAUSE(^ press-the-button(x), ^ BECOME(cold-water))]$ (19) $[again_{\mathcal{E}}(^ CAUSE(^ press-the-button(p)), ^ BECOME(water)) \leftrightarrow$
- CAUSE(^press-the-button(*p*), ^ *again*₁ (^ BECOME(cold-water)))]