Intensionality

ESSLLI 2011, Ljubljana

T. E. Zimmermann, Goethe University, Frankfurt, Germany

1. <u>H</u>	<u>loles in inference patterns</u>	
•	<u>Terms and identity</u>	
(1a)	31 is prime.	$\phi[31] [= P(\underline{31})]$
	The number of persons in this room is 31.	<i>n</i> = 31
÷	The number of persons in this room is prime.	$\varphi[n] [= P(\underline{n})]$
(b)	It is fact of elementary arithmetic that 31 prime.	
	The number of persons in this room is 31.	
÷	It is fact of elementary arithmetic that the number of persons in t	this room is prime.
(2a)	John's salary is higher than Mary's.	$\varphi[\underline{j},\underline{m}] [= s(\underline{j}) > s(m)]$
	John is the dean.	j = d
	Mary is the vice dean	m = v
<i>.</i> .	The dean's salary is higher than the vice dean's.	φ[<u><i>d</i></u> , <u><i>v</i></u>]
(b)	Bill knows that the dean's salary is higher than the vice dean's. John is the dean.	
	Mary is the vice dean.	_
÷	Bill knows that John's salary is higher than Mary's.	
•	Problems with existential quantification	
(3a)	Urs is a Swiss millionaire.	$\varphi[M] [= S(u) \And \underline{M}(u)]$
	All millionaires admire Scrooge McDuck.	$(\forall x) [M(x) \rightarrow A(x)]$
	[<u>Only millionaires admire Scrooge McDuck.]</u>	$(\forall x) [A(x) \rightarrow M(x)]$
<i>.</i> .	Urs is a Swiss admirer of Scrooge McDuck.	$\varphi[A] [= S(u) \& A(u)]$
	Urs is an alleged millionaire.	
	All millionaires admire Scrooge McDuck.	
	Only millionaires admire Scrooge McDuck.	
÷	Kim is an alleged admirer of Scrooge McDuck.	
(4a)	Paul is wearing a pink shirt with green sleeves. All pink shirts with green sleeves have striped collars and gold by	uttons.
	[Only pink shirts with green sleeves have striped collars and gold	buttons.]
<i>.</i> .	Paul is wearing a shirt with striped collars and gold buttons.	
(b)	Paul is looking for a pink shirt with green sleeves. All pink shirts with green sleeves have striped collars and gold by	uttons.
	Only pink shirts with green sleeves have striped collars and gold	buttons
÷	Paul is looking for a shirt with striped collars and gold buttons.	

- (5a) Susan is entering a restaurant on Main Street. <u>The only restaurants on Main Street are La Gourmande and Le Gourmet.</u>
- \therefore Susan is entering La Gourmande, or [Susan is entering] Le Gourmet.
- (b) Susan is looking for a restaurant on Main Street. <u>The only restaurants on Main Street are La Gourmande and Le Gourmet.</u>
- \therefore Susan is looking for La Gourmande, or [Susan is entering] Le Gourmet.
- (6a) <u>Paul is wearing a pink shirt with green sleeves.</u>
 ∴ There are pink shirts with green sleeves.
- (b) <u>Paul is looking for a pink shirt with green sleeves.</u>
- \odot $\;$ There are pink shirts with green sleeves.
- (7a) <u>There have never been any pictures of Lily.</u>
 ∴ It is not true that Pete showed Roger a picture of Lily.
- (b) <u>There have never been any pictures of Lily.</u>
 ∴ It is not true that Pete owed Roger a picture of Lily.
- 2. Extensions

<u>Compositionality</u>

Substitution Principle

If two non-sentential expressions of the same category have the same meaning, either may replace the other in all <u>positions</u> within any sentence without thereby affecting the truth conditions of that sentence.

Principle of Compositionality

The meaning of a complex expression functionally depends on the meanings of its immediate <u>parts</u> and the way in which they are combined:

(8)

- <u>Meaning as communicative function</u>
- *Extension*: [contribution to] reference
- Intension: [contribution to] informational content
- ...

• Basic extensions
(9a) **[Ljubljana]** = Ljubljana **[proper name]** = bearer
(b) **[the largest city in Slovenia]** = Ljubljana **[definite description]** = descriptee
(c) **[city]** = {London, Paris, Rome, Ljubljana, Frankfurt,...} = {x | x is a city}
[count noun] = set of representatives
(d) **[snore]** = {x | x snores} **[intransitive verb]** = set of satisfiers
(e) **[meet]** = {(x,y) | x meets y} **[transitive verb]** = set of satisfier pairs
(f) **[show]** = {(x,y,z) | x shows y to z} **[ditransitive verb]** = set of satisfier triples
(g) **[shows Joe]** = {(x,y) | x shows y to Joe} **[2-place predicate]** = set of satisfier pairs
(h) **[shows Joe the Vatican]** = {(x) | x shows the Vatican to Joe}
= {x | x shows the Vatican to Joe} **[1-place predicate]** = set of satisfiers
***** Parallelism between valency and type of extension
The extension of an *n*-place predicate is a set of *n*-tuples.
E.g. **[Silvio shows Joe the Vatican]** = {() | Silvio shows the Vatican to Joe}
= the set of objects of the form '()' such that Silvio shows the Vatican to Joe, i.e.:
[Silvio shows Joe the Vatican] =
$${((-)}$$
, if Silvio does show the Vatican to Joe
 \emptyset , otherwise
NB: () = \emptyset = 0; hence {()} = $\langle\emptyset\rangle$ = {0} = 1!
***** Frege's Generalization
The extension of a sentence **S** is its truth value i.e. 1 if **S** is true and 0 if **S** is false

1.e. 1 II S IS true and 0 II S IS faise.

Constructing contributing extensions (10a) *From:* ... to: [[*Exp*]]√ [[*Exp*]]√ $\llbracket LP \rrbracket$? $\llbracket RP \rrbracket \checkmark$ $\llbracket L \hat{P} \rrbracket \sqrt{ \llbracket R P \rrbracket} \sqrt{$ $\llbracket LP \rrbracket$ ($\llbracket RP \rrbracket$) = $\llbracket Exp \rrbracket$ (b)

(c)
$$\llbracket LP \rrbracket = \{ (\llbracket RP \rrbracket, \llbracket Exp \rrbracket) \mid Exp = LP + RP \}$$

(11a)

=

 $[[Nobody sleeps]] \checkmark [[Nobody talks]] \checkmark [[Nobody listens]] \checkmark$ $[nobody]? [sleeps] \lor [nobody]? [talks] \lor [nobody]? [listens] \lor$ (b) $[nobody] ([sleeps]) = [nobody sleeps] \Rightarrow [nobody] (S) = 1$ S: sleepers $[nobody] ([talks]) = [nobody talks] \Rightarrow [nobody] (T) = 0$ T: talkers $[nobody] ([listens]) = [nobody listens] \Rightarrow [nobody] (L) = 1$ L: hearers $[nobody] = \{(S,1), (T,0), (L,1), ...\}$ (c) $\{(Y, \vdash [[person]] \cap Y = \emptyset \dashv \mid Y \text{ is a (possible) predicate extension}\}$

$$= \lambda Y \vdash [[\mathbf{person}]] \cap Y = \emptyset \dashv$$

 $NB:\vdash \ldots \dashv :=$ the truth value that is 1 iff ...

(12a) $[\![no boy]\!] \checkmark [\![no girl]\!] \checkmark [\![no chair]\!] \checkmark$ $[no]? [boy] \checkmark [no]? [girl] \checkmark [no]? [chair] \checkmark$ (b) $\llbracket \mathbf{no} \rrbracket$ ($\llbracket \mathbf{boy} \rrbracket$) = $\lambda Y \vdash B \cap Y = \emptyset \dashv$ B: boys $\llbracket \mathbf{no} \rrbracket$ ($\llbracket \mathbf{girl} \rrbracket$) = $\lambda Y \vdash G \cap Y = \emptyset \dashv$ G: girls $\llbracket \mathbf{no} \rrbracket$ ($\llbracket \mathbf{city} \rrbracket$) = $\lambda Y \vdash C \cap Y = \emptyset \dashv$ C: cities $\llbracket \mathbf{no} \rrbracket = \lambda X. \ \lambda Y. \vdash X \cap Y = \emptyset \dashv$ (c) (13) $\llbracket every \rrbracket = \lambda X. \ \lambda Y. \vdash X \subseteq Y \dashv$ **[some]** = λX . λY . $\vdash X \cap Y \neq \emptyset \dashv$ $\llbracket \mathbf{one} \rrbracket = \lambda X. \ \lambda Y. \vdash |X \cap Y| = 1 \dashv$ |Z|: # of elements of Z (cardinality) $\llbracket \mathbf{most} \rrbracket = \lambda X. \ \lambda Y. \vdash |X \cap Y| > |X \setminus Y| \dashv$ (14a) $\llbracket \mathbf{Bill}_M \rrbracket = \lambda X. \vdash \mathrm{Bill} \in X \dashv$ cf. Montague (1970) $\llbracket \mathbf{the}_R \rrbracket = \lambda X. \ \lambda Y. \vdash |X| = 1 \& X \subseteq Y \dashv$ (b) cf. Russell (1905) **Extensional constructions** ٠ (15)**No girl likes Bill [[no girl]]([[likes Bill]]**) $[\lambda Y. \vdash G \cap Y = \emptyset \dashv] (\{x \mid x \text{ likes Bill}\})$

 $+ G \cap (\{x \mid x \text{ likes Bill}\} = \emptyset +$ [[likes Bill]] no girl **no (girl**) $[\lambda X. \lambda Y. \vdash X \cap Y = \emptyset \dashv] (G)$ $\{x \mid (x, [[Bill]]) \in [[likes]]\}$ = = $[\lambda Y + G \cap Y = \emptyset +]$ $\{x \mid x \text{ likes Bill}\}$ **[likes**] Bill [no] [[girl]] = Bill λX . λY . $\vdash X \cap Y = \emptyset \dashv$ G $\{(x,y) \mid x \text{ likes } y\}$

• <u>Extensional types</u>

(16)

U: domain of individuals characteristic function (of A rel. to U)

(17a) $A [\subseteq U] \simeq \lambda x. \vdash x \in A \dashv$ (b) $R [\subseteq U^2] \simeq \lambda x. \lambda y. \vdash (x,y) \in R \dashv \simeq$

 $R \ [\subseteq U^2] \simeq \lambda x. \ \lambda y. \vdash \ (x,y) \in R \ \dashv \simeq \lambda y. \ \lambda x. \vdash \ (x,y) \in R \ \dashv$

(c) $R [\subseteq U^3] \simeq \lambda z. \lambda y. \lambda x. \vdash (x,y,z) \in R \dashv$

(18) $x \text{ is of type } e \Leftrightarrow x \in U;$ $u \text{ is of type } t \Leftrightarrow u \in \{0,1\};$ $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

Category	Example	Extension	Type
Name	Ljubljana	Ljubljana [$\in U$]	е
Description	the capital of Slovenia	Ljubljana [$\in U$]	е
Noun	city	$C [\subseteq U]$	et
1-place predicate	sleep	$S[\subseteq U]$	et
2-place predicate	eat	⊆ U × U	et
3-place predicate	give	$\subseteq U \times U \times U$	e(et)
Sentence	It's raining	$0 \in \{0,1\}$]	t
Quantified NP	everybody	λY . \vdash [person] $\subseteq Y \dashv$	(et)t
Determiner	no	$\lambda X. \ \lambda Y. \vdash X \cap Y = \emptyset \dashv$	(et)((et)t)

(19) <i>Extensions</i>	and	their	types

3. Intensions

• Logical Space as a model of content

(20a) 4 fair coins are tossed.

- (b) At least one of the 4 tossed coins lands heads up.
- (c) At least one of the 4 tossed coins lands heads down.
- (d) Exactly 2 of the 4 tossed coins land heads up.
- (e) Exactly 2 of the 4 tossed coins land heads down.
- Carnap's Content

Carnap (1947)

Wittgenstein (1921)

characteristic function (of p rel. to W)

The *proposition* expressed by a sentence is the set of possible cases of which that sentence is true.

- (21a) 4 coins were tossed when John coughed.
- (b) 4 coins were tossed and no one coughed.
- IN Wittgenstein's Paradise

All (and only the) maximally specific cases (possible worlds) are members of a set *W* (aka *Logical Space*).

• <u>From propositions to intensions</u>

- (22) $p \subseteq W \simeq \lambda w \mapsto w \in p \dashv$
- (23) The *intension of* an expression is its extension relative to Logical Space: $\llbracket E \rrbracket : W \rightarrow \{x \mid x \text{ is of the "appropriate" type}\}$
- <u>Intensional types</u>
- Montagovian types
 - *x* is of type $e \Leftrightarrow x \in U$;
 - $u \text{ is of type } \boldsymbol{t} \Leftrightarrow u {\in} \{0, 1\};$

 $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

 $g \text{ is of type } (\boldsymbol{s}, c) \Leftrightarrow g \colon \boldsymbol{W} \to \{y \mid y \text{ is of type } c\}$

Two-sorted types

x is of type $e \Leftrightarrow x \in U$;

u is of type $t \Leftrightarrow u \in \{0,1\}$;

w is of type $s \Leftrightarrow w \in W$;

 $f \text{ is of type } (a,b) \Leftrightarrow f: \{x \mid x \text{ is of type } a\} \rightarrow \{y \mid y \text{ is of type } b\}$

• <u>Notation</u> $\llbracket \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \rrbracket^w = \llbracket \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \rrbracket(w)$ "Gallin (1975)"

Montague (1970)

4. Attitude reports

- <u>Substitution failure</u>
- (24) Fritz thinks that Hamburg is larger than Cologne. Hamburg is larger than Cologne.
 <u>Pfäffingen is larger than Breitenholz.</u>
- ·· Fritz thinks that Pfäffingen is larger than Breitenholz.

(27) \llbracket think \rrbracket (w^*)(p) \neq \llbracket think \rrbracket (w^*)(q)

(28) More expressions (of more types)

Category	Example	Extension	Type
Attitude verb	think	$\subseteq U imes \wp W$	(st)(et)
Connective	or	$\lambda u^{t} \cdot \lambda v^{t} \cdot u + v - (uv)$	t(tt)

See Fregean Compositionality

Frege (1892)

The extension of a complex expression functionally depends on the extensions or intensions of its immediate parts and the way in which they are combined:

$$\begin{bmatrix} ExtExp\\ IP & RP \end{bmatrix}^{w} = \llbracket LP \rrbracket^{w} \oplus \llbracket RP \rrbracket^{w} \qquad \begin{bmatrix} IntExp\\ IP & RP \end{bmatrix}^{w} = \llbracket LP \rrbracket^{w} \oplus \llbracket RP \rrbracket^{w}$$
 or:
$$\begin{bmatrix} IntExp\\ IP & RP \end{bmatrix}^{w} = \llbracket LP \rrbracket^{w} \oplus \llbracket RP \rrbracket$$
 [or ...]

... strengthens (by a uniformity condition):

Intensional compositionality

The <u>intension</u> of a complex expression functionally depends on the intensions of its immediate parts and the way in which they are combined:

$$\begin{bmatrix} ArbExp\\ LP RP \end{bmatrix} = \llbracket LP \rrbracket \oplus \llbracket RP \rrbracket$$

... and gives rise to the:

Distinction between extensional and intensional constructions

A (binary) construction *Exp* (understood as the family of expressions of the Form $Exp_i = \mathcal{P}(LP_i, RP_i)$, for some syntactic operation \mathcal{P}) is *extensional* iff there is a (binary) function $\oplus_{\mathcal{P}}$ such that, for any world w (and all i):

$$\llbracket \boldsymbol{E} \boldsymbol{x} \boldsymbol{p}_i \rrbracket^w = \llbracket \boldsymbol{L} \boldsymbol{P}_i \rrbracket^w \oplus_{\boldsymbol{\varphi}} \llbracket \boldsymbol{R} \boldsymbol{P}_i \rrbracket^w$$

(b)

- (31) **[Fritz thinks that Hamburg is larger than Cologne]** $(w^*) = 1$
- $\Leftrightarrow \quad \neg (\exists w \in \Diamond) \ \llbracket s \rrbracket \ (w) = 0$
- $\Leftrightarrow \quad (\forall w \in \Diamond) \quad [S] \quad (w) = 1 \qquad \qquad \Leftrightarrow \mathrm{IV} = \emptyset$

(32) \diamondsuit depends on

- ... attitude subject (Fritz)
- ... world of evaluation: w^*
- ... lexical meaning of verb: think
- $\Rightarrow \quad \diamondsuit = \mathbf{Dox}(\operatorname{Fritz})(w^*) \subseteq \mathbf{W}$
- ≈ **Dox** is of type e(s(st))

(dependent) accessibility relation

(35a) [#] Fritz knows that Breitenholz is larger than Pfäffingen.

- (b) $(\forall w^*) (\forall p^{st}) (\forall x^e) \llbracket \mathbf{know} \rrbracket (w^*)(p)(x) \le p(w^*)$
- (c) $(\forall w^*) (\forall x^e) Epi(x)(w^*)(w^*) = 1$

(36a) [#] Fritz knows that Rome is in Italy, but he doesn't think so.

- (b) $(\forall w^*) (\forall p^{st}) (\forall x^e) \llbracket \mathbf{know} \rrbracket (w^*)(p)(x) \leq \llbracket \mathbf{think} \rrbracket (w^*)(p)(x)$
- (c) $(\forall w^*) (\forall w) (\forall x^e) Dox(x)(w^*)(w) \le Epi(x)(w^*)(w)$

(37a) * Fritz wants that Fritz meets Eike.

5. Unspecific Objects

• <u>Paraphrases</u>

- (39a) John is looking for a sweater.
- (b) John wants to find a sweater.
- (40a) Mary owes me a horse.
- (b) Mary is obliged to give me a horse.

(41a) This horse resembles a unicorn.

(b) This horse could (almost) be a unicorn.

Quine (1956)

• <u>Relational analyses</u>

(43a) John is looking for most unicorns.

- (b) $(\forall w) Bou(x)(w^*)(w) \le \vdash \text{ in } w, \#(\text{unicorns } x \text{ finds}) > \#(\text{unicorns } x \text{ doesn't find}) \dashv)$
- (c) John wants to find most unicorns.

(44a) John is looking for each unicorn.

- (b) $(\forall w)$ *Bou*(*x*)(*w**)(*w*) $\leq \vdash$ in *w*, John finds each unicorn \dashv)
- (c) John wants to find each unicorn.

(45a) John is looking for no unicorn.

- (b) $(\forall w)$ *Bou*(*x*)(*w**)(*w*) $\leq \vdash$ in *w*, John doesn't find a unicorn \dashv)
- (c) John wants to find no unicorn.

(46a) An intension Q of type *s((et)t)* is *existential* iff

$$Q = \lambda w. \ \lambda Y^{et}. \vdash (\exists x) \left[P(w)(x) = Y(x) = 1 \right] \dashv$$

for some intension *P* of ('property') type *s(et)*.

(b)

Partee (1987)

 $\lambda P^{s(et)}$. λw . λY^{e} . $\vdash (\exists x) [P(w)(x) = Y(x) = 1] \dashv$ is a one-one mapping (called *A*) whose inverse (called *BE*) is:

 $\lambda Q^{s((et)t)}$. $\lambda w. \lambda x^{e}$. $Q(\lambda y^{e}. \vdash x = y \dashv)$.

(47) **[look-for]**
$$(w^*)$$
 Zimmermann (1993)
= $\lambda P^{s(et)}$. λx^e . $\vdash (\forall w) Bou(x)(w^*)(w) \leq \vdash (\exists y^e)$ in $w, P(y) = 1$ & x finds $y \dashv$

(48) I owe you a horse.

... John is looking for a Slovenian student.

 $\| \mathbf{i}^{s-\text{looking for }} \| \mathbf{\lambda} y^{s^{((el)l)}} \cdot \lambda x^{s^{*}} \cdot (\forall w) \mathbf{Bou}(x)(w^{*})(w) \le Q(w)(\lambda y^{s} \cdot \mathbf{h} \text{ in } w, x \text{ finds } y) + \lambda w, \lambda Y^{s^{*}} \cdot Y(z) = 1$

Buridanus (1350)

• <u>More paraphrases</u>

(51a) John is looking for a sweater.

- (b) John wants to find a sweater.
- (c) John is looking for an intentional sweater.

(52a) Mary owes me a horse.

- (b) Mary is obliged to give me a horse.
- (c) Mary owes me an arbitrary horse.

(53a) Jones hired an assistant.

- (b) This horse could (almost) be a unicorn.
- (c) This horse resembles a generic unicorn.

(53a) This horse resembles a unicorn.

- (b) Jones saw to it that someone would become an/his assistant.
- (c) Jones hired a would-be assistant.

(55a) $e^+ = s(et)$

Condoravdi et al. (2001)

- (b) $\llbracket \mathbf{sweater}^+ \rrbracket (w^*) = \lambda P^{\mathbf{s}(\mathbf{e}t)}$. $\vdash (\forall w) (\forall x^\mathbf{e}) P \sqsubseteq \llbracket \mathbf{sweater} \rrbracket \dashv$
- (c) [look-for] (w^*) Zimmermann (2006): 'exact match'
- $= \lambda P^{\boldsymbol{s(et)}} \cdot \lambda x^{\boldsymbol{e}} \cdot \vdash (\forall w) [\boldsymbol{Bou}(x)(w^*)(w) \leftrightarrow (\exists y^{\boldsymbol{e}}) \text{ in } w, P(y) = 1 \& x \text{ finds } y] \dashv$

 $\underline{\text{Notation}}: P \sqsubseteq Q :\Leftrightarrow (\forall w) \ (\forall x^{e}) \ P(w)(x) \leq Q(w)(x)$

 ${\it sub-concepthood}$

• Monotonicity

(56a) John is a looking for a red sweater.

- ... John is looking for a sweater.
- (b) John is looking for a sweater. Mary is looking for a book.
- \because John is looking for something Mary is looking for.

Intersective construal (for simplicity): $[\![red sweater]\!] = [\![sweater]\!] \sqcap [\![red]\!]$ Notation: $P \sqcap Q := \lambda w. \lambda x^e$. P(w)(x) = Q(w)(x) = 1

(57) Relational analyses (with lexical decomposition)

- (a) $(\forall w) \operatorname{Bou}(\operatorname{John})(w^*)(w) \leq \vdash (\exists y^e) [\operatorname{in} w, y \text{ is a sweater & } y \text{ is red & John finds } y] \dashv$
- $\Rightarrow \quad (\forall w) \operatorname{\textit{Bou}}(\operatorname{John})(w^*)(w) \leq \vdash (\exists y^e) [\operatorname{in} w, y \text{ is a sweater & John finds } y] \dashv$
- (b) $[(\forall w) Bou(John)(w^*)(w) \le \vdash (\exists y^e) [in w, y is a sweater & John finds y] \dashv$
- & $(\forall w) \operatorname{\textit{Bou}}(\operatorname{Mary})(w^*)(w) \le \vdash (\exists y^e) [in w, y is a book & Mary finds y] \dashv] \dots$
- quantifier analysis e.g. $Q \equiv \lambda w.\lambda P. P=P$:
- $\dots \Rightarrow (\exists Q^{s((et)t)}) [[look-for]] (w^*)(Q)(Mary) \& [look-for]] (w^*)(Q)(John)]$
- property analysis e.g. $Q \equiv \lambda w.\lambda P. P=P$:
- $\ldots \Rightarrow (\exists P^{s(et)}) [[look-for]] (w^*)(P)(Mary) \& [look-for]] (w^*)(P)(John)]$
- $(58) \ Quantificational \ analysis \ (with \ exact \ match)$
- (a) $(\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket \sqcap \llbracket red \rrbracket)(\forall w) \llbracket Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- $\Rightarrow \quad (\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket) (\forall w) [Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- (b) $[(\exists P^{s(et)} \sqsubseteq \llbracket sweater \rrbracket)(\forall w)[Bou(j)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& j \text{ finds } y]$
- & $(\exists P^{s(et)} \sqsubseteq \llbracket book \rrbracket)(\forall w)[Bou(m)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& m \text{ finds } y]]$
- $\neq > \quad (\exists P^{s(et)})(\forall w)[Bou(m)(w^*)(w) \leftrightarrow (\exists y^e) \text{ in } w, P(y)=1 \& m \text{ finds } y]$

...& [$\textbf{Bou}(j)(w^*)(w) \leftrightarrow (\exists y^{e})$ in w, P(y)=1 & j finds y]

 $\equiv (\exists P^{s(et)}) [[look-for]] (w^*)(P)(Mary) \& [look-for]] (w^*)(P)(John)]$

• <u>Unspecificity</u> \Rightarrow <u>Intensionality</u>?

Zimmermann (1983; 2001)

Rooth (p.c., anno 1991)

- (59) Arnim owns a bottle of 1981 Riesling-Sylvaner.
 <u>Riesling-Sylvaner is Müller-Thurgau.</u>
 Arnim owns a bottle of 1981 Müller-Thurgau.
- (60) Arnim owns the bottle that Franzis does not own.
- (a) $[the] (w^*) ([bottle Franzis doesn't own])(w^*)$

 $(\lambda y^{e}. \quad [own]] \quad (w^{*}) \quad (\lambda Y^{et}. \quad Y(y)) (Arnim)$

 \leq $\vdash (\exists y^{e}) [[bottle]] (w^{*})(y) = [lown]] (w^{*})(\lambda Y^{et}, Y(y))(Arnim) = 1] \dashv$

- (b) $[own] (w^*) ([the] (w^*) ([bottle Franzis doesn't own])(w^*))(Arnim)$
- \leq [own] (w*) ([the] (w*)([unicorn])(w*))(Arnim)

(in given scenario)

• <u>Landscape of intensional verbs</u>

н

(61)

VERBS OF	EXAMPLES
Absence	avoid, lack, omit
Anticipation	allow [*] (for), anticipate, expect, fear, foresee, plan, wait [*] (for)
Calculation	calculate, compute, derive
Creation	assemble, bake, build, construct, fabricate, make (these verbs in progressive aspect only)
Depiction	caricature, draw, imagine, portray, sculpt, show, visualize, write* (about)
Desire	hope* (for), hunger* (for), lust* (after), prefer, want
Evaluation	admire, disdain, fear, respect, scorn, worship (verbs whose corresponding noun can fill the gap in the evaluation 'worthy of _' or 'merits_')
Requirement	cry out* (for), demand, deserve, merit, need, require
Search	hunt [*] (for), look [*] (for), rummage about [*] (for), scan [*] (for), seek
Similarity	imitate, be reminiscent* (of), resemble, simulate
Transaction	buy, order, owe, own, reserve, sell, wager

Forbes (2006: 50) Schwarz (2006)

(62a) Matt needed some change before the conference.

- (b) Matt was looking for some change before the conference.
- (63a) Matt needs most of the small bills that were in the cash-box.
- (b) Matt is looking for most of the small bills that were in the cash-box.

<u>Existential Impact</u>⁵ From x Rs an N infer: There is at least one N.

<u>Extensionality⁶</u> From x Rs an N, Every N is an M, and Every M is an N infer: x Rs an M.

Specificity

From x Rs an N infer: Some (specific) individual is Red by x.

- 5. <u>General topics</u>
- **Propositionalism** Forbes (2000; 2006); M. Montague (2007) (P) All (linguistic, mental, perceptual, pictorial,...) content is propositional. (Q) All intensional contexts are parts of embedded clauses. Quine (1956) (65a) $[[\text{Hesperus is a planet}]] \neq [[\text{Phosphorus is a planet}]]$ Frege (1892) **[**Hesperus**]** ≠ **[**Phosphorus**]** ⇒ non-propositional content (b) The thirsty man wants beer. Meinong (1904): intentional object Jones worships a Greek goddess. R. Montague (1969) [crediting H. Kamp] (c) Lex Luthor fears Superman (but not Clark Kent). (d) Forbes (2000) Horatio believes that things Horatio doesn't believe in exist. (e) Szabó (2003): coherent belief John likes chocolate. (e) ... (partly) explains why ...
- John wants to have chocolate. M. Montague (2007)
- Russellian analysis Russell (1905); Whitehead & Russell (1910); Cresswell (1973)
- (66) Denotations and their types

Category	Example	Type
Name	Ljubljana	e
Description	the capital of Slovenia	(e(st))(st)
Noun	city	e(st)
1-place predicate	sleep	e(st)
2-place predicate	eat	<i>e(e(st))</i>
3-place predicate	give	<i>e(e(e(st)))</i>
Sentence	It's raining	st
Quantified NP	everybody	(e(st))(st)
Determiner	no	(e(st))((e(st))(st)))
Attitude verb	think	(st)(et)
Connective	or	(st)((st)(st))

(67) How to Russell a Frege-Church

- Kaplan (1975)
- (a) $\mathcal{R}($ [[the capital of Slovenia is larger than Breitenholz]])
- = $\mathcal{R}([slarger than]) \mathcal{R}([Breitenholz]) (\mathcal{R}([the capital of Slovenia]))$

- $\mathcal{R}($ [[the capital of Slovenia]] $) = \lambda x^{e} \cdot \lambda w \cdot x =$ [[the capital of Slovenia]] (w)(b)
- $\mathcal{R}(\llbracket \mathbf{Breitenholz} \rrbracket) = \lambda x^{\boldsymbol{e}} \cdot \lambda w \cdot x = \llbracket \mathbf{Breitenholz} \rrbracket(w) \qquad [= \lambda x^{\boldsymbol{e}} \cdot \lambda w \cdot x = \mathbf{Breitenholz}]$ (c)
- $\mathcal{R}($ [is larger than]) (d)
- λP^{e} . λQ^{e} . λw . $\vdash (\forall x) (\forall y) P(x)(w) \times Q(x)(w) \leq [[is larger than]] (w)(x)(y)$ =
- Relativity of Reference ٠
- (68a) $||\mathbf{A}|| = \lambda w$. $[\![\mathbf{A}]\!]$, for lexical \mathbf{A}
- $||\mathbf{A}\mathbf{B}|| = \lambda w. ||\mathbf{A}||(w) \oplus ||\mathbf{B}||(w), \text{ if } [|\mathbf{A}\mathbf{B}|] = [|\mathbf{A}|] \oplus [|\mathbf{B}|]$ (b)

(69a) **[John thinks it's raining]**

- $APP^{ext}(APP^{int}(\| \mathbf{thinks} \|, \| \mathbf{it's raining} \|), \| \mathbf{John} \|)$ =
- NB: APP^{*ext*}(*A*,*B*) = λw . *A*(*w*)(*B*(*w*)); APP^{*int*}(*A*,*B*) = λw . *A*(*w*)(*B*)
- ||John thinks it's raining||(w)(b)
- $APP^{ext}(|| thinks it's raining||(w),||John ||(w))$ =
- $APP^{ext}(APP^{int}(|| thinks||(w),|| it's raining||(w)),|| John||(w))$ =
- $APP^{ext}(APP^{int}(\| \mathbf{thinks} \| , \| \mathbf{it's raining} \|), \| \mathbf{John} \|)$ =
- [John thinks it's raining] =
- (70) $//A// = \pi(\llbracket A \rrbracket)$, for lexical A
- $||A B|| = ||A|| \oplus ||B||$, if $[A B]] = [A]] \oplus [B]$ (b)
- $\pi_{e}: U \rightarrow U \text{ is a (non-trivial) bijection; } \pi_{s} \text{ and } \pi_{t} \text{ are identities on } W \text{ and } \{0,1\};$ (c) π_{ab} maps any f of type ab to {($\pi x, \pi y$) | f(x) = y}
- ||S|| = [S], for any expression S(d)
 - ... provided that all compositions \oplus are invariant
- NB: \oplus is invariant iff $\pi(\oplus) = \oplus$ for all permutations π
- *Further topics*
- Externalism
- Attitudes de se
- Granularity

Putnam (1980)

Lewis (1974)

References

- Buridanus, Johannes (1350): Sophismata. Stuttgart 1977.
- Carnap, Rudolf (1947): Meaning and Necessity. Chicago/London.
- Cresswell, Maxwell J. (1973): Logics and Languages. London.
- Condoravdi, Cleo; Crouch, Dick; van den Berg, Martin (2001): 'Preventing Existence'. In: *Proceedings* of the international conference on formal ontology in information systems. Ogunquit, Maine. 162–73.
- Forbes, Graeme (2006): Attitude Problems. An Essay on Linguistic Intensionality. Oxford.
- Frege, Gottlob (1891): Function und Begriff. Jena. [English translation: 'On Function and Concept'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 130–48]
- (1892): 'Über Sinn und Bedeutung'. Zeitschrift für Philosophie und philosophische Kritik (NF) 100, 25–50. [English translation: 'On Sinn and Bedeutung'. In: M. Beaney (ed.), The Frege Reader. Oxford 1997. 151–71]
- Gallin, Daniel (1975): Intensional and Higher-order Modal Logic. Amsterdam.
- Kaplan, David (1968): 'Quantifying in'. Synthese 19 (1968), 178–214.
- (1975): 'How to Russell a Frege-Church'. Journal of Philosophy 72, 716–29.
- Lewis, David K. (1974): "Tensions'. In: M. K. Munitz & P. K. Unger (eds.), Semantics and Philosophy. 49–62.
- Meinong, Alexius (1904): Über Gegenstandstheorie. Leipzig.
- Montague, Michelle (2007): 'Against Propositionalism'. Noûs 41, 503–18.
- Montague, Richard (1969): 'On the Nature of Certain Philosophical Entities'. The Monist 53, 159–95.
- (1970): 'Universal Grammar'. Theoria **36** (1970), 373–98.
- Partee, Barbara (1987): 'Noun Phrase Interpretation and Type Shifting Principles'. In: J. Groenendijk et al. (eds.), Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers. Dordrecht. 115–43.
- Putnam, Hilary (1980): 'Models and Reality', Journal of Symbolic Logic 45, 464-82.
- Quine, Willard Van Orman (1956): 'Quantifiers and Propositional Attitudes'. *Journal of Philosophy* **53**, 177–87.
- Russell, Bertrand (1905): 'On Denoting'. Mind 14, 479-93.
- Schwarz, Florian. (2006): 'On *needing* Propositions and *looking* for Properties'. In M. Gibson & J. Howell (eds.), *SALT XVI Conference Proceedings*. Ithaca, NY. 259–76.
- Szabó, Zoltan G. (2003): 'Believing in Things'. *Philosophy and Phenomenological Research* LXVI, 584–611. Whitehead, Alfred North; Russell, Bertrand (1905): *Principia Mathematica. To* *56. Cambridge.
- Wittgenstein, Ludwig (1921): 'Logisch-philosophische Abhandlung'. In: W. Ostwald (ed.), Annalen der Naturphilosophie, Vol. 14. 185–262 [Revised 'official version, with English translation:
 - L.W., Tractatus logico-philosophicus / Logisch-philosophische Abhandlung. London 1922]
- Zimmermann, Thomas Ede (1983): 'Notes on a Recent Textbook in Semantics'. *Theoretical Linguistics* 10, 65–79.
- (1993): 'On the Proper Treatment of Opacity in Certain Verbs'. Natural Language Semantics 1 149–79.
- (2001): 'Unspecificity and Intensionality'. In: C. Féry & W. Sternefeld (eds.), Audiatur Vox Sapientiae. Berlin. 514–33.
- (2006): 'Monotonicity in opaque verbs'. Linguistics and Philosophy 29, 715-61.