1. From a classical point of view

a. Conditional donkeys

(1) If a farmer owns a donkey, he beats it.
(2) $\quad(\forall x)(\forall y)[$ [x is a farmer \& y is a donkey \& x owns $y] \rightarrow x$ beats y]
(3)
if a farmer owns a donkey, he e_{x} beats it $_{\mathrm{y}}$

(3') $\quad((\exists x)(\exists y)[$ farmer'($x)$ \& donkey'($y) \&$ own' $\left.^{\prime}(x, y)\right] \Rightarrow$ beat' $\left.^{\prime}(x, y)\right)$ ['If a farmer owns a donkey, then x owns y']
(4)

(4') $\quad(\exists x)(\exists y)\left[\right.$ farmer' $(x) \& d o n k e y^{\prime}(y) \&\left(o w n '(x, y) \Rightarrow\right.$ beat $\left.\left.^{\prime}(x, y)\right)\right]$ ['A certain farmer beats a certain donkey, if he owns it.']
(5) ?If a farmer owns every/each donkey, he beats it.

b. Relative donkeys

(6) Every farmer who owns a donkey beats it.
(7)

(7') $\quad(\forall x)\left(\left[\right.\right.$ farmer $^{\prime}(x) \&(\exists y)\left[\right.$ donkey ${ }^{\prime}(y) \&$ own $\left.\left.^{\prime}(x, y)\right]\right] \rightarrow$ beat $\left.^{\prime}(x, y)\right)$
['Every farmer who owns a donkey beats y']
(8)
every farmer who owns a donkey beats it
a donkey y everyfarmer who owns ity beats it y_{y}

(8') $\quad(\exists y)\left[\right.$ donkey $^{\prime}(y) \&(\forall x)\left(\left[\right.\right.$ farmer ${ }^{\prime}(x) \&$ own $\left.^{\prime}(x, y)\right] \rightarrow$ beat $\left.\left.^{\prime}(x, y)\right)\right]$ ['Every farmer who owns a certain donkey beats it]
(9) ?Every farmer who owns every/each donkey beats it.

2. Discourse Anaphora

(10) A farmer owns a donkey. Helikes it.
(11)

(12)
a farmer owns a donkey. helikes it.
$(\exists x)(\exists y)$ [farmer' (x) \& donkey ${ }^{\prime}(y)$ \& own'(x, y) \& like' (x, y)]
a farmer
$\lambda P(\exists x)\left[\right.$ farmer $\left.{ }^{\prime}(x) \& P(x)\right] \lambda x$
he ${ }_{x}$ owns a donkey. he likes it $(\exists y)\left[\right.$ donkey $^{\prime}(y) \&$ own $^{\prime}(x, y) \&$ like $^{\prime}(x, y)$]

he $_{x}$ ownsit ${ }_{y}$ he ${ }_{x}$
(13) ?Every farmer owns a donkey. Helikes it.
(14) The man who gavehis paychedk to his wife was wiser than the one who gave it [i.e., his pacheck] to his mistress.
(15) (a) A boy owns a guinea-pig.
(b) He [i.e., the boy who owns guinea-pig] likes it [i.e., the guinea-pig that he, the boy who owns guinea-pig, owns].
(a') $\quad(\exists x)(\exists y)\left[\operatorname{boy}^{\prime}(x) \&\right.$ guinea- pig' $\left.^{\prime}(y) \&(o w n '(x, y))\right]$.
(b') \quad like' $^{\prime}\left((\mathrm{xx})\left[\operatorname{boy}^{\prime}(x) \&(\exists y)\left[g u i n e a-\right.\right.\right.$ pig' $\left.^{\prime}(y) \&(o w n '(x, y))\right]$],
(yy) $\left[\right.$ guinea-pig' $\left.\left.(y) \&(\exists x)\left[\operatorname{boy}^{\prime}(x) \&\left(o w n^{\prime}(x, y)\right)\right]\right]\right)$
(16) (a) A farmer $\left\{\begin{array}{c}\text { rides on a bicycle } \\ \text { cycles }\end{array}\right\}$.
(b) It $\left\{\begin{array}{c}\text { [the bicyclethat the farmer who rides on a bicycle rides on }] \\ \text { [thebicyclethat the cycling farmer rides on] }\end{array}\right\}$ does not belongtohim $\left\{\begin{array}{c}{[\text { thefarmer who rides on a bicycle] }} \\ \text { [thecycling farmer] }\end{array}\right\}$.
(17) (a) A farmer rides on a bicyde.
(b) It does not belong to him.
(a') $\quad \lambda R(\exists x)(\exists y)[f a r m e r '(x) \&$ bicyde' $(y) \&$ ride-on' $(x, y) \& R(x, y)]$
(b') $\hat{x} \hat{y}[\neg$ belong' $(y, x) \& R(x, y)]$
(18) (a) A farmer cydes.
(b) It does not belong to him.
(a') $(\exists x)(\exists y)\left[f a r m e r^{\prime}(x) \&\right.$ bicyde' $(y) \&$ rideon' $\left.(x, y) \& \underline{R}(x)\right]$
(b') $\quad \hat{x} \hat{y}[\neg$ belong' $(\mathbf{y}, \mathrm{x}) \& \mathrm{R}(\mathrm{x})]$
(17) (a) $\hat{x} \hat{y}\left[\right.$ farmer $^{\prime}(x) \&$ bicyde' $^{\prime}(y) \&$ rideon' (x, y)]
(b) $\hat{x} \hat{y}$ नbelong' (y, x)
(c) $\hat{x} \hat{y}\left[f a r m e r '(x) \&\right.$ bicyde' $^{\prime}(y) \&$ rideon' $(x, y) \& \neg$ belong' $\left.(y, x)\right]$
(18') (a) $\hat{x}(\exists y)\left[f a r m e r '(x) \&\right.$ bicyde' $^{\prime}(y) \&$ ride-on $\left.{ }^{\prime}(x, y)\right]$
(b) $\hat{x} \hat{y}$-belong' (\mathbf{y}, x)
(c) $\quad \hat{x} \hat{\mathbf{y}}\left[(\exists y)\left[\right.\right.$ farmer' $(x) \&$ bicyde' $^{\prime}(y) \&$ rideon' $\left.^{\prime}(x, y)\right] \& \neg$ belong'(\mathbf{y}, \mathbf{x})
(19) (a) A man loves a woman. He kisses her.
(b) A man loves a woman. A man kisses her.

3. Adverbs of Quantification

(20)

If a farmer owns a donkey, he $\left\{\begin{array}{c}\text { always } \\ \text { sometimes } \\ \text { never } \\ \ldots\end{array}\right\}$ beatsit.

(21)

$\left\{\begin{array}{c}(\forall x)(\forall y) \\ (\exists x)(\exists y) \\ \neg(\exists x)(\exists y) \\ \ldots\end{array}\right\} \quad\left([x\right.$ is a farmer \& y is a donkey \& x owns $y] \quad\left\{\begin{array}{l}\vec{c} \\ \& \\ \& \\ \ldots\end{array}\right\}$ x beats y)

(21')

$\left\{\begin{array}{c}\forall x y \\ \exists x y \\ \neg \exists \mathrm{xy} \\ \ldots\end{array}\right\}$ ($[\mathrm{x}$ is a farmer \& y is a donkey \& x owns y$] \quad\left\{\begin{array}{l}\overrightarrow{\&} \\ \& \\ \& \\ \ldots\end{array}\right\}$ x beats y)

(21")

$\left\{\begin{array}{c}\forall \\ \exists \\ \neg \exists \\ \ldots\end{array}\right\}\left(\hat{x} \hat{y} \quad\left(\left[x\right.\right.\right.$ is a farmer \& y is a donkey \& x owns y] $\quad\left\{\begin{array}{l}\overrightarrow{\&} \\ \& \\ \& \\ \ldots\end{array}\right\}$ x beats $\left.y\right)$)
(22) If a farmer owns a donkey, he usually beats it.

(23)

$\left\{\begin{array}{c}\forall \\ \exists \\ \neg \exists \\ \text { MOST } \\ \ldots\end{array}\right\}(\hat{x} \hat{y}$ x is a farmer \& y is a donkey \& x owns $y, \quad \hat{x} \hat{y}$ x beats y)
(24)

If a boy draws a picture of a girl, he $\quad\left\{\begin{array}{c}\text { always } \\ \text { sometimes } \\ \text { never } \\ \text { usually } \\ \ldots\end{array}\right\}$ gives it to her.
(25) If $\varphi\left(a N_{1}, \ldots, a N_{n}\right)$, [then] ADV $\psi\left(\right.$ it $_{1}, \ldots$, it $\left._{n}\right) \mapsto$ $\operatorname{ADV}^{\prime}\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\left[x_{1}\right.\right.$ is a $N_{1} \& \ldots \& x_{n}$ is a $\left.N_{n} \& \varphi^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right], \hat{x}_{1}, \ldots, \hat{x}_{n}$ $\left.\psi^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right)$
(26)

QUANTIFIER

RESTRICTOR
SCOPE
(27) a farmer ${ }_{x}$ owns a donkey $y_{y} \mapsto$ [farmer'(x) \& donkey' $(y) \&$ own' $^{\prime}(x, y)$] a farmer ${ }_{x} \mapsto$ farmer'($^{\prime}$) ('I ndefinites as variables')
a farmer owns a donkey \mapsto [(farmer' \times donkey') \cap own'] a farmer ${ }_{x} \mapsto$ farmer' ('I ndefinites as properties')
(28)

4. Asymmetries

(29) Most farmers who own a donkey beat it.
(29') $\operatorname{MOST}\left(\hat{x} \hat{y}\right.$ farmer' $(x) \& \operatorname{donkey}^{\prime}(y) \& o w n^{\prime}(x, y), \quad \hat{x} \hat{y} \quad$ beat $\left.^{\prime}(x, y)\right)$
(30) Every person who has a dime will put it in themeter.
(30) $\quad \forall\left(\hat{x} \hat{y}\right.$ person' $(x) \& \operatorname{dime}^{\prime}(x) \&$ have' $(x, y) \&$ put-in-the-meter' $\left.(x, y)\right)$ $\left[=(\forall x)(\forall y)\left(\left[p^{\prime} s o n '(x) \& \operatorname{dime}^{\prime}(x) \&\right.\right.\right.$ have' $\left.(x, y)\right] \rightarrow$ put-in-the-meter'(x, y))
=
$(\forall \mathrm{X})$ ([person' $(\mathrm{x}) \rightarrow$
$(\forall y)$ ([dime' $(x) \&$ have' $\left.^{\prime}(x, y)\right] \rightarrow$ put-in-themeter' $\left.\left.\left.(x, y)\right]\right)\right]$
(30") $(\forall x)\left((\exists y)\left[p e r s o n '(x) \& \operatorname{dime}^{\prime}(x) \&\right.\right.$ have' $\left.^{\prime}(x, y)\right] \rightarrow$
$(\exists y)\left[\right.$ person' $(x) \& \operatorname{dime}^{\prime}(x) \&$ have' $^{\prime}(x, y) \&$ put-in-themeter' $\left.\left.(x, y)\right]\right)$
(31) every ${ }^{n}$ niversal $=$
$\lambda R \lambda S(\forall x)\left(\forall y_{2}\right) \ldots\left(\forall y_{n}\right)\left[R\left(x, y_{2}, \ldots, y_{n}\right) \rightarrow S\left(x, y_{2}, \ldots, y_{n}\right)\right]$
(32) every $_{\text {existential }}{ }^{\prime}=$

$$
\begin{aligned}
& \lambda R \lambda S(\forall x)\left[\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right) R\left(x, y_{2}, \ldots, y_{n}\right) \rightarrow\right. \\
& \left.\quad\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right)\left[R\left(x, y_{2}, \ldots, y_{n}\right) \& S\left(x, y_{2}, \ldots, y_{n}\right)\right]\right]
\end{aligned}
$$

(33) Most persons who havea dime will put it in the meter.
(33') MOST ($\hat{\mathrm{x}}(\exists \mathrm{y})\left[\right.$ person' $(\mathrm{x}) \& \operatorname{dime}^{\prime}(\mathrm{x}) \&$ have' $\left.^{\prime}(\mathrm{x}, \mathrm{y})\right]$,
$\hat{x}(\exists y)\left[p e r s o n '(x) \& \operatorname{dime}^{\prime}(x) \&\right.$ have' $^{\prime}(x, y) \&$ will-put-in-themeter' $\left.\left.\left.(x, y)\right)\right]\right)$
(34) EXISTENTIAL $\left(Q^{n}\right)=$
$\lambda R \lambda S(Q x)\left(\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right) R\left(x, y_{2}, \ldots, y_{n}\right)\right.$,
$\left.\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right)\left[R\left(x, y_{2}, \ldots, y_{n}\right) \& S\left(x, y_{1}, \ldots, y_{n}\right)\right]\right)$
$\left[=\lambda R \lambda S Q\left(\hat{x}\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right) R\left(x, y_{2}, \ldots, y_{n}\right)\right.\right.$,
$\left.\left.\hat{x}\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right)\left[R\left(x, y_{2}, \ldots, y_{n}\right) \& S\left(x, y_{1}, \ldots, y_{n}\right)\right]\right)\right]$
(35) Every farmer who owns a donkey beats it.
(35') $\quad(\forall x)((\exists y)[f a r m e r '(x) \&$ donkey' $(x) \&$ have' $(x, y)] \rightarrow$
$(\exists y)$ [farmer' $(x) \&$ donkey ${ }^{\prime}(x) \&$ have $^{\prime}(x, y) \&$ beat $\left.^{\prime}(x, y)\right]$)
(36) Most people that owned a slave also owned his offspring.
(36') $\operatorname{MOST}\left(\hat{x} \hat{y}\left[p e r s o n^{\prime}(x) \& s l a v e^{\prime}(y) \& o w n '(x, y)\right]\right.$, $\hat{x} \hat{y}\left[\right.$ person' $(x) \&$ slave' $(y) \&$ own'(x, y^{\prime} s offspring)])
(37) $\operatorname{MOST}\left(\hat{x}(\exists y)\left[p e r s o n '(x) \&\right.\right.$ slave' $\left.(y) \& o w n^{\prime}(x, y)\right]$, $\hat{x}(\forall y)\left[\right.$ [person' $(x) \&$ slave' $\left.(y) \& o w n^{\prime}(x, y)\right] \rightarrow o w n '\left(x, y^{\prime} s\right.$ offspring)])
(38) $\operatorname{UNIVERSAL}\left(Q^{n}\right)=$ $\lambda R \lambda S(Q x)\left(\left(\exists y_{2}\right) \ldots\left(\exists y_{n}\right) R\left(x, y_{2}, \ldots, y_{n}\right)\right.$, $\left.\left(\forall \mathrm{y}_{2}\right) \ldots\left(\forall \mathrm{y}_{\mathrm{n}}\right) \quad\left[\mathrm{R}\left(\mathrm{x}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \rightarrow \mathrm{S}\left(\mathrm{x}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right]\right)$
(39) If a farmer owns a donkey he is usually rich.
(39') (MOST $\hat{x} \hat{y})\left(\left[f \operatorname{farmer}^{\prime}(x) \&\right.\right.$ donkey' $(y) \&$ own' $\left.^{\prime}(x, y)\right]$, rich' $\left.\left.(x)\right]\right)$
(39") (MOST $\hat{x})$ (($\exists y$) [farmer' $(x) \&$ donkey' $(y) \&$ own' $^{\prime}(x, y)$, rich' $\left.(x)\right]$
(=(MOST $\hat{x})\left((\exists y)\left[f a r m e r '(x) \&\right.\right.$ donkey ${ }^{\prime}(y) \& o w n '(x, y)$,
$(\exists y)\left[f a r m e r '(x) \&\right.$ donkey $\left.\left.^{\prime}(y) \&{ }^{\prime}{ }^{\prime}(x, y) \& \operatorname{rich}^{\prime}(x)\right]\right)$
=
(EXISTENTIAL(MOST) \hat{x}) ([farmer'(x) \& donkey' (y) \& own'($(x, y)]$,rich'(x)))
(40) If a DRUMMER lives in an apartment complex, it is usually half empty.
(40') (MOST $\hat{y})$) ($(\exists x)$ [apartment-complex' $(x) \& \operatorname{drummer}^{\prime}(y) \&$ live-in' $\left.(y, x)\right]$,
($\exists y$) [apartment-complex' $(x) \&$ drummer' $(y) \&$ live-in' $(y, x) \&$ half-empty (y)])
[The majority of apartment complexes with a drummer in them are half empty.']
(41) If a drummer lives in an APARTMENT COMPLEX, it is usually half empty.
(41') (MOST $\hat{x})$ (($\exists y)$ [apartment-complex' $(x) \& \operatorname{drummer}^{\prime}(y) \&$ live-in' $\left.(y, x)\right]$,
($\exists \mathrm{y})$ [apartment-complex' $(x) \&$ drummer $^{\prime}(\mathrm{y}) \&$ live-in' $(\mathrm{y}, \mathrm{x}) \&$ half-empty' (y)]) [The majority of drummers living in apartment complexes live in half empty apartment complexes]

5. Uniqueness

(42) Every farmer who owns a donkey beats it.
(42') $(\forall x)\left(\left[\right.\right.$ farmer' $(x) \&(\exists y)\left[\right.$ donkey $\left.{ }^{\prime}(y) \& o w n '(x, y)\right]$],
beat' $\left(x,(\mathrm{ly})\left[\right.\right.$ donkey' $\left.(\mathrm{y}) \& \mathrm{own}^{\prime}(\mathrm{x}, \mathrm{y})\right]$)
['Every farmer beats the donkey heowns']
(43) Every woman who bought a sage plant bought eight others along with it.
(44) No parent with a teenage son lends him the car.
(45) If a woman buys a sage plant here, she always buys eight others along with it.
(46) If a woman has a teenage son, she never lends him the car.

1. Indirect interpretation

(1)

2 Kinds of postulates

(2) $\quad \varphi=\varphi\left(c_{1}, \ldots, c_{n}\right)$
(3) $\quad b e^{\prime}=\hat{\mathscr{P}} \hat{x} P\{\hat{y} \mathrm{x}=\mathrm{y}\}$
(4) \quad every' $=\hat{P} \hat{Q}(\forall x)[P\{x\} \rightarrow Q\{x\}]$
(5a) Lohn is slowly eatinga banana.
$\therefore \quad \mathrm{J}$ ohn is eating a banana.
(5b) $\quad(\forall P)(\forall x)$ [slowly $\left.y^{\prime}(x) \rightarrow P\{x\}\right]$
(6a) Lohn finds a banana.
$\therefore \quad$ Thereisa banana.
(6) Mary found a groundhog.

All woodchucks are groundhogs.
All groundhogs are woodchucks.
$\therefore \quad \mathrm{J}$ ohn found a woodchuck.
(6c) ($\exists \mathrm{R}$) find ${ }^{\prime}=\hat{\mathscr{P}} \hat{x} \mathscr{P}(\hat{y} R\{x, y\})$
(7a) $\quad \therefore \quad$ Mary loves J ohn. $\quad \therefore \quad$ Everyone loves ohn.
(7b) $\quad(\exists x)$ Mary $=\hat{P} \quad P\{x\}$
(8) \quad kill' $=$ cause'(die')
(9) \quad seek' $=\hat{\mathscr{T}} \hat{x} \quad \operatorname{try}^{\prime}(x, \mathcal{P}\{\hat{y}$ find $(x, y)\})$
(10a) Mary $=\hat{\mathrm{P}} \mathrm{P}(\mathbf{m})$
(10b) \quad Mary' $=\lambda i \lambda P P(\mathbf{m}(i))$
(10c) Mary' $=\lambda i \lambda P P(\mathbf{m})$
(10) $\quad(\forall x)\left[\right.$ bachelor $^{\prime}(x) \rightarrow \neg$ married $^{\prime}(x)$]
(11) $\quad n^{\prime}=\hat{P} \hat{Q} \operatorname{every}^{\prime}(P)(\hat{x}-Q\{x\})$
(12) $\quad(\forall x)\left[\operatorname{pilot}^{\prime}(x) \rightarrow(\exists y)\left[\right.\right.$ plane $^{\prime}(y) \&$ fly $\left.\left.\mathbf{y}^{\prime}(x, y)\right]\right]$
(13) $\quad(\forall y)\left[\right.$ plane $^{\prime}(y) \rightarrow(\exists x)\left[\right.$ pilot $^{\prime}(x) \&$ fly $\left.\left.y^{\prime}(x, y)\right]\right]$

3. Problems with postulates

(14a) \quad ohn saw nobody smile.
$\therefore \quad$ There was nobody that J ohn saw smile.
(14b) Therewas nobody that I ohn saw smile.
$\therefore \quad$ J ohn saw nobody smile.
(14c) $(\forall x)(\forall Q)(\forall \mathrm{P})\left[\sec ^{\prime}\left(\mathrm{x}, \wedge Q(\hat{y} \mathrm{P}\{y\}) \leftrightarrow Q\left(\hat{y} \sec ^{\prime}(\mathrm{x}, \wedge \mathrm{P}\{y\})\right]\right.\right.$
$\left[=\ldots\left[\operatorname{see}^{\prime}\left(x, \wedge(Q y) P\{y\} \leftrightarrow(Q y) \sec ^{\prime}(x, \wedge P\{y\})\right]\right]\right.$
(15) J ohn opened the drawer. Mary closed it again $\mathbf{2}_{2}$.
(16) It rained again \mathbf{n}_{1}.
(17) J ohn opened the drawer. Mary had closed it again $\mathbf{2}_{2}$.
(18) $\quad(\forall \mathrm{x})(\forall \mathrm{P})(\forall \mathrm{p})$ [again $\mathbf{2}^{(\wedge C A U S E(\wedge P\{x\}), ~ \wedge B E C O M E(p)) ~}$
$\leftrightarrow \quad \operatorname{CAUSE}\left(\wedge P\{x\},{ }^{\wedge}\right.$ again $\left.\left._{1}(\wedge B E C O M E(p))\right)\right]$
(19) \quad a $(\forall x)(\forall P)(\forall p)$
[CAUSE(^press-the-button(x)), ^BECOME(water))
$\leftrightarrow \quad$ CAUSE(^press-the-button(x), ^BECOME (cold-water))]
(19') $\quad\left[\right.$ again $_{\mathbf{2}}\left(\wedge\right.$ CAUSE(${ }^{\text {press-the-button(p)), }}$ ^BECOME (water)) \leftrightarrow CAUSE(press-the-button(p), ^again $\mathbf{1}_{1}(\wedge$ BECOME(cold-water)))]

