1. Holes in inference patterns

- Terms and identity
(1a) 31 is prime.

$$
\begin{array}{r}
\varphi[31][\equiv P(\underline{31})] \\
n=31 \\
\varphi[n][\equiv P(\underline{n})]
\end{array}
$$

The number of persons in this room is 31. $n=31$
$\therefore \quad$ The number of persons in this room is prime.
(b) It is fact of elementary arithmetic that 31 prime.

The number of persons in this room is 31.
$\because \quad$ It is fact of elementary arithmetic that the number of persons in this room is prime.
(2a) John's salary is higher than Mary's.

$$
\varphi[j, \underline{m}][\equiv s(j)>s(m)]
$$

John is the dean. $j=d$
Mary is the vice dean. $m=v$
$\therefore \quad$ The dean's salary is higher than the vice dean's.
$\varphi[\underline{d}, \underline{v}]$
(b) Bill knows that the dean's salary is higher than the vice dean's.

John is the dean.
Mary is the vice dean.
$\because \quad$ Bill knows that John's salary is higher than Mary's.

- Problems with existential quantification
(3a) Urs is a Swiss millionaire.
All millionaires admire Scrooge McDuck.
[Only millionaires admire Scrooge McDuck.] \qquad
$\varphi[M][\equiv S(u) \& \underline{M}(u)]$
$(\forall x)[M(x) \rightarrow A(x)]$
$(\forall x)[A(x) \rightarrow M(x)]$
$\therefore \quad$ Urs is a Swiss admirer of Scrooge McDuck.
$\varphi[A][\equiv S(u) \& A(u)]$

Urs is an alleged millionaire.
All millionaires admire Scrooge McDuck.
Only millionaires admire Scrooge McDuck.
$\because \quad$ Kim is an alleged admirer of Scrooge McDuck.
(4a) Paul is wearing a pink shirt with green sleeves.
All pink shirts with green sleeves have striped collars and gold buttons.
[Only_pink shirts with green sleeves have striped collars and gold buttons.]_
$\therefore \quad$ Paul is wearing a shirt with striped collars and gold buttons.
(b) Paul is looking for a pink shirt with green sleeves.

All pink shirts with green sleeves have striped collars and gold buttons.
Only_pink shirts with green sleeves have striped collars and gold buttons.
$\because \quad$ Paul is looking for a shirt with striped collars and gold buttons.
(5a) Susan is entering a restaurant on Main Street.
The only restaurants on Main Street are La Gourmande and Le Gourmet. -
$\therefore \quad$ Susan is entering La Gourmande, or [Susan is entering] Le Gourmet.
(b) Susan is looking for a restaurant on Main Street. The only restaurants on Main Street are La Gourmande and Le Gourmet._
$\because \quad$ Susan is looking for La Gourmande, or [Susan is entering] Le Gourmet.
(6a) Paul is wearing a pink shirt with green sleeves.
$\therefore \quad$ There are pink shirts with green sleeves.
(b) Paul is looking for a pink shirt with green sleeves.
$\because \quad$ There are pink shirts with green sleeves.
(7a) There have never been any_pictures of Lily.
$\therefore \quad$ It is not true that Pete showed Roger a picture of Lily.
(b) There have never been any_pictures of Lily.
$\therefore \quad$ It is not true that Pete owed Roger a picture of Lily.

2. Extensions

- Compositionality

Substitution Principle
If two non-sentential expressions of the same category have the same meaning, either may replace the other in all positions within any sentence without thereby affecting the truth conditions of that sentence.

Principle of Compositionality

The meaning of a complex expression functionally depends on the meanings of its immediate parts and the way in which they are combined:

- Meaning as communicative function
- Extension: [contribution to] reference
- Intension: [contribution to] informational content
－Basic extensions
（9a）【Ljubljana】＝Ljubljana
【proper name】＝bearer
（b）【the largest city in Slovenia】＝Ljubljana 【definite description】＝descriptee
（c）\llbracket city $\rrbracket=\{$ London，Paris，Rome，Ljubljana，Frankfurt，..$\}=\{x \mid x$ is a city $\}$
【count noun】＝set of representatives
（d）\llbracket snore】 $=\{x \mid x$ snores $\}$
【intransitive verb】＝set of satisfiers
（e）\llbracket meet $\rrbracket=\{(x, y) \mid x$ meets $y\}$
【transitive verb】＝set of satisfier pairs
（f）\llbracket show $\rrbracket=\{(x, y, z) \mid x$ shows y to $z\}$
（g）【shows Joe】 $=\{(x, y) \mid x$ shows y to Joe $\}$【ditransitive verb】＝set of satisfier triples
（h）【shows Joe the Vatican】 $=\{(x) \mid x$ shows the Vatican to Joe $\}$
$=\{x \mid x$ shows the Vatican to Joe $\} \quad$ 【1－place predicate $\rrbracket=$ set of satisfiers

Parallelism between valency and type of extension
The extension of an n－place predicate is a set of n－tuples．

E．g．【Silvio shows Joe the Vatican】 $=\{()$ ISilvio shows the Vatican to Joe $\}$
$=\quad$ the set of objects of the form＇（ ）＇such that Silvio shows the Vatican to Joe，i．e．：
【Silvio shows Joe the Vatican $\rrbracket=\left\{\begin{array}{l}\{()\}, \text { if Silvio does show the Vatican to Joe } \\ \varnothing \text { ，otherwise }\end{array}\right.$

NB：$\quad()=\emptyset=0$ ；hence $\{()\}=\{\emptyset\}=\{0\}=1$ ！

Frege＇s Generalization
The extension of a sentence \boldsymbol{S} is its truth value，i．e． 1 if \boldsymbol{S} is true and 0 if \boldsymbol{S} is false．
－Constructing contributing extensions
（10a）From：
．．to：

（b）$\llbracket \boldsymbol{L P} \rrbracket(\llbracket \boldsymbol{R P} \rrbracket)=\llbracket \boldsymbol{E x p} \rrbracket$
（c）$\llbracket \boldsymbol{L P} \rrbracket=\{(\llbracket \boldsymbol{R P} \rrbracket, \llbracket \boldsymbol{E x p} \rrbracket) \mid \boldsymbol{E x p}=\boldsymbol{L P}+\boldsymbol{R P}\}$
（11a）

（b）\llbracket nobody】（ \llbracket sleeps $\rrbracket)=\llbracket$ nobody sleeps $\rrbracket \Rightarrow \llbracket$ nobody $\rrbracket(S)=1 \quad S$ ：sleepers
\llbracket nobody】 $(\llbracket$ talks $\rrbracket)=\llbracket$ nobody talks $\quad \Rightarrow \llbracket$ nobody $\rrbracket(T)=0 \quad T$ ：talkers
\llbracket nobody】（【listens】）$=\llbracket$ nobody listens $\rrbracket \Rightarrow$ nobody $\rrbracket(L)=1 \quad L$ ：hearers
（c）\llbracket nobody】 $=\{(S, 1),(T, 0),(L, 1), \ldots\}$
$=\{(Y, \vdash \llbracket$ person $\rrbracket \cap Y=\emptyset \dashv \mid Y$ is a（possible）predicate extension $\}$
$=\lambda Y . \vdash \llbracket$ person】 $\cap Y=\emptyset \dashv$
NB：$\vdash \ldots \dashv:=$ the truth value that is $1 \mathrm{iff} . .$.
（12a）

（b）$\llbracket \mathbf{n o \rrbracket (\llbracket b o y \rrbracket) = \lambda Y . \vdash B \cap Y = \emptyset \dashv 1 ~}$
B ：boys
$\llbracket n o \rrbracket(\llbracket \operatorname{girl\rrbracket)}=\lambda Y . \vdash G \cap Y=\emptyset \dashv$
G：girls
【no】（ 【city】）$=\lambda Y . \vdash C \cap Y=\emptyset \dashv$
C ：cities
（c）【no】 $=\lambda X . \lambda Y$ ．$\vdash X \cap Y=\emptyset \dashv$
（13）【every】 $=\lambda X . \lambda Y . \vdash X \subseteq Y \dashv$
【some】 $=\lambda X . \lambda Y . \vdash X \cap Y \neq \emptyset \dashv$
【one】 $=\lambda X . \lambda Y . \vdash|X \cap Y|=1 \dashv \quad|Z|$ ：\＃of elements of Z（cardinality）
\llbracket most】 $=\lambda X$ ．$\lambda Y . \vdash|X \cap Y|>|X \backslash Y| \dashv$
（14a）\llbracket Bill $_{M} \rrbracket=\lambda X . \vdash \operatorname{Bill} \in X \dashv$
cf．Montague（1970）
（b）\llbracket the $_{R} \rrbracket=\lambda X$ ．λY ．$\vdash|X|=1 \& X \subseteq Y \dashv$ cf．Russell（1905）
－Extensional constructions
（15）
$\begin{gathered}\llbracket \text { No girl likes Bill } \rrbracket \\ = \\ \llbracket \text { no girl } \rrbracket(\llbracket \text { likes Bill } \rrbracket)\end{gathered}$
$=$

$$
[\lambda Y . \vdash G \cap Y=\varnothing \dashv](\{x \mid x \text { likes Bill }\})
$$

$=$

$$
[\lambda X . \lambda Y . \vdash X \cap Y=\varnothing \dashv](G) \quad\{x \mid(x, \llbracket \text { Bill } \rrbracket) \in \llbracket \text { likes } \rrbracket\}
$$

$=$
$[\lambda Y . \vdash G \cap Y=\varnothing \dashv]$

- Extensional types
U : domain of individuals
(17a) $A[\subseteq \boldsymbol{U}] \simeq \lambda x . \vdash x \in A \dashv$
(b) $\quad R\left[\subseteq \boldsymbol{U}^{2}\right] \simeq \lambda x . \lambda y . \vdash(x, y) \in R \dashv \simeq \lambda y . \lambda x . \vdash(x, y) \in R \dashv$
(c) $\quad R\left[\subseteq \boldsymbol{U}^{3}\right] \simeq \lambda z . \lambda y . \lambda x . \vdash(x, y, z) \in R \dashv$
(18) $\quad x$ is of type $\boldsymbol{e} \Leftrightarrow x \in U$;
u is of type $t \Leftrightarrow u \in\{0,1\}$;
f is of type $(a, b) \Leftrightarrow f:\{x \mid x$ is of type $a\} \rightarrow\{y \mid y$ is of type $b\}$
(19) Extensions and their types

Category	Example	Extension	Type
Name	Ljubljana	Ljubljana $[\in \boldsymbol{U}]$	e
Description	the capital of Slovenia	Ljubljana $[\in \boldsymbol{U}]$	e
Noun	city	$C[\subseteq \boldsymbol{U}]$	et
1-place predicate	sleep	$S[\subseteq \boldsymbol{U}]$	et
2-place predicate	eat	$\subseteq \boldsymbol{U} \times \boldsymbol{U}$	et
3-place predicate	give	$\subseteq \boldsymbol{U} \times \boldsymbol{U} \times \boldsymbol{U}$	e(et)
Sentence	It's raining	$0[\in\{0,1\}]$	\boldsymbol{t}
Quantified $\boldsymbol{N P}$	everybody	$\lambda Y . \vdash \llbracket$ person $\subseteq Y \dashv$	$(\boldsymbol{e t}) \boldsymbol{t}$
Determiner	no	$\lambda X . \lambda Y . \vdash X \cap Y=\emptyset \dashv$	$(\boldsymbol{e t})((\boldsymbol{e t}) \boldsymbol{t})$

3. Intensions

- Logical Space as a model of content

(20a) 4 fair coins are tossed.
(b) At least one of the 4 tossed coins lands heads up.
(c) At least one of the 4 tossed coins lands heads down.
(d) Exactly 2 of the 4 tossed coins land heads up.
(e) Exactly 2 of the 4 tossed coins land heads down.

Carnap's Content
Carnap (1947)
The proposition expressed by a sentence is the set of possible cases of which that sentence is true.
(21a) 4 coins were tossed when John coughed.
(b) 4 coins were tossed and no one coughed.

Wittgenstein's Paradise Wittgenstein (1921)
All (and only the) maximally specific cases (possible worlds) are members of a set W (aka Logical Space).

- From propositions to intensions
(22) $p[\subseteq \boldsymbol{W}] \simeq \lambda w . \vdash w \in p \dashv$
characteristic function (of p rel. to \boldsymbol{W})
(23) The intension of an expression is its extension relative to Logical Space:
$\llbracket \boldsymbol{E} \rrbracket: \boldsymbol{W} \rightarrow\{x \mid x$ is of the "appropriate" type $\}$
- Intensional types

Montagovian types
x is of type $\boldsymbol{e} \Leftrightarrow x \in U$;
u is of type $t \Leftrightarrow u \in\{0,1\}$;
f is of type $(a, b) \Leftrightarrow f:\{x \mid x$ is of type $a\} \rightarrow\{y \mid y$ is of type $b\}$
g is of type $(\boldsymbol{s}, c) \Leftrightarrow g: W \rightarrow\{y \mid y$ is of type $c\}$
Two-sorted types
"Gallin (1975)"

```
x is of type e}\Leftrightarrowx\inU
u is of type t}\Leftrightarrowu\in{0,1}
w is of type s}\Leftrightarroww\in\boldsymbol{W}
```


- Notation
$\llbracket \boldsymbol{E x p} \rrbracket \rrbracket^{w}=\llbracket \boldsymbol{E x p} \rrbracket(w)$

4．Attitude reports

－Substitution failure
（24）Fritz thinks that Hamburg is larger than Cologne．
Hamburg is larger than Cologne．
Pfäffingen is larger than Breitenholz．
$\because \quad$ Fritz thinks that Pfäffingen is larger than Breitenholz．
（25a）
【thinks that Hamburg is larger than Cologne $\rrbracket^{\omega^{*}}$ \llbracket thinks $\rrbracket^{\prod^{\omega^{*}}} \oplus \llbracket$ Hamburg is larger than Cologne $\rrbracket^{\omega^{*}}$

（b）
【thinks that Pfäffingen is larger than Breitenholz $\rrbracket^{w^{*}}$ \llbracket thinks $\rrbracket^{\omega^{*}} \oplus \llbracket$ Pfäffingen is larger than Breitenholz $\rrbracket \rrbracket^{w^{*}}$

\llbracket Pfäffingen is larger than Breitenholz $\rrbracket^{\omega^{*}}$
【thinks $\rrbracket^{w^{*}}$ ${ }_{1}$
－Intensional compositionality
（26a）
【thinks that Hamburg is larger than Cologne $\rrbracket^{\omega^{*}} \downarrow$

(b)

【thinks that Pfäffingen is larger than Breitenholz $\rrbracket^{w^{*}} \sqrt{ }$
\llbracket thinks $\rrbracket^{w^{*}} \oplus \llbracket$ Pfäffingen is larger than Breitenholz \rrbracket

$(27) \llbracket$ think $\rrbracket\left(w^{*}\right)(\mathbf{p}) \neq \llbracket \mathbf{t h i n k} \rrbracket\left(w^{*}\right)(\mathbf{q})$
(28) More expressions (of more types)

Category	Example	Extension	Type
Attitude verb	think	$\subseteq \boldsymbol{U} \times \wp \boldsymbol{W}$	(st)(et)
Connective	or	$\lambda u^{\boldsymbol{t}} . \lambda v^{\boldsymbol{t}} . u+v-(u v)$	$\boldsymbol{t}(\boldsymbol{t t})$

Fregean Compositionality
Frege (1892)
The extension of a complex expression functionally depends on the extensions or intensions of its immediate parts and the way in which they are combined:

... strengthens (by a uniformity condition):
Intensional compositionality
The intension of a complex expression functionally depends on the intensions of its immediate parts and the way in which they are combined:

$$
\llbracket \begin{gathered}
\text { ArbExp } \\
\boldsymbol{L} \quad \boldsymbol{R} P \\
\hline
\end{gathered} \rrbracket=\llbracket \boldsymbol{L P} \rrbracket \oplus \llbracket \boldsymbol{R P} \rrbracket
$$

... and gives rise to the:
Distinction between extensional and intensional constructions
A (binary) construction $\boldsymbol{E x p}$ (understood as the family of expressions of the Form $\boldsymbol{E x p}_{i}=\boldsymbol{\mathcal { Z }}\left(\boldsymbol{\boldsymbol { P }} \boldsymbol{P}_{i}, \boldsymbol{R} \boldsymbol{P}_{i}\right)$, for some syntactic operation $\left.\boldsymbol{7}\right)$ is extensional iff there is a (binary) function \oplus_{7} such that, for any world w (and all i):

$$
\llbracket \boldsymbol{E x p}_{i} \rrbracket^{w}=\llbracket \boldsymbol{L} \boldsymbol{P}_{i} \rrbracket^{w} \oplus_{z} \llbracket \boldsymbol{R} \boldsymbol{P}_{i} \rrbracket^{w}
$$

- Modelling cognitive states in Logical Space
(29a) Fritz in w^{*}...

(b)

$S=$ Hamburg is larger than Cologne
(30)

$\mathrm{I}: \boldsymbol{W} \backslash(\diamond \cup \llbracket \boldsymbol{S} \rrbracket) ; \mathrm{II}: \llbracket \boldsymbol{S} \rrbracket \backslash \diamond ; \mathrm{III}: \diamond \cap \llbracket \boldsymbol{S} \rrbracket ; \mathrm{IV}: \diamond \backslash \llbracket \boldsymbol{S} \rrbracket$
(31) 【Fritz thinks that Hamburg is larger than Cologne』 $\left(w^{*}\right)=1$
$\Leftrightarrow \quad \neg(\exists w \in \diamond) \llbracket \boldsymbol{S} \rrbracket(w)=0$
$\Leftrightarrow \quad(\forall w \in \diamond) \llbracket \boldsymbol{S} \rrbracket(w)=1$
$\Leftrightarrow \mathrm{IV}=\varnothing$
（32）
\diamond depends on
．．．attitude subject（Fritz）
．．．world of evaluation：w^{*}
．．．lexical meaning of verb：think
$\Rightarrow \quad \diamond=\boldsymbol{D o x} \boldsymbol{x}($ Fritz $)\left(w^{*}\right) \subseteq \boldsymbol{W}$
$\approx \quad$ Dox is of type $\boldsymbol{e}(\boldsymbol{s}(\boldsymbol{s t}))$
（33a）【think』 $=\lambda w^{*} . \lambda p^{\boldsymbol{s t}} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{D o x}(x)\left(w^{*}\right)(w) \leq p(w) \dashv \quad \leq \approx$ mat．impl．
（b）\llbracket know $\rrbracket=\lambda w^{*} . \lambda p^{\boldsymbol{s t}} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{E p i} \boldsymbol{i}(x)\left(w^{*}\right)(w) \leq p(w) \dashv$
（c）\llbracket want $\rrbracket=\lambda w^{*} . \lambda p^{\boldsymbol{s t}} \cdot \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv$

$$
\begin{equation*}
\llbracket \text { Fritz thinks that Hamburg is larger than Cologne } \rrbracket^{w^{*}} \tag{34}
\end{equation*}
$$ \llbracket thinks that Hamburg is larger than Cologne $\rrbracket^{w^{*}}\left(\llbracket\right.$ Fritz $\left.\rrbracket^{w^{*}}\right)$

（35a）${ }^{\text {\＃}}$ Fritz knows that Breitenholz is larger than Pfäffingen．
（b）$\left(\forall w^{*}\right)\left(\forall p^{\boldsymbol{s t}}\right)\left(\forall x^{\boldsymbol{e}}\right) \llbracket$ know $\rrbracket\left(w^{*}\right)(p)(x) \leq p\left(w^{*}\right)$
（c）$\left(\forall w^{*}\right)\left(\forall x^{\boldsymbol{e}}\right) \boldsymbol{E p i}(x)\left(w^{*}\right)\left(w^{*}\right)=1$
（36a）\＃Fritz knows that Rome is in Italy，but he doesn＇t think so．
（b）$\left(\forall w^{*}\right)\left(\forall p^{\boldsymbol{s t}}\right)\left(\forall x^{\boldsymbol{e}}\right) \llbracket$ know】 $\left(w^{*}\right)(p)(x) \leq \llbracket$ think』 $\left(w^{*}\right)(p)(x)$
（c）$\quad\left(\forall w^{*}\right)(\forall w)\left(\forall x^{\boldsymbol{e}}\right) \operatorname{Dox}(x)\left(w^{*}\right)(w) \leq \boldsymbol{E p i}(x)\left(w^{*}\right)(w)$
(37a) * Fritz wants that Fritz meets Eike.
(b) Fritz wants to meet Eike.
(c) \llbracket want $\rrbracket=\lambda w^{*} . \lambda P^{\boldsymbol{s}(\boldsymbol{e} \boldsymbol{t})} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq P(w)(x) \dashv$
(38)

$$
\lambda x^{e} .\left[\lambda p^{s t} \cdot \lambda x^{e} \cdot \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv\right]\left(\lambda w \cdot\left[\lambda w \cdot \lambda x^{e} .+ \text { in } w, x \text { meets Eike -1] }(w)(x)\right)(x)\right.
$$

\llbracket Fritz $\rrbracket^{w^{*}}$ Fritz
$\lambda x^{e} .\left[\lambda p^{s t} . \lambda x^{e} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv\right](\lambda w . \vdash$ in w, x meets Eike -1$)(x)$ $\lambda x^{e} .\left[\lambda y^{e} . \vdash(\forall w) \boldsymbol{B o u}(y)\left(w^{*}\right)(w) \leq[\lambda w . \vdash\right.$ in w, x meets Eike -1$\left.](w)-1\right](x)$ $\lambda x^{e} .+(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq\left[\frac{[\lambda w}{=} . \vdash\right.$ in w, x meets Eike -1$](w)-$

$$
\llbracket \underset{=}{\text { want }} \rrbracket^{w^{*}}
$$

$$
\left[\lambda p^{s t} \cdot \lambda x^{e} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv\right]
$$

5. Unspecific Objects

- Paraphrases

(39a) John is looking for a sweater.
(b) John wants to find a sweater.
(40a) Mary owes me a horse.
(b) Mary is obliged to give me a horse.
(41a) This horse resembles a unicorn.
(b) This horse could (almost) be a unicorn.
－Relational analyses
（42a）Analysis of paraphrase

（b）Dissection
$\lambda x^{e} . \llbracket$ want $\rrbracket^{w^{*}}\left(\lambda w . \llbracket\right.$ a sweater $\rrbracket^{w}\left(\lambda y^{e} . \llbracket\right.$ find $\left.\left.\rrbracket^{w}(y)(x)\right)\right)(x)$
$\left.=\quad \lambda x^{\boldsymbol{e}} . \boldsymbol{W}\left(\lambda w \cdot \mathbf{S}(w) \lambda y^{\boldsymbol{e}} . \boldsymbol{F}(w)(y)(x)\right)\right)(x)$
$=\quad\left[\lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}} \cdot \boldsymbol{W}\left(\lambda w \cdot Q(w)\left(\lambda y^{\boldsymbol{e}} \cdot \boldsymbol{F}(y)(x)\right)\right)(x)\right](\boldsymbol{S})$
（c）Simplification
【look－for】（ $\left.w^{*}\right)$
$=\quad \lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}} \cdot \boldsymbol{W}\left(\lambda w \cdot Q(w)\left(\lambda y^{\boldsymbol{e}} . \boldsymbol{F}(y)(x)\right)\right)(x)$
$=\lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}}$ ．【want】（ $\left.w^{*}\right)\left(\lambda w \cdot Q(w)\left(\lambda y^{\boldsymbol{e}}\right.\right.$ ．【find』（w）（y）（x）））（x）
$=\quad \lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}} .\left[\lambda p^{\boldsymbol{s t}} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv\right]$
$\left(\lambda w . Q(w)\left(\lambda y^{\boldsymbol{e}} .\left[\lambda w \cdot \lambda y^{\boldsymbol{e}} . \lambda x^{\boldsymbol{e}} . \vdash\right.\right.\right.$ in w, x finds $\left.\left.\left.y \dashv\right](w)(y)(x)\right)\right)(x)$
$=\quad \lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}} .\left[\lambda p^{\boldsymbol{s t}} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq p(w) \dashv\right]$
$\left(\lambda w . Q(w)\left(\lambda y^{\boldsymbol{e}} . \vdash \operatorname{in} w, x\right.\right.$ finds $\left.\left.y \dashv\right)\right)(x)$
$=\quad \lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda x^{\boldsymbol{e}} .\left[\lambda p^{\boldsymbol{s t}} \cdot \lambda z^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(z)\left(w^{*}\right)(w) \leq p(w) \dashv\right]$
$\left(\lambda w . Q(w)\left(\lambda y^{\boldsymbol{e}} . \vdash\right.\right.$ in w, x finds $\left.\left.y \dashv\right)\right)(x)$
$=\quad \lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \boldsymbol{Q}(w)\left(\lambda y^{\boldsymbol{e}} . \vdash\right.$ in w, x finds $\left.y \dashv\right) \dashv$
(d) Compositional analysis
|| John is-looking-for a sweater ||

(43a) John is looking for most unicorns.
(b) $(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \vdash$ in w, \#(unicorns x finds) $>$ \#(unicorns x doesn't find) \dashv)
(c) John wants to find most unicorns.
(44a) John is looking for each unicorn.
(b) $(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \vdash$ in w, John finds each unicorn $\left.\dashv\right)$
(c) John wants to find each unicorn.
(45a) John is looking for no unicorn.
(b) $\quad(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \vdash$ in w, John doesn't find a unicorn \dashv)
(c) John wants to find no unicorn.
(46a) An intension Q of type $\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})$ is existential iff

$$
Q=\lambda w . \lambda Y^{e t} . \vdash(\exists x)[P(w)(x)=Y(x)=1] \dashv
$$

for some intension P of ('property') type $\boldsymbol{s}(\boldsymbol{e} \boldsymbol{e})$.
(b)

$$
\lambda P^{s(e t)} \cdot \lambda w \cdot \lambda Y^{e} \cdot \vdash(\exists x)[P(w)(x)=Y(x)=1] \dashv
$$ is a one-one mapping (called A) whose inverse (called $B E)$ is:

$$
\lambda Q^{\boldsymbol{s}((\boldsymbol{e t}) \boldsymbol{t})} \cdot \lambda w \cdot \lambda x^{\boldsymbol{e}} \cdot Q\left(\lambda y^{\boldsymbol{e}} \cdot \vdash x=y \dashv\right) .
$$

(47) 【look-for】(w^{*})

Zimmermann (1993)
$=\lambda P^{\boldsymbol{s}(\boldsymbol{e t})} \cdot \lambda x^{\boldsymbol{e}} . \vdash(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \vdash\left(\exists y^{\boldsymbol{e}}\right)$ in $w, P(y)=1 \& x$ finds $y \dashv$

- Relational readings
(48) I owe you a horse.
(49) John is looking for Mary. Mary is a Slovenian student.
$\therefore \quad$ John is looking for a Slovenian student.
(50a)

(a') $\quad\left(\exists m^{\boldsymbol{s}(\boldsymbol{e}(\boldsymbol{e}))}\right)\left[m\right.$ is a mode of presentation \& $m\left(w^{*}\right)(\mathrm{John})=$ Mary \&
de re
$(\forall w) \boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leq \vdash$ in w, John finds $m(w)($ John $\left.)\right]$
Kaplan (1969)
(b)

- More paraphrases
(51a) John is looking for a sweater.
(b) John wants to find a sweater.
(c) John is looking for an intentional sweater.
(52a) Mary owes me a horse.
(b) Mary is obliged to give me a horse.
(c) Mary owes me an arbitrary horse.
(53a) Jones hired an assistant.
(b) This horse could (almost) be a unicorn.
(c) This horse resembles a generic unicorn.
(53a) This horse resembles a unicorn.
(b) Jones saw to it that someone would become an/his assistant.
(c) Jones hired a would-be assistant.
- Quantificational analyses
(54)

John

$$
\lambda x^{e} . \vdash\left(\exists u^{e^{+}}\right) \llbracket \text { sweater }^{+} \rrbracket^{w^{*}}(u)=\llbracket \text { is-looking-for } \rrbracket^{w^{*}}(u)(x)=1 \dashv
$$

（55a）$e^{+}=s(e t)$
（b）\llbracket sweater ${ }^{+} \rrbracket\left(w^{*}\right)=\lambda P^{s(e t)} . \vdash(\forall w)\left(\forall x^{\boldsymbol{e}}\right) P \sqsubseteq \llbracket$ sweater】 \dashv
（c）【look－for】（ w^{*} ）Zimmermann（2006）：＇exact match＇
$=\lambda P^{\boldsymbol{s}(\boldsymbol{e t})} . \lambda x^{\boldsymbol{e}} . \vdash(\forall w)\left[\boldsymbol{B o u}(x)\left(w^{*}\right)(w) \leftrightarrow\left(\exists y^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& x$ finds $\left.y\right] \dashv$
Notation：$P \sqsubseteq Q: \Leftrightarrow(\forall w)\left(\forall x^{e}\right) P(w)(x) \leq Q(w)(x)$
sub－concepthood
－Monotonicity
（56a）John is a looking for a red sweater．

$\therefore \quad$ John is looking for a sweater．

（b）John is looking for a sweater． Mary is looking for a book．
$\because \quad$ John is looking for something Mary is looking for．

Intersective construal（for simplicity）：\llbracket red sweater $\rrbracket=\llbracket$ sweater』 \rrbracket 【red \rrbracket Notation：$P \sqcap Q:=\lambda w . \lambda x^{e} . P(w)(x)=Q(w)(x)=1$
（57）Relational analyses（with lexical decomposition）
（a）$\quad(\forall w) \boldsymbol{B o u}(\mathrm{John})\left(w^{*}\right)(w) \leq \vdash\left(\exists y^{\boldsymbol{e}}\right)[$ in w, y is a sweater \＆y is red \＆John finds $y] \dashv$
$\Rightarrow \quad(\forall w) \boldsymbol{B o u}(\mathrm{John})\left(w^{*}\right)(w) \leq \vdash\left(\exists y^{\boldsymbol{e}}\right)[$ in w, y is a sweater \＆John finds $y] \dashv$
（b）$\left[(\forall w) \boldsymbol{B o u}(\mathrm{John})\left(w^{*}\right)(w) \leq \vdash\left(\exists \boldsymbol{y}^{\boldsymbol{e}}\right)[\right.$ in w, y is a sweater \＆John finds $y] \dashv$
\＆$\quad(\forall w) \boldsymbol{B o u}(\operatorname{Mary})\left(w^{*}\right)(w) \leq \vdash\left(\exists y^{\boldsymbol{e}}\right)[$ in w, y is a book \＆Mary finds y ］$\dashv] \ldots$
－quantifier analysis－e．g．$Q \equiv \lambda w . \lambda P . P=P$ ：
$\ldots \Rightarrow\left(\exists \boldsymbol{Q}^{\boldsymbol{s}((\boldsymbol{e} \boldsymbol{t}) \boldsymbol{t})}\right)$［ 【look－for】（ $\left.w^{*}\right)(\boldsymbol{Q})($ Mary $) \& \llbracket$ look－for】 $\left.\left(w^{*}\right)(\boldsymbol{Q})(\mathrm{John})\right]$
－\quad property analysis－e．g．$Q \equiv \lambda w . \lambda P . P=P$ ：
$\ldots \Rightarrow\left(\exists P^{\boldsymbol{s}(\boldsymbol{e t})}\right)$［ 【look－for】（ $\left.w^{*}\right)(P)($ Mary $) \& \llbracket$ look－for】 $\left.\left(w^{*}\right)(P)(\mathrm{John})\right]$
（58）Quantificational analysis（with exact match）

$\Rightarrow \quad\left(\exists P^{\boldsymbol{s}(\boldsymbol{e} \boldsymbol{t})} \llbracket\right.$ 【sweater】）$(\forall w)\left[\boldsymbol{B o u}(\mathrm{j})\left(w^{*}\right)(w) \leftrightarrow\left(\exists y^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& \mathrm{j}$ finds $\left.y\right]$
（b）$\left[\left(\exists P^{\boldsymbol{s}(\boldsymbol{e t})} \sqsubseteq \llbracket\right.\right.$ sweater $\left.\rrbracket\right)(\forall w)\left[\boldsymbol{B o u}(\mathrm{j})\left(w^{*}\right)(w) \leftrightarrow\left(\exists \boldsymbol{y}^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& \mathrm{j}$ finds $\left.y\right]$
\＆$\quad\left(\exists P^{\boldsymbol{s}(\boldsymbol{e t})} \sqsubseteq \llbracket\right.$ book】 $)(\forall w)\left[\boldsymbol{B o u}(\mathrm{m})\left(w^{*}\right)(w) \leftrightarrow\left(\exists y^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& \mathrm{~m}$ finds $\left.\left.y\right]\right]$
$\neq>\quad\left(\exists P^{\boldsymbol{s}(\boldsymbol{e t})}\right)(\forall w)\left[\boldsymbol{B o u}(\mathrm{m})\left(w^{*}\right)(w) \leftrightarrow\left(\exists y^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& \mathrm{~m}$ finds $\left.y\right]$ $\ldots \&\left[\boldsymbol{B o u}(\mathrm{j})\left(w^{*}\right)(w) \leftrightarrow\left(\exists y^{\boldsymbol{e}}\right)\right.$ in $w, P(y)=1 \& \mathrm{j}$ finds $\left.y\right]$
$\equiv \quad\left(\exists P^{\boldsymbol{s}(\boldsymbol{e} \boldsymbol{t})}\right)$［look－for】（ $\left.w^{*}\right)(P)($ Mary $) \& \llbracket$ look－for】 $\left.\left(w^{*}\right)(P)(\mathrm{John})\right]$
－Unspecificity \Rightarrow Intensionality？
（59）Arnim owns a bottle of 1981 Riesling－Sylvaner．
Riesling－Sylvaner is Müller－Thurgau．
Arnim owns a bottle of 1981 Müller－Thurgau．
（60）Arnim owns the bottle that Franzis does not own．
（a）【the』（ w^{*} ）（匹bottle Franzis doesn＇t own】）$\left(w^{*}\right)$

$$
\begin{aligned}
& \left(\lambda y^{\boldsymbol{e}} . \llbracket \text { own } \rrbracket\left(w^{*}\right)\left(\lambda Y^{\boldsymbol{e t}} . Y(y)\right)(\text { Arnim })\right. \\
& \left.\leq \quad \vdash\left(\exists y^{\boldsymbol{e}}\right)\left[\llbracket \text { bottle } \rrbracket\left(w^{*}\right)(y)=\llbracket \text { own 】(} w^{*}\right)\left(\lambda Y^{\boldsymbol{e t}} . Y(y)\right)(\text { Arnim })=1\right] \dashv
\end{aligned}
$$

（b）【own 』 $\left(w^{*}\right)\left(\llbracket\right.$ the】 $\left(w^{*}\right)\left(\llbracket\right.$ bottle Franzis doesn’t own】）（ $\left.w^{*}\right)$ ）（Arnim）
$\leq \llbracket \mathbf{o w n} \rrbracket\left(w^{*}\right)\left(\llbracket\right.$ the】 $\left(w^{*}\right)(\llbracket$ unicorn】 $\left.)\left(w^{*}\right)\right)($ Arnim $)$
（in given scenario）
－Landscape of intensional verbs
（61）

VERBS of ．．．	EXAMPLEs
Absence	avoid，lack，ornit
Anticipation	allow＊（for），anticipate，expect，fear，foresee，plan， wait＂（for）
Calculation	calculate，compute，derive
Creation	assemble，bake，build，construct，fabricate，make （these verbs in progressive aspect only）
Depiction	caricature，draw，imagine，portray，sculpt，show， visualize，write＊（about）
Desire	hope＊（for），hunger＊（for），lust＊（after），prefer，want
Evaluation	admire，disdain，fear，respect，scorn，worship（verbs whose corresponding noun can fill the gap in the evaluation＇worthy of＿，or merits＿＇）
Requirement	cry out＊（for），demand，deserve，merit，need，require
Search	hunt＊（for），look＊（for），rummage about＊（for），scan＊ （for），seek
Similarity	imitate，be reminiscent＂（of），resemble，simulate
Transaction	buy，order，owe，own，reserve，sell，wager

Forbes（2006：50）
（62a）Matt needed some change before the conference．
Schwarz（2006）
（b）Matt was looking for some change before the conference．
（63a）Matt needs most of the small bills that were in the cash－box．
（b）Matt is looking for most of the small bills that were in the cash－box．

Existential Impact ${ }^{5}$

From x Rs an N infer：There is at least one N ．
Extensionality ${ }^{6}$
From x Rs an N ，Every N is an M ，and Every M is an N infer：x Rs an M ．

Specificity

From x Rs an N infer：Some（specific）individual is Red by x ．

5．General topics

－Propositionalism
（P）All（linguistic，mental，perceptual，pictorial，．．．）content is propositional．
（Q）All intensional contexts are parts of embedded clauses．
Quine（1956）
（65a）【Hesperus is a planet』 \neq 【Phosphorus is a planet】
Frege（1892）
$\Rightarrow \quad$ 【Hesperus】 \ddagger 【Phosphorus】
non－propositional content
（b）The thirsty man wants beer．
Meinong（1904）：intentional object
（c）Jones worships a Greek goddess．R．Montague（1969）［crediting H．Kamp］
（d）Lex Luthor fears Superman（but not Clark Kent）．
Forbes（2000）
（e）Horatio believes that things Horatio doesn＇t believe in exist．
Szabó（2003）：coherent belief
（e）John likes chocolate．
．．．（partly）explains why ．．．
John wants to have chocolate．M．Montague（2007）
－Russellian analysis
Russell（1905）；Whitehead \＆Russell（1910）；Cresswell（1973）
（66）Denotations and their types

Category	Example	Type
Name	Ljubljana	e
Description	the capital of Slovenia	（e（st））（st）
Noun	city	$e(s t)$
1－place predicate	sleep	$e(s t)$
2－place predicate	eat	$e(e(s t))$
3－place predicate	give	$e(e(e(s t))$ ）
Sentence	It＇s raining	st
Quantified NP	everybody	（e（st））（st）
Determiner	no	$(e(s t))((e(s t))(s t))$ ）
Attitude verb	think	（st）（et）
Connective	or	（st）（（st）（st））

（67）How to Russell a Frege－Church
（a） $\mathcal{R}(\llbracket$ the capital of Slovenia is larger than Breitenholz】）
$=\mathcal{R}(\llbracket$ is larger than $\rrbracket) \mathcal{R}($ Breitenholz】 $)(\mathcal{R}(\llbracket$ the capital of Slovenia $\rrbracket)$
（b） $\mathcal{R}(\llbracket$ the capital of Slovenia $\rrbracket)=\lambda x^{\boldsymbol{e}}$ ．$\lambda w . x=\llbracket$ the capital of Slovenia』（w）
（c） $\mathcal{R}\left(\llbracket\right.$ Breitenholz】）$=\lambda x^{\boldsymbol{e}} . \lambda w \cdot x=\llbracket$ Breitenholz】（w）$\quad\left[=\lambda x^{e} \cdot \lambda w \cdot x=\right.$ Breitenholz $]$
（d） \mathcal{R}（【is larger than】）
$=\quad \lambda P^{\boldsymbol{e}} . \lambda Q^{\boldsymbol{e}} . \lambda w . \vdash(\forall x)(\forall y) P(x)(w) \times Q(x)(w) \leq$ 【is larger than $\rrbracket(w)(x)(y)$
－Relativity of Reference
（68a）$\|\boldsymbol{A}\|=\lambda w . \llbracket \boldsymbol{A} \rrbracket$ ，for lexical \boldsymbol{A}
Lewis（1974）
（b）$\|\boldsymbol{A} \boldsymbol{B}\|=\lambda w .\|\boldsymbol{A}\|(w) \oplus\|\boldsymbol{B}\|(w)$ ，if $\llbracket \boldsymbol{A} \boldsymbol{B} \rrbracket=\llbracket \boldsymbol{A} \rrbracket \oplus \llbracket \boldsymbol{B} \rrbracket$

（69a）【John thinks it＇s raining】

$=\mathrm{APP}^{e x t}\left(\mathrm{APP}^{i n t}(\llbracket\right.$ thinks】，【it＇s raining』），$\llbracket \mathrm{John} \rrbracket)$
NB：$\quad \operatorname{APP}^{e x t}(A, B)=\lambda w \cdot A(w)(B(w)) ; \operatorname{APP}^{i n t}(A, B)=\lambda w \cdot A(w)(B)$
（b）\｜John thinks it＇s raining $\|(w)$
$=\quad \mathrm{APP}^{e x t}(\|$ thinks it＇s raining $\|(w)$,$\| John \|(w))$
$=\quad \mathrm{APP}^{\text {ext }}\left(\mathrm{APP}^{\text {int }}(\|\right.$ thinks $\|(w),\| \mathbf{i t}$＇s raining $\|(w)), \|$ John $\left.\|(w)\right)$
$=\quad \mathrm{APP}^{\text {ext }}\left(\mathrm{APP}^{\text {int }}\right.$（【thinks】，$\llbracket$ it＇s raining $\left.\left.\rrbracket\right), \llbracket \mathrm{John} \rrbracket\right)$
$=\llbracket$ John thinks it＇s raining】
（70）$/ / \boldsymbol{A} / /=\pi(\llbracket \boldsymbol{A} \rrbracket)$ ，for lexical \boldsymbol{A}
Putnam（1980）
（b）$/ / \boldsymbol{A} \boldsymbol{B} / /=/ / \boldsymbol{A} / / \oplus / / \boldsymbol{B} / /$ ，if $\llbracket \boldsymbol{A} \boldsymbol{B} \rrbracket=\llbracket \boldsymbol{A} \rrbracket \oplus \llbracket \boldsymbol{B} \rrbracket$
（c）$\pi_{\boldsymbol{e}}: \boldsymbol{U} \rightarrow \boldsymbol{U}$ is a（non－trivial）bijection；$\pi_{\boldsymbol{s}}$ and $\pi_{\boldsymbol{t}}$ are identities on \boldsymbol{W} and $\{0,1\}$ ；
$\pi_{\boldsymbol{a} \boldsymbol{b}}$ maps any f of type $\boldsymbol{a b}$ to $\{(\pi x, \pi y) \mid f(x)=y\}$
（d）$/ / \boldsymbol{S} / /=\llbracket \boldsymbol{S} \rrbracket$ ，for any expression \boldsymbol{S}
．．．provided that all compositions \oplus are invariant
NB：\oplus is invariant iff $\pi(\oplus)=\oplus$ for all permutations π
－Further topics
－Externalism
－Attitudes de se
－Granularity

References

Buridanus, Johannes (1350): Sophismata. Stuttgart 1977.
Carnap, Rudolf (1947): Meaning and Necessity. Chicago/London.
Cresswell, Maxwell J. (1973): Logics and Languages. London.
Condoravdi, Cleo; Crouch, Dick; van den Berg, Martin (2001): ‘Preventing Existence'. In: Proceedings of the international conference on formal ontology in information systems. Ogunquit, Maine. 162-73.
Forbes, Graeme (2006): Attitude Problems. An Essay on Linguistic Intensionality. Oxford.
Frege, Gottlob (1891): Function und Begriff. Jena. [English translation: 'On Function and Concept'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 130-48]

- (1892): ‘Über Sinn und Bedeutung’. Zeitschrift für Philosophie und philosophische Kritik (NF) 100, 25-50. [English translation: 'On Sinn and Bedeutung'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 151-71]
Gallin, Daniel (1975): Intensional and Higher-order Modal Logic. Amsterdam.
Kaplan, David (1968): ‘Quantifying in'. Synthese 19 (1968), 178-214.
- (1975): 'How to Russell a Frege-Church’. Journal of Philosophy 72, 716-29.

Lewis, David K. (1974): ''Tensions'. In: M. K. Munitz \& P. K. Unger (eds.), Semantics and Philosophy. 49-62.
Meinong, Alexius (1904): Über Gegenstandstheorie. Leipzig.
Montague, Michelle (2007): ‘Against Propositionalism'. Noûs 41, 503-18.
Montague, Richard (1969): ‘On the Nature of Certain Philosophical Entities’. The Monist 53, 159-95.

- (1970): ‘Universal Grammar’. Theoria 36 (1970), 373-98.

Partee, Barbara (1987): ‘Noun Phrase Interpretation and Type Shifting Principles’. In: J. Groenendijk et al. (eds.), Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers. Dordrecht. 115-43.
Putnam, Hilary (1980): 'Models and Reality', Journal of Symbolic Logic 45, 464-82.
Quine, Willard Van Orman (1956): ‘Quantifiers and Propositional Attitudes’. Journal of Philosophy 53, 177-87.
Russell, Bertrand (1905): ‘On Denoting'. Mind 14, 479-93.
Schwarz, Florian. (2006): ‘On needing Propositions and looking for Properties'. In M. Gibson \& J. Howell (eds.), SALT XVI Conference Proceedings. Ithaca, NY. 259-76.
Szabó, Zoltan G. (2003): ‘Believing in Things'. Philosophy and Phenomenological Research LXVI, 584-611.
Whitehead, Alfred North; Russell, Bertrand (1905): Principia Mathematica. To *56. Cambridge.
Wittgenstein, Ludwig (1921): ‘Logisch-philosophische Abhandlung'. In: W. Ostwald (ed.), Annalen der Naturphilosophie, Vol. 14. 185-262 [Revised 'official version, with English translation: L.W., Tractatus logico-philosophicus / Logisch-philosophische Abhandlung. London 1922]

Zimmermann, Thomas Ede (1983): 'Notes on a Recent Textbook in Semantics'. Theoretical Linguistics 10, 65-79.

- (1993): ‘On the Proper Treatment of Opacity in Certain Verbs'. Natural Language Semantics $\mathbf{1}$ 149-79.
- (2001): ‘Unspecificity and Intensionality’. In: C. Féry \& W. Sternefeld (eds.), Audiatur Vox Sapientiae. Berlin. 514-33.
- (2006): 'Monotonicity in opaque verbs'. Linguistics and Philosophy 29, 715-61.

