1. Holes in inference patterns

2. Extensions

3. Frege-Carnap intensions

4. Intensional constructions

5. Attitude reports

6. Unspecific objects

7. General aspects

8. Representing intensionality [separate handout]
1. **Holes in inference patterns**

- **Terms and identity**

 (1a) 31 is prime.

 \[
 \varphi[31] \equiv P(31) \\
 \text{The number of persons in this room is } 31. \\
 \therefore \text{The number of persons in this room is prime.}
 \]

 \[
 \varphi[n] \equiv P(n) \\
 \]

 (b) According to elementary arithmetic, 31 prime.

 \[
 \text{The number of persons in this room is } 31. \\
 \therefore \text{According to elementary arithmetic, the number of persons in this room is prime.}
 \]

- **Problems with existential quantification**

 (2a) John’s salary is higher than Mary’s.

 \[
 \varphi[j, m] \equiv s(j) > s(m) \\
 \text{John is the dean.} \\
 \text{Mary is the vice dean.} \\
 \therefore \text{The dean’s salary is higher than the vice dean’s.}
 \]

 \[
 \varphi[d, v]
 \]

 (b) Bill knows that the dean’s salary is higher than the vice dean’s.

 \[
 \text{John is the dean.} \\
 \text{Mary is the vice dean.} \\
 \therefore \text{Bill knows that John’s salary is higher than Mary’s.}
 \]
(5a) Susan is entering a restaurant on Main Street.
 The only restaurants on Main Street are La Gourmande and Le Gourmet.
∴ Susan is entering La Gourmande, or [Susan is entering] Le Gourmet.

(b) Susan is looking for a restaurant on Main Street.
 The only restaurants on Main Street are La Gourmande and Le Gourmet.
∴ Susan is looking for La Gourmande, or [Susan is entering] Le Gourmet.

(6a) Paul is wearing a pink shirt with green sleeves.
∴ There are pink shirts with green sleeves.

(b) Paul is looking for a pink shirt with green sleeves.
∴ There are pink shirts with green sleeves.

(7a) There have never been any pictures of Lily.
∴ It is not true that Pete showed Roger a picture of Lily.

(b) There have never been any pictures of Lily.
∴ It is not true that Pete owed Roger a picture of Lily.
2. Extensions

- **Compositionality**

Substitution Principle
If two non-sentential expressions of the same category have the same meaning, either may replace the other in all positions within any sentence without thereby affecting the truth conditions of that sentence.

Principle of Compositionality
The meaning of a complex expression functionally depends on the meanings of its immediate parts and the way in which they are combined:

(8)
\[
\begin{array}{c}
\text{Exp} \\
\text{LP} \\
\text{RP}
\end{array}
\] = \[
\begin{array}{c}
\text{LP} \\
\text{RP}
\end{array}
\] + \[
\begin{array}{c}
\text{LP} \\
\text{RP}
\end{array}
\]

- Meaning as communicative function
 - Extension: [contribution to] reference
 - Intension: [contribution to] informational content
 - ...

- **Basic Carnapian extensions**

 Carnap (1947)

 (a) \([\text{Vienna}]=\text{Vienna}\)
 \([\text{proper name}]=\text{bearer}\)

 (b) \([\text{the largest city in Austria}]=\text{Vienna}\)
 \([\text{definite description}]=\text{descriptee}\)

 (c) \([\text{city}]=\{\text{London, Paris, Rome, Vienna, Frankfurt,…}\}=\{x\mid x \text{ is a city}\}\)
 \([\text{count noun}]=\text{set of representatives}\)

 (d) \([\text{snore}]=\{x\mid x \text{ snores}\}\)
 \([\text{intransitive verb}]=\text{set of satisfiers}\)

 (e) \([\text{meet}]=\{(x,y)\mid x \text{ meets } y\}\)
 \([\text{transitive verb}]=\text{set of satisfier pairs}\)

 (f) \([\text{show}]=\{(x,y,z)\mid x \text{ shows } y \text{ to } z\}\)
 \([\text{ditransitive verb}]=\text{set of satisfier triples}\)

 (g) \([\text{shows Angie}]=\{(x,y)\mid x \text{ shows } y \text{ to Angie}\}\)
 \([\text{2-place predicate}]=\text{set of satisfier pairs}\)

 (h) \([\text{shows Angie Disneyland}]=\{(x)\mid x \text{ shows Disneyland to Angie}\}\)
 \([\text{1-place predicate}]=\text{set of satisfiers}\)

\[\text{Parallelism between valency and type of extension}\]

Frege (1891)

The extension of an \(n\)-place predicate is a set of \(n\)-tuples.

E.g. \([\text{Donald shows Angie Disneyland}]=\{(x)\mid \text{Donald shows Disneyland to Angie}\}\)

= the set of objects of the form ‘()’ such that Donald shows Disneyland to Angie, i.e.:

\[
[\text{Donald shows Angie Disneyland}]=\begin{cases}
\{(\}\}, & \text{if Donald does show Disneyland to Angie} \\
\{\}\}, & \text{otherwise}
\end{cases}
\]
NB: () = Ø = 0; hence ⟨()⟩ = {Ø} = {0} = 1!

Frege’s Generalization

The extension of a sentence S is its truth value, i.e. 1 if S is true and 0 if S is false.

- **Basic Fregean extensions**

(i) $[\text{Vienna}] = \text{Vienna}$

(j) $[\text{the largest city in Austria}] = \text{Vienna}$

(k) $[\text{Ludwig was born in Vienna}] \models \text{Wittgenstein was born in Vienna} \dashv 1$ *)

≠ $[\text{Rudolf was born in Vienna}] \models \text{Carnap was born in Vienna} \dashv 0$

*) Notation: $\models \ldots \dashv :$ the truth value that is 1 iff …

- **Derived extensions**

From:

<table>
<thead>
<tr>
<th>$[\text{Exp}]$</th>
<th>$[\text{Exp}]$</th>
<th>$[\text{Exp}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{LP}]$</td>
<td>$[\text{RP}]$</td>
<td>$[\text{LP}]$</td>
</tr>
</tbody>
</table>

(b) $[\text{LP}][[\text{RP}]] = [\text{Exp}]$

(c) $[\text{LP}] = (\langle[\text{RP}],[\text{Exp}]\rangle \mid \text{Exp} = \text{LP} + \text{RP})$

- **Deriving (Carnapian) quantifier extensions**

(10a)

(b) $[\text{nobody}][[\text{sleeps}]] = [\text{nobody sleeps}] \Rightarrow [\text{nobody}](S) = 1$
S: sleepers

(b) $[\text{nobody}][[\text{talks}]] = [\text{nobody talks}] \Rightarrow [\text{nobody}](T) = 0$
T: talkers

(b) $[\text{nobody}][[\text{listens}]] = [\text{nobody listens}] \Rightarrow [\text{nobody}](L) = 1$
L: hearers

(c) $[\text{nobody}] = (\langle S, 1 \rangle, \langle T, 0 \rangle, \langle L, 1 \rangle, \ldots)$

= $(Y, \vdash \langle \text{person} \rangle \cap Y = \emptyset \dashv \mid Y$ is a (possible) predicate extension)

= $\lambda Y. \vdash \langle \text{person} \rangle \cap Y = \emptyset \dashv$

(11a)

(b) $[\text{no}][[\text{boy}]] = \lambda Y. \vdash B \cap Y = \emptyset \dashv$
B: boys

(b) $[\text{no}][[\text{girl}]] = \lambda Y. \vdash G \cap Y = \emptyset \dashv$
G: girls

(b) $[\text{no}][[\text{city}]] = \lambda Y. \vdash C \cap Y = \emptyset \dashv$
C: cities

(c) $[\text{no}] = \lambda X. \lambda Y. \vdash X \cap Y = \emptyset \dashv$
(12) \[\text{[every]} = \lambda X. \lambda Y. \vdash X \subseteq Y \to \]
\[\text{[some]} = \lambda X. \lambda Y. \vdash X \cap Y \neq \emptyset \to \]
\[\text{[one]} = \lambda X. \lambda Y. \vdash |X \cap Y| = 1 \to \]
\[\text{[most]} = \lambda X. \lambda Y. \vdash |X \cap Y| > |X \setminus Y| \to \]

- Deriving Fregean predicate extensions

(13a)

\[[\text{Mary sleeps}] \checkmark \quad [\text{John sleeps}] \checkmark \quad [\text{Kim sleeps}] \checkmark \]

\[[\text{Mary}] \checkmark \quad [\text{sleeps}]? \quad [\text{John}] \checkmark \quad [\text{sleeps}]? \quad [\text{Kim}] \checkmark \quad [\text{sleeps}]? \]

(b) \[[\text{sleeps}](\text{[Mary]}) = [\text{Mary sleeps}] \Rightarrow [\text{sleeps}](\text{Mary}) = 1 \]
\[[\text{sleeps}](\text{[John]}) = [\text{John sleeps}] \Rightarrow [\text{sleeps}](\text{John}) = 0 \]
\[[\text{sleeps}](\text{[Kim]}) = [\text{Kim sleeps}] \Rightarrow [\text{sleeps}](\text{Kim}) = 0 \]

(c) \[[\text{sleeps}] = \{(\text{Mary},1), (\text{John},0), (\text{Kim},1),\ldots\} = \{\text{Mary, John, Kim}\} \]
\[= \{x, \vdash x \text{ sleeps} \to \} x \text{ is a (possible) name extension} \to \]
\[= \lambda x. \vdash x \text{ sleeps} \to \]

- Montagovian term extensions

(14a) \[\text{[Bill]}_M = \lambda X. \vdash \text{Bill} \in X \vdash = \text{Bill}^* \quad \text{cf. Montague (1970a)} \]

(b) \[\text{[the]}_R = \lambda X. \lambda Y. \vdash |X| = 1 \& X \subseteq Y \to \quad \text{cf. Russell (1905)} \]

\[\overset{\text{Extensional compositionality}}{=} \]

The extension of a complex expression functionally depends on the intensions of its immediate parts and the way in which they are combined:

\[\begin{array}{c}
\text{ArbExp} \\
\text{LP} \\
\text{RP}
\end{array} = \begin{array}{c}
\text{LP} \\
\oplus \\
\text{RP}
\end{array} \]

(15)

\[[\text{No girl likes Bill}] \]
\[= [\text{no girl}] [\text{[likes Bill]}] \]
\[= \lambda Y. \vdash G \cap Y = \emptyset \to (\{x, 1 | x \text{ likes Bill}\}) \]
\[= \vdash G \cap (\{x, 1 | x \text{ likes Bill}\}) = \emptyset \to \]

\[[\text{no girl}] [\text{[girl]}] \]
\[= [\text{[no]} [\text{[girl]}]] \]
\[= [\text{no}] [\text{[girl]}] \]
\[= [\lambda X. \lambda Y. \vdash X \cap Y = \emptyset \to \} (G) \]
\[= \lambda Y. \vdash G \cap Y = \emptyset \to \]
\[[\lambda X. \lambda Y. \vdash X \cap Y = \emptyset \to \} (G) \]
\[\lambda X. \lambda Y. \vdash X \cap Y = \emptyset \to \]
\[[\text{no}] [\text{[girl]}] \]
\[= G \]
\[[\text{likes}] [\text{[likes Bill]}] \]
\[= [\text{[likes]} [\text{[likes Bill]}]] \]
\[= [\text{[likes]} [\text{[likes Bill]}]] \]
\[= [\lambda Y. \vdash G \cap Y = \emptyset \to \] (G) \]
\[= [\lambda Y. \vdash G \cap Y = \emptyset \to \]
\[[\text{likes}] [\text{[likes Bill]}] \]
\[= \lambda Y. \vdash G \cap Y = \emptyset \to \]
\[[\text{likes}] [\text{[likes Bill]}] \]
\[= \lambda X. \lambda Y. \vdash X \cap Y = \emptyset \to \]
\[[\text{no}] [\text{[girl]}] \]
\[= \text{Bill} \]
\[[\text{likes}] [\text{[likes Bill]}] \]
\[= \text{Bill} \]
\[[\text{Bill}] \]
\[= \text{Bill} \]
\[= \text{Bill} \]
• Extensional types

(17a) $A \subseteq U \models \lambda x. \models x \in A \downarrow$

(b) $R \subseteq U^2 \models \lambda x. \lambda y. \models (x,y) \in R \downarrow = \lambda y. \lambda x. \models (x,y) \in R \downarrow$

(c) $R \subseteq U^3 \models \lambda z. \lambda y. \lambda x. \models (x,y,z) \in R \downarrow \models \models \lambda x. \lambda y. \lambda z. \models x \in U \downarrow$

(18) x is of type $e \Leftrightarrow x \in U$;

\hspace{1cm} u is of type $t \Leftrightarrow u \in \{0,1\}$;

\hspace{1.5cm} f is of type $(a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

(19) Extensions and their types

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
<th>Extension</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Vienna</td>
<td>Vienna $[\in U]$</td>
<td>e</td>
</tr>
<tr>
<td>Description</td>
<td>the capital of Austria</td>
<td>Vienna $[\in U]$</td>
<td>e</td>
</tr>
<tr>
<td>Noun</td>
<td>city</td>
<td>$C \subseteq U$</td>
<td>et</td>
</tr>
<tr>
<td>1-place predicate</td>
<td>sleep</td>
<td>$S \subseteq U$</td>
<td>et</td>
</tr>
<tr>
<td>2-place predicate</td>
<td>eat</td>
<td>$\subseteq U \times U$</td>
<td>et</td>
</tr>
<tr>
<td>3-place predicate</td>
<td>give</td>
<td>$\subseteq U \times U \times U$</td>
<td>$e(et)$</td>
</tr>
<tr>
<td>Sentence</td>
<td>It's raining</td>
<td>$0 \in {0,1}$</td>
<td>t</td>
</tr>
<tr>
<td>Quantified NP</td>
<td>everybody</td>
<td>$\lambda Y. \models [\text{person}] \subseteq Y \downarrow$</td>
<td>$(et)t$</td>
</tr>
<tr>
<td>Determiner</td>
<td>no</td>
<td>$\lambda X. \lambda Y. \models X \cap Y = \emptyset \downarrow$</td>
<td>$(et)((et)t)$</td>
</tr>
</tbody>
</table>
3. Frege-Carnap intensions

- **Logical Space as a model of content**

 (20a) 4 fair coins are tossed.
 (b) At least one of the 4 tossed coins lands heads up.
 (c) At least one of the 4 tossed coins lands heads down.
 (d) Exactly 2 of the 4 tossed coins land heads up.
 (e) Exactly 2 of the 4 tossed coins land heads down.

☞ **Carnap’s Content**

Carnap (1947)

The proposition expressed by a sentence is the set of possible cases of which that sentence is true.

(21a) 4 coins were tossed when John coughed.
(b) 4 coins were tossed and no one coughed.

☞ **Wittgenstein’s Paradise**

Wittgenstein (1921)

All (and only the) maximally specific cases (possible worlds) are members of a set \(W \) (aka Logical Space).

- **From propositions to intensions**

 (22) \(p [\subseteq W] = \lambda w. \vdash w \in p \dashv \) characteristic function (of \(p \) rel. to \(W \))

 (23) The intension of an expression is its extension relative to Logical Space:

\[
[E] : W \rightarrow \{x \mid x \text{ is of the “appropriate” type}\}
\]

- **Intensional types**

☞ **Montagovian types**

Montague (1970a)

- \(x \) is of type \(e \) \(\Leftrightarrow x \in U \);
- \(u \) is of type \(t \) \(\Leftrightarrow u \in \{0,1\} \);
- \(f \) is of type \((a,b)\) \(\Leftrightarrow f : \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}\);
- \(g \) is of type \((s,c)\) \(\Leftrightarrow g : W \rightarrow \{y \mid y \text{ is of type } c\}\)

☞ **Two-sorted types**

“Gallin (1975)”

- \(x \) is of type \(e \) \(\Leftrightarrow x \in U \);
- \(u \) is of type \(t \) \(\Leftrightarrow u \in \{0,1\} \);
- \(w \) is of type \(s \) \(\Leftrightarrow w \in W \);
- \(f \) is of type \((a,b)\) \(\Leftrightarrow f : \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}\)

- **Notation**

\[
\| \text{Exp} \|_{w} = \| \text{Exp} \|(w)
\]
Intensional compositionality

The intension of a complex expression functionally depends on the intensions of its immediate parts and the way in which they are combined:

\[
\begin{array}{c}
\text{ArbExp} \\
\text{LP} \quad \text{RP}
\end{array} = [LP] \oplus [RP]
\]

Pointwise calculation of intensions

\[
\begin{align*}
[\text{John loves Mary}] & = \lambda w. [\text{John loves Mary}]^w \\
& = \lambda w. [\text{loves Mary}]^w (\langle \text{John} \rangle^w) \\
& = \lambda w. \lambda x^w. \vdash \text{in } w, \text{John loves Mary} \vdash \\
\end{align*}
\]

\[
\begin{align*}
\langle \text{loves Mary} \rangle^w & = \langle \text{loves} \rangle^w (\langle \text{Mary} \rangle^w) \\
& = \lambda x^w. \vdash \text{in } w, x \text{ loves Mary} \vdash \\
\end{align*}
\]

\[
\begin{align*}
\langle \text{loves} \rangle^w & = \langle y^w, \lambda x^w. \vdash \text{in } w, x \text{ loves } y \vdash \rangle \\
\langle \text{Mary} \rangle^w & = \langle \text{Mary} \rangle \\
\end{align*}
\]
4. Intensional constructions

- Substitution failure

(24) Fritz thinks that Hamburg is larger than Cologne.
 Hamburg is larger than Cologne.
 Pfäffingen is larger than Breitenholz.

∴ Fritz thinks that Pfäffingen is larger than Breitenholz.

(25a)

\[
\begin{align*}
\text{thinks that Hamburg is larger than Cologne} & \equiv 1 \\
\text{thinks} & \equiv 1 \\
\text{Hamburg is larger than Cologne} & \equiv 1
\end{align*}
\]

(b)

\[
\begin{align*}
\text{thinks that Pfäffingen is larger than Breitenholz} & \equiv 1 \\
\text{thinks} & \equiv 1 \\
\text{Pfäffingen is larger than Breitenholz} & \equiv 1
\end{align*}
\]

- Ersatz extensions

(26a)

\[
\begin{align*}
\text{thinks that Hamburg is larger than Cologne} & \equiv \sqrt{p} \\
\text{thinks} & \equiv \sqrt{p} \\
\text{Hamburg is larger than Cologne} & \equiv \sqrt{p}
\end{align*}
\]

(b)

\[
\begin{align*}
\text{thinks that Pfäffingen is larger than Breitenholz} & \equiv \sqrt{q} \\
\text{thinks} & \equiv \sqrt{q} \\
\text{Pfäffingen is larger than Breitenholz} & \equiv \sqrt{q}
\end{align*}
\]
(27) $[\text{think}]^w(p) \neq [\text{think}]^w(q)$

\Rightarrow Fregean Laziness

Substitution problems are solved by trading extensions for intensions.

(28a) *Jones thinks that Hesperus is Phosphorus.*

word type

think $t(et) (st)(et)$

(28b) *Jones is an alleged murderer.*

alleged $\lambda t (et)(et) (s(et))(et)$

(28c) *Jones is attentively eating every apple.*

attentively $\lambda t (et)(et) (s(et))(et)$

\Rightarrow *Jones is eating every apple.*

(P1) $(\forall w)(\forall P) [\text{[attentively]}^w(P) \leq P_w(x)] \leq \approx \text{mat. impl.}$

\Rightarrow *Every apple is such that Jones is attentively eating it.*

(P2) $(\forall w)(\forall R)(\forall Q)(\forall x) [\text{[attentively]}^w(R \odot Q) = (Q_w,y)[\text{[attentively]}^w(\lambda x. R_w(x,y))(x)]$,

Θ: combination of intensions of transitive verb and its quantificational object

\Rightarrow (Fregean) laziness does not (always) pay.

(d) *Jones seeks a unicorn.*

seek $e(et) (se)(et)$

Montague (1970a), only for verbs like *raise*

(29) *More expressions (of more types)*

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
<th>Extension</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude verb</td>
<td>think</td>
<td>$\subseteq U \times \wp W$</td>
<td>$(st)(et)$</td>
</tr>
<tr>
<td>Connective</td>
<td>or</td>
<td>$\lambda u^t \lambda v^t. u+v -(uv)$</td>
<td>$t(tt)$</td>
</tr>
</tbody>
</table>

\Rightarrow Fregean Compositionality

The extension of a complex expression functionally depends on the extensions or intensions of its immediate parts and the way in which they are combined:

$$\begin{align*}
[\text{ExtExp} \begin{array}{c} LP \\ RP \end{array}]^w & = [LP]^w \oplus [RP]^w \\
\text{or:} \quad [\text{IntExp} \begin{array}{c} LP \\ RP \end{array}]^w & = [LP]^w \oplus [RP]^w
\end{align*}$$
5. Attitude reports

- Modelling cognitive states in Logical Space

(30a) Fritz in \(w^* \) ...

(31) \(S = \) Hamburg is larger than Cologne

(32) \([\text{Fritz thinks that Hamburg is larger than Cologne}] \)\(^{w^*} = 1\)

\[\Leftrightarrow \neg (\exists w \in \diamond) [S](w) = 0 \]

\[\Leftrightarrow (\forall w \in \diamond) [S](w) = 1 \]

\[\Leftrightarrow \text{IV} = \emptyset \]

(33) \(\diamond \) depends on

- attitude subject (Fritz)
- world of evaluation: \(w^* \)
- lexical meaning of verb: \text{think}

\[\Rightarrow \diamond = \text{Dox}(\text{Fritz}(w^*)) \subseteq W \]

\(\Rightarrow \text{Dox} \) is of type \(e(s(st)) \) (dependent) accessibility relation

(34a) \([\text{think}] = \lambda w^*. \lambda p^{st}. \lambda x^e. \vdash (\forall w) \text{Dox}(x)(w^*) \leq p(w) \vdash \leq \approx \text{mat. impl.}\)

(b) \([\text{know}] = \lambda w^*. \lambda p^{st}. \lambda x^e. \vdash (\forall w) \text{Epi}(x)(w^*) \leq p(w) \vdash \)

(c) \([\text{want}] = \lambda w^*. \lambda p^{st}. \lambda x^e. \vdash (\forall w) \text{Bou}(x)(w^*) \leq p(w) \vdash \)

...
(35)

\[
[[\text{Fritz thinks that Hamburg is larger than Cologne}]]^{w*} =
[[\text{thinks that Hamburg is larger than Cologne}]]^{w*}([[\text{Fritz}]]^{w*})
\]

\[
\vdash (\forall w) \text{Dox}(\text{Fritz})(w^*)(w) \leq p(w) \downarrow
\]

\[
[[\text{thinks that Hamburg is larger than Cologne}]]^{w*} =
[[\text{thinks}]]^{w*}([[\text{Hamburg is larger than Cologne}]]^{w*})
\]

\[
\lambda p^{st}. \lambda x^e. \vdash (\forall w) \text{Dox}(x)(w^*)(w) \leq p(w) \downarrow
\]

\[
[[\text{Hamburg is larger than Cologne}]]^{w*} = p
\]

(36a) "Fritz knows that Breitenholz is larger than Pfäffingen."

(b) \((\forall w^*)(\forall p^{st})(\forall x^e)[\text{know}]^{w*}(p)(x) \leq p(w^*) \)

(c) \((\forall w^*)(\forall x^e) \text{Epi}(x)(w^*)(w^*) = 1 \)

(37a) "Fritz knows that Rome is in Italy, but he doesn’t think so."

(b) \((\forall w^*)(\forall p^{st})(\forall x^e)[\text{know}]^{w*}(p)(x) \leq [\text{think}]^{w*}(p)(x) \)

(c) \((\forall w^*)(\forall w)(\forall x^e) \text{Dox}(x)(w^*)(w) \leq \text{Epi}(x)(w^*)(w) \)

(38a) * Fritz wants that Fritz meets Eike.

(b) Fritz wants to meet Eike.

(c) \([\text{want}] = \lambda w^*. \lambda p^{s(\text{et})}. \lambda x^e. \vdash (\forall w) \text{Bou}(x)(w^*)(w) \leq P(w)(x) \downarrow \)
\[\text{Fritz wants to meet Eike} \]
\[\text{wants to meet Eike} \]
\[\lambda x^e. \left[\text{want} \right]^w \left(\lambda w. \left[\text{meet Eike} \right]^w (w(x)) (x) \right) \]
\[\lambda x^e. \left[\text{want} \right]^w \left(\lambda w. \left[\text{meet Eike} \right]^w (w(x)) (x) \right) \]
\[\lambda x^e. \left[\lambda y^x \right]^w \left(\lambda w. \left[\text{meet Eike} \right]^w (w(x)) (x) \right) \]
\[\lambda w. \left[\text{meet Eike} \right]^w \]
\[\lambda x^e. \left[\lambda y^x \right]^w \left(\lambda w. \left[\text{meet Eike} \right]^w (w(x)) (x) \right) \]
6. Unspecific Objects

- Paraphrases

(40a) John is looking for a sweater.
(b) John wants to find a sweater.

(41a) Mary owes me a horse.
(b) Mary is obliged to give me a horse.

(42a) This horse resembles a unicorn.
(b) This horse could (almost) be a unicorn.

- Relational analyses

(43a) Analysis of paraphrase

\[\begin{array}{l}
\llbracket \text{John wants to find a sweater} \rrbracket^w = \\
\llbracket \text{wants to find a sweater} \rrbracket^w(\llbracket \text{John} \rrbracket^w) = \\
\llbracket \text{want} \rrbracket^w(\llbracket w \rrbracket^w. [\text{a sweater}]^w(\llbracket y (x) \rrbracket^w)) (x) (\text{John}) = \\
\llbracket \text{want} \rrbracket^w(\llbracket w \rrbracket^w. [\text{a sweater}]^w(\llbracket y (\text{John}) \rrbracket^w)) (x) \\
\end{array} \]

\[\begin{array}{l}
\llbracket \text{wants to find a sweater} \rrbracket^w = \\
\lambda x. \llbracket \text{want} \rrbracket^w(\llbracket w \rrbracket^w. [\text{find a sweater}]^w(\llbracket w \rrbracket^w)(x)) (x) = \\
\lambda x. \llbracket \text{want} \rrbracket^w(\llbracket w \rrbracket^w. [\lambda y. [\text{find}]^w(\llbracket y (x) \rrbracket^w)]) (x) = \\
\lambda x. \llbracket \text{want} \rrbracket^w(\llbracket w \rrbracket^w. [\lambda y. [\text{find}]^w(\llbracket y (x) \rrbracket^w)]) (x) \\
\end{array} \]

\[\begin{array}{l}
\llbracket \text{find a sweater} \rrbracket^w = \\
\lambda w. \lambda x. [\text{a sweater}]^w(\llbracket y (x) \rrbracket^w) = \\
\llbracket [\text{find}]^w \rrbracket^w [\text{a sweater}]^w \\
\end{array} \]

\[\begin{array}{l}
\lambda x^e. [\text{want}]^w(\llbracket w \rrbracket^w. [\text{a sweater}]^w(\llbracket y^e. [\text{find}]^w(\llbracket y (x) \rrbracket^w))) (x) = \\
\lambda x^e. W(\llbracket w \rrbracket^w. S(\llbracket w \rrbracket^w. y^e. F(\llbracket y (x) \rrbracket^w))) (x) = \\
\lambda x^e. W(\llbracket w \rrbracket^w. Q(\llbracket w \rrbracket^w. y^e. F(\llbracket y (x) \rrbracket^w))) (x) (S) \]

(b) Dissection

\[\lambda x^e. [\text{want}]^w(\llbracket w \rrbracket^w. [\text{a sweater}]^w(\llbracket y^e. [\text{find}]^w(\llbracket y (x) \rrbracket^w))) (x) \]
(c) **Simplification**

\[\lambda Q^s((et)t) . \lambda x^e . W(\lambda w . Q(w) (\lambda y^e . F(y)(x))) (x)\]

\[\lambda Q^s((et)t) . \lambda x^e . [\text{look-for}]^w (\lambda w . Q(w) (\lambda y^e . [\text{find}]^w (y)(x))) (x)\]

\[\lambda Q^s((et)t) . \lambda x^e . [\lambda p^st . \lambda x^e . \uparrow (\forall w) \text{Bou}(x)(w^*)(w) \leq p(w) -]\]

\[\lambda w . Q(w) (\lambda y^e . \lambda w . \lambda y^e . \lambda x^e . \uparrow \text{in } w, x \text{ finds } y -] (w)(y)(x)) (x)\]

\[\lambda Q^s((et)t) . \lambda x^e . [\lambda p^st . \lambda x^e . \uparrow (\forall w) \text{Bou}(x)(w^*)(w) \leq p(w) -]\]

\[\lambda w . Q(w) (\lambda y^e . \uparrow \text{in } w, x \text{ finds } y -)) (x)\]

\[\lambda Q^s((et)t) . \lambda x^e . [\lambda p^st . \lambda x^e . \uparrow (\forall w) \text{Bou}(z)(w^*)(w) \leq p(w) -]\]

\[\lambda w . Q(w) (\lambda y^e . \uparrow \text{in } w, x \text{ finds } y -)) (x)\]

\[\lambda Q^s((et)t) . \lambda x^e . \uparrow (\forall w) \text{Bou}(x)(w^*)(w) \leq Q(w) (\lambda y^e . \uparrow \text{in } w, x \text{ finds } y -) \uparrow\]

(d) **Compositional analysis**

Montague (1969; 1970)

(44a) John is looking for most unicorns.

(b) \((\forall w) \text{Bou}(x)(w^*)(w) \leq \uparrow \text{ in } w, \#(\text{unicorns } x \text{ finds}) > \#(\text{unicorns } x \text{ doesn’t find}) \uparrow\)

(c) John wants to find most unicorns.

(45a) John is looking for each unicorn.

(b) \((\forall w) \text{Bou}(x)(w^*)(w) \leq \uparrow \text{ in } w, \text{John finds each unicorn} \uparrow\)

(c) John wants to find each unicorn.
(46a) **John is looking for no unicorn.**
(b) \((∀w)Bou(x)(w^*)(w) ≤ ⊬ in w, John doesn’t find a unicorn \(→\))
(c) **John wants to find no unicorn.**

(47a) An intension \(Q\) of type \(s((et)t)\) is *existential* iff
\[
Q = λw. λY^{et} . \vdash (∃x)[P(w)(x) = Y(x) = 1] \vdash
\]
for some intension \(P\) of (‘property’) type \(s(et)\).
(b) \(λP^{s(et)}. λw. λY^{et} . \vdash (∃x)[P(w)(x) = Y(x) = 1] \vdash\) Lerner & Zimmermann (1981: 148)
is a one-one mapping (called \(A\)) whose inverse (called \(BE\)) is: Partee (1987)
\(λQ^{s((et)t)} . λw. λx^{e} . Q(λy^{e}. \vdash x = y \vdash)\).

(48) \([\text{look-for}]^{(w^*)}\)
= \(λP^{s(et)}. λx^{e}. \vdash (∀w)Bou(x)(w^*)(w) ≤ \vdash (∃y^{e})\) in \(w, P(y) = 1 \& x\) finds \(y \vdash\)

- **Relational readings**

(49) **I owe you a horse.** Buridanus (1350)
(50) **John is looking for Mary.**
Mary is an Austrian student.________________
∴ **John is looking for an Austrian student.**

(51a)
(a') \((\exists m^{s(e(e))}) [m \text{ is a mode of presentation } & m(w^*) (\text{John}) = \text{Mary} & (\forall w) \text{ Bou}(x)(w^*)(w) \leq \vdash \text{ in } w, \text{John finds } m(w)(\text{John})]\) Kaplan (1969)

(b)

More paraphrases

(52a) John is looking for a sweater.
(b) John wants to find a sweater.
(c) John is looking for an intentional sweater.

(53a) Mary owes me a horse.
(b) Mary is obliged to give me a horse.
(c) Mary owes me an arbitrary horse.

(54a) Jones hired an assistant.
(b) This horse could (almost) be a unicorn.
(c) This horse resembles a generic unicorn.

(55a) This horse resembles a unicorn.
(b) Jones saw to it that someone would become an/his assistant.
(c) Jones hired a would-be assistant.
Quantificational analyses

\[
[[\text{John is-looking-for a sweater}]]^w = \lambda x^e. \left[\exists u^e \right] \left[\text{sweater}^+\right]^w(u) = \left[\text{is-looking-for}^+\right]^w(u)(\text{John}) = 1 \Downarrow
\]

\[
[[\text{is-looking-for a sweater}]]^w = \lambda x^e. \left[\text{sweater}\right]^w(\lambda u^e. \left[\text{is-looking-for}^+\right]^w(u)(x))
\]

\[
\lambda x^e. \left[\exists u^e \right] \left[\text{sweater}^+\right]^w(u) = \left[\text{is-looking-for}^+\right]^w(u)(x) = 1 \Downarrow
\]

\[
\left[\text{a}^+ \text{sweater}^+\right]^w = \ldots
\]

\[
\lambda Y^{e'}. \lambda x^e. \left[\exists u^{e'} \right] \left[\text{sweater}^+\right]^w(u) = Y(u) = 1 \Downarrow
\]

\[
[[\text{sweater}^+]]^w = \lambda X^{e'}. \lambda Y^{e'}. \lambda x^e. \left[\exists u^{e'} \right] X(u) = Y(u) = 1 \Downarrow
\]

Notation: \(P \sqsubseteq Q : \equiv (\forall w) (\forall x^e) P(w)(x) \leq Q(w)(x)\)

Monotonicity

(57a) \(e^+ = s(et)\)

(58a) John is a looking for a red sweater.

\[
\therefore \quad \text{John is looking for a sweater.}
\]

(b) John is looking for a sweater.

Mary is looking for a book.

\[
\therefore \quad \text{John is looking for something Mary is looking for.}
\]

Intersective construal (for simplicity): \([[\text{red sweater}] = [[\text{sweater}]] \cap [[\text{red}]]\)

Notation: \(P \sqcap Q := \forall w. \exists x^e. P(w)(x) = Q(w)(x) = 1\)
(59) Relational analyses (with lexical decomposition)

(q) \((\forall w) [\text{Bou}(John)(w) (w)(w) \leq \vdash (\exists y^e) \text{ in } w, y \text{ is a sweater} & y \text{ is red} & \text{John finds } y \vdash] \Rightarrow (\forall w) [\text{Bou}(John)(w) (w)(w) \leq \vdash (\exists y^e) \text{ in } w, y \text{ is a sweater} & \text{John finds } y \vdash] \Rightarrow (\forall w) [\text{Bou}(Mary)(w) (w)(w) \leq \vdash (\exists y^e) \text{ in } w, y \text{ is a book} & \text{Mary finds } y \vdash] \Rightarrow [\text{John is looking for something}]_{w^*} = 1 \ldots\)

(p) \([(\forall w) [\text{Bou}(John)(w) (w)(w) \leq \vdash (\exists y^e) \text{ in } w, y \text{ is a sweater} & \text{John finds } y \vdash] \Rightarrow (\forall w) [\text{Bou}(Mary)(w)(w) (w) \leq \vdash (\exists y^e) \text{ in } w, y \text{ is a book} & \text{Mary finds } y \vdash] \Rightarrow [\text{John is looking for something}]_{w^*} = 1 \ldots\)

(60) Quantificational analysis (with exact match)

(a) \((\exists w^* P (e)) \subseteq \text{[sweater]} \cap \text{[red])}(\forall w)[\text{Bou}(j)(w)(w) (w) \leftarrow (\exists y^e) \text{ in } w, P(w)(y) = 1 & \text{John finds } y]\)

(b) \[(\exists w^* P (e)) \subseteq \text{[sweater]} \cap \text{[book]}(\forall w)[\text{Bou}(j)(w)(w) (w) \leftarrow (\exists y^e) \text{ in } w, P(w)(y) = 1 & \text{John finds } y]\)

& \[(\exists w^* P (e)) \subseteq \text{[book]} \cap \text{[sweater]}(\forall w)[\text{Bou}(j)(w)(w) (w) \leftarrow (\exists y^e) \text{ in } w, P(w)(y) = 1 & \text{John finds } y]\]

\[
\Rightarrow (\exists w^* P (e)) \subseteq \text{[book]} \cap \text{[sweater]}(\forall w)[\text{Bou}(j)(w)(w) (w) \leftarrow (\exists y^e) \text{ in } w, P(w)(y) = 1 & \text{John finds } y]
\]

\[= (\exists w^* P (e)) \subseteq \text{[book]} \cap \text{[sweater]}(\forall w)[\text{Bou}(j)(w)(w) (w) \leftarrow (\exists y^e) \text{ in } w, P(w)(y) = 1 & \text{John finds } y]
\]

Unspecificity \Rightarrow Intensionality?

(61) Arnim owns a bottle of 1981 Riesling-Sylvaner.

Riesling-Sylvaner is Müller-Thurgau.

(62) Arnim owns the bottle that Franzis does not own.

(a) \([\text{the]}_{w^*}(\text{bottle Franzis doesn't own})_{w^*}(\text{own})_{w^*}(\text{y}^e). (\text{own})_{w^*}(\text{lambda}^e). Y(y))(\text{Arnim})

\[\leq \dashv (\exists y^e) \subseteq [\text{bottle}]_{w^*}(y) = [\text{own}]_{w^*}(\text{lambda}^e). Y(y))(\text{Arnim}) = 1 \vdash\]

(b) \([\text{own}]_{w^*}((\text{Arnim}, \text{the})_{w^*}(\text{bottle Franzis doesn't own})_{w^*})\]

\[\leq [\text{own}]_{w^*}((\text{Arnim}, \text{the})_{w^*}([\text{unicorn}]_{w^*}))\]

(in given scenario)

(63a) Pfäffingen is near a river.

= (\exists y^e) \subseteq [\text{river}]_{w^*}(x) \cap [\text{near}]_{w^*}([\text{Pfäffingen}], x) \]

(b) Breitenholz is far from a river.

= (\forall x^e) \subseteq [\text{river}]_{w^*}(x) \cap [\text{far}]_{w^*}([\text{Pfäffingen}], x) \]

Zimmermann (1983; 2001)

Rooth (p.c., anno 1991)

(64) Landscape of intensional verbs

<table>
<thead>
<tr>
<th>VERBS OF...</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence</td>
<td>avoid, lack, omit</td>
</tr>
<tr>
<td>Anticipation</td>
<td>allow* (for), anticipate, expect, fear, foresee, plan, wait* (for)</td>
</tr>
<tr>
<td>Calculation</td>
<td>calculate, compute, derive</td>
</tr>
<tr>
<td>Creation</td>
<td>assemble, bake, build, construct, fabricate, make (these verbs in progressive aspect only)</td>
</tr>
<tr>
<td>Depiction</td>
<td>caricature, draw, imagine, portray, sculpt, show, visualize, write* (about)</td>
</tr>
<tr>
<td>Desire</td>
<td>hope* (for), hunger* (for), lust* (after), prefer, want</td>
</tr>
<tr>
<td>Evaluation</td>
<td>admire, disdain, fear, respect, scorn, worship (verbs whose corresponding noun can fill the gap in the evaluation ‘worthy of _’ or ‘merits _’)</td>
</tr>
<tr>
<td>Requirement</td>
<td>cry out* (for), demand, deserve, merit, need, require</td>
</tr>
<tr>
<td>Search</td>
<td>hunt* (for), look* (for), rummage about* (for), scan* (for), seek</td>
</tr>
<tr>
<td>Similarity</td>
<td>imitate, be reminiscent* (of), resemble, simulate</td>
</tr>
<tr>
<td>Transaction</td>
<td>buy, order, owe, own, reserve, sell, wager</td>
</tr>
</tbody>
</table>

Forbes (2006: 37)

(65a) Matt needed some change before the conference. Partee (1974); Schwarz (2006);
(b) Matt was looking for some change before the conference. Moulton (2013)

(66a) Matt needs most of the small bills that were in the cash-box.
(b) Matt is looking for most of the small bills that were in the cash-box.

(67) Zimmermann (2001: 526)

Existential Impact
From \(x \text{ Rs } an \ N \) infer: There is at least one \(N \).

Extensionality
From \(x \text{ Rs } an \ N \), Every \(N \) is an \(M \), and Every \(M \) is an \(N \) infer: \(x \text{ Rs } an \ M \).

Specificity
From \(x \text{ Rs } an \ N \) infer: Some (specific) individual is Red by \(x \).
7. General aspects

- **Propositionalism**

 (P) All (linguistic, mental, perceptual, pictorial, …) content is propositional.

 (Q) All intensional contexts are parts of embedded clauses.

- **Russellian analysis**

 (69) Denotations and their types

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Vienna</td>
<td>e</td>
</tr>
<tr>
<td>Description</td>
<td>the capital of Austria</td>
<td>(e(st))(st)</td>
</tr>
<tr>
<td>Noun</td>
<td>city</td>
<td>e(st)</td>
</tr>
<tr>
<td>1-place predicate</td>
<td>sleep</td>
<td>e(st)</td>
</tr>
<tr>
<td>2-place predicate</td>
<td>eat</td>
<td>e(e(st))</td>
</tr>
<tr>
<td>3-place predicate</td>
<td>give</td>
<td>e(e(e(st)))</td>
</tr>
<tr>
<td>Sentence</td>
<td>It’s raining</td>
<td>st</td>
</tr>
<tr>
<td>Quantified NP</td>
<td>everybody</td>
<td>(e(st))(st)</td>
</tr>
<tr>
<td>Determiner</td>
<td>no</td>
<td>(e(st))((e(st))(st))</td>
</tr>
<tr>
<td>Attitude verb</td>
<td>think</td>
<td>(st)(et)</td>
</tr>
<tr>
<td>Connective</td>
<td>or</td>
<td>(st)((st)(st))</td>
</tr>
</tbody>
</table>

(70) How to Russell a Frege-Church

(a) \(R(\text{[the capital of Slovenia is larger than Breitenholz]}) = R(\text{[is larger than]})(R(\text{[Breitenholz]}))(R(\text{[the capital of Slovenia]})) \)

(b) \(R(\text{[the capital of Slovenia]}) = \lambda x. \lambda w. x = \text{[the capital of Slovenia]}(w) \)

(c) \(R(\text{[Breitenholz]} = \lambda x. \lambda w. x = \text{[Breitenholz]}(w) \)

(d) \(R(\text{[is larger than]})(\lambda e. \lambda Qe(\lambda s). \lambda x. \lambda y. (\forall x) (\forall y) P(x)(w) \times Q(x)(w) \leq [\text{is larger than}](w)(x)(y) \)

\(\lambda e. \lambda Qe(\lambda s). \lambda x. \lambda y. (\forall x) (\forall y) P(x)(w) \times Q(x)(w) \leq [\text{is larger than}](w)(x)(y) \)
• **Relativity of Reference**

(71a) \[|A| = \lambda w. [A], \text{ for lexical } A\]

Lewis (1974)

(b) \[|A B| = \lambda w. |A|(w) \oplus |B|(w), \text{ if } [A B] = [A] \oplus [B]\]

(72a)[John thinks it's raining]

= \text{APP}^{\text{ext}}(\text{APP}^{\text{int}}(|\text{thinks}|,|\text{it's raining}|),|\text{John}|)

NB: \text{APP}^{\text{ext}}(A, B) = \lambda w. A(w)(B(w)); \text{APP}^{\text{int}}(A, B) = \lambda w. A(w)(B)

(b) \[|\text{John thinks it's raining}|(w)\]

= \text{APP}^{\text{ext}}(|\text{thinks it's raining}|(w),|\text{John}|(w))

= \text{APP}^{\text{ext}}(\text{APP}^{\text{int}}(|\text{thinks}|,(|\text{it's raining}|(w)),|\text{John}|(w)))

= \text{APP}^{\text{ext}}(\text{APP}^{\text{int}}(|\text{thinks}|,|\text{it's raining}|),|\text{John}|)

= [\text{John thinks it's raining}]

(73a) \[|A| = \pi(|A|), \text{ for lexical } A\]

Putnam (1980)

(b) \[|A B| = |A| \oplus |B|, \text{ if } [A B] = [A] \oplus [B]\]

(c) \[\pi^e: U \rightarrow U \text{ is a (non-trivial) bijection; } \pi^s \text{ and } \pi^t \text{ are identities on } W \text{ and } \{0,1\}; \]

\[\pi^a b \text{ maps any } f \text{ of type } ab \text{ to } \{(\pi x, \pi y) \mid f(x) = y\}\]

(d) \[|S| = [S], \text{ for any sentence } S\]

... provided that all compositions \(\oplus\) are invariant

NB: \(\oplus\) is invariant iff \(\pi(\oplus) = \oplus\) for all permutations \(\pi\)

Tarski (1986); van Benthem (1989)

• **Further topics**

– Externalism
Putnam (1975); Burge (1979); Haas-Spohn (1995)

– Lexical meanings and intensions
Zimmermann & Sternefeld (2013: sec. 8.4); Zimmermann (2014: Kap. 5)

– Fregean vs. intensional compositionality
Zimmermann & Sternefeld (2013: sec. 8.6); Zimmermann (t.a.)

– De re attitude reports
Kaplan (1968); Aloni (2001)

– Generalised de re
Cresswell & von Stechow (1982); Bäuerle (1983); Zimmermann (t.a.)

– De se attitudes
Lewis (1979); Schlenker (2011)

– Granularity
Cresswell (1985); Stalnaker (1991; 1999)

– Hierarchy of senses
Parsons (1981); Zimmermann (t.a.)

– Worlds and models
Zimmermann (1999; 2011)

– Verbs of Depiction
Zimmermann (2016)

References

– (ms.): ‘Representing Intensionality: Variables vs. Parameters’. Submitted. [Ms. available on request]