Quantification over alternative intensions

Thomas Ede Zimmermann*

(1) Only Mary is asleep.
(2) $\quad(\forall p)\left[\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{S}(x)\right] \rightarrow p={ }^{\wedge} \mathbf{S}(\mathbf{m})\right]$
(3) $\quad(\forall x)[\mathbf{S}(x) \rightarrow x=\mathbf{m}]$
(4) $\quad(\forall x)\left[x \neq \mathbf{m} \rightarrow^{\wedge} \mathbf{S}(x) \not{ }^{\wedge} \mathbf{S}(\mathbf{m})\right]$
(5) $\quad(\forall x)(\forall y)\left[x \neq y \rightarrow^{\wedge} \mathbf{S}(x) \neq{ }^{\wedge} \mathbf{S}(y)\right]$
(6) a. John only meets MARY.
b. $\quad(\forall p)\left[\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{M}(\mathbf{j}, x)\right] \rightarrow p={ }^{\wedge} \mathbf{M}(\mathbf{j}, \mathbf{m})\right]$
c. $\quad\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(\forall y_{1}\right)\left(\forall y_{2}\right)\left[\left(x_{1}, x_{2}\right) \neq\left(y_{1}, y_{2}\right) \rightarrow^{\wedge} \mathbf{M}\left(x_{1}, x_{2}\right) \not{ }^{\wedge} \mathbf{M}\left(y_{1}, y_{2}\right)\right]$
(7) a. John only introduces MARY to Sue.
b. $\quad(\forall p)\left[\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{I}(\mathbf{j}, x, \mathbf{s})\right] \wedge \rightarrow p={ }^{\wedge} \mathbf{I}(\mathbf{j}, \mathbf{m}, \mathbf{s})\right]$
c. $\quad\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(\forall x_{3}\right)\left(\forall y_{1}\right)\left(\forall y_{2}\right)\left(\forall y_{3}\right)\left[\left(x_{1}, x_{2}, x_{3}\right) \neq\left(y_{1}, y_{2}, y_{3}\right) \rightarrow\right.$

$$
\left.{ }^{\wedge} \mathbf{I}\left(x_{1}, x_{2}, x_{3}\right) \neq{ }^{\wedge} \mathbf{I}\left(y_{1}, y_{2}, y_{3}\right)\right]
$$

(8) a. Only Mary is both drunk and asleep.
b. $\quad(\forall p)\left[\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge}[\mathbf{D}(x) \wedge \mathbf{S}(x)]\right] \rightarrow p={ }^{\wedge}[\mathbf{D}(\mathbf{m}) \wedge \mathbf{S}(\mathbf{m})]\right]$
c. $\quad(\forall x)(\forall y)\left[x \neq y \rightarrow^{\wedge}[\mathbf{D}(x) \wedge \mathbf{S}(x)] \not{ }^{\wedge}[\mathbf{D}(y) \wedge \mathbf{S}(y)]\right]$
(9) a. John only knows that MARY knows that Harry introduces Bill to Sue.
b. $\quad(\forall p)\left[\left[{ }^{\wedge} p \wedge(\exists x) p={ }^{\wedge} \mathbf{K}\left(\mathbf{j},{ }^{\wedge} \mathbf{K}\left(x,{ }^{\wedge} \mathbf{I}(\mathbf{h}, \mathbf{b}, \mathbf{s})\right)\right)\right] \rightarrow\right.$

$$
\left.p={ }^{\wedge} \mathbf{K}(\mathbf{j}, \wedge \mathbf{K}(\mathbf{m}, \wedge \mathbf{I}(\mathbf{h}, \mathbf{b}, \mathbf{s})))\right]
$$

c. $\quad\left(\forall x_{1}\right) \ldots\left(\forall x_{5}\right)\left(\forall y_{1}\right) \ldots\left(\forall y_{5}\right)\left[\left(x_{1}, \ldots, x_{5}\right) \neq\left(y_{1}, \ldots, y_{5}\right) \rightarrow\right.$
$\left.{ }^{\wedge} \mathbf{K}\left(x_{1},{ }^{\wedge} \mathbf{K}\left(x_{2}, \wedge \mathbf{I}\left(x_{3}, x_{4}, x_{5}\right)\right)\right) \not \neq^{\wedge} \mathbf{K}\left(y_{1}, \wedge \mathbf{K}\left(y_{2},{ }^{\wedge} \mathbf{I}(y 3, y 4, y 5)\right)\right)\right]$
(10) $\lambda x .[\mathbf{D}(x) \wedge \mathbf{S}(x)]$
$\lambda x_{5} \cdot \lambda x_{4} \cdot \lambda x_{3} \cdot \lambda x_{2} \cdot \lambda x_{1} \cdot \mathbf{K}\left(x_{1}, \wedge \mathbf{K}\left(x_{2}, \wedge \mathbf{I}\left(x_{3}, x_{4}, x_{5}\right)\right)\right)$
(12)

$$
\begin{equation*}
(\forall \vec{x})(\forall \vec{y})\left[\vec{x} \neq \vec{y} \rightarrow\left[{ }^{\wedge} R \overrightarrow{\{x\}}\right] \neq\left[{ }^{\wedge} R \overrightarrow{\{y\}}\right]\right] \tag{11}
\end{equation*}
$$

* HAPPY BIRTHDAY, MANFRED!
(13) $\quad(\forall X) \diamond[\mathbf{S}=X]$

$$
\begin{equation*}
(\forall S)[[\neg(\exists x)(\exists y)[S(x, y, x) \vee S(x, y, y)]] \rightarrow \diamond[\mathbf{I}=S]] \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
(\forall X) \diamond[\lambda x .[\mathbf{D}(x) \wedge \mathbf{S}(x)=X]] \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
(\forall R)[[\neg(\exists x) R(x, x)] \rightarrow \diamond[\mathbf{M}=R]] \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
(\forall T) \diamond\left[\left[\lambda x_{5} \cdot \lambda x_{4} \cdot \lambda x_{3} \cdot \lambda x_{2} \cdot \lambda x_{1} \cdot \mathbf{K}\left(x_{1}, \wedge \mathbf{K}\left(x_{2},{ }^{\wedge} \mathbf{I}\left(x_{3}, x_{4}, x_{5}\right)\right)\right)\right]=T\right] \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
(\forall x)(\forall p)\left[\mathbf{K}(x, p) \rightarrow{ }^{\vee} p\right] \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
(\forall A)\left[\left[\neg(\exists x)(\exists p)\left[A(x, p) \wedge \neg \diamond^{\vee} p\right]\right] \rightarrow \diamond[\mathbf{K}=A]\right] \tag{19}
\end{equation*}
$$

3
(20) \quad For any $X \subseteq D$, there is a $\mathscr{K}_{0}-$ model $\mathfrak{M}=\left(D, W, F_{\mathfrak{M}}\right)$ and a world $w \in W$ such that:

$$
\begin{equation*}
\cdot F_{\mathfrak{M}}(\mathbf{S})(w)=X \tag{21}
\end{equation*}
$$

a. For any $R \subseteq D^{2}$ there is a \mathscr{K}_{0}-model $\mathfrak{M}=\left(D, W, F_{\mathfrak{M}}\right)$ and a world $w \in W$ such that:
$-F_{\mathfrak{M}}(\mathbf{M})(w)=R$.
b. For any $S \subseteq D^{3}$ there is a \mathscr{K}_{0}-model $\mathfrak{M}=\left(D, W, F_{\mathfrak{M}}\right)$ and a world $w \in W$ such that:
${ }^{-} F_{\mathfrak{M}}(\mathbf{I})(w)=S$.
a. $\quad \neg(\exists x) \mathbf{M}(x, x)$
b. $\quad \neg(\exists x)(\exists y)[\mathbf{I}(x, y, x) \vee \mathbf{I}(x, y, y)]$
a. For any irreflexive $R \subseteq D^{2}$ there's is a \mathscr{K}_{1}-model $\mathfrak{M}=\left(D, W, F_{\mathfrak{M}}\right)$ and a world $w \in W$ such that:

- $F_{\mathfrak{M}}(\mathbf{M})(w)=R$.
b. For any irreflexive $S \subseteq D^{3}$ there's is a \mathscr{K}_{1}-model $\mathfrak{M}=\left(D, W, F_{\mathfrak{M}}\right)$ and a world $w \in W$ such that:
${ }^{-} F_{\mathfrak{M}}(\mathbf{I})(w)=S$.
$\left\{\varphi \mid \mathfrak{M} \models_{w} \varphi\right\}=\left\{\varphi \mid \mathfrak{M}^{*} \models_{w *} \varphi\right\}$
Mary is asleep.
a. $\quad \mathfrak{M}_{0} \not \vDash_{w} \mathbf{S}(\mathbf{m})$, for any \mathfrak{M}_{0}-world w;
b. $\quad \mathfrak{M}_{1}={ }_{w^{\prime}} \mathbf{S}(\mathbf{m})$, for some \mathfrak{M}_{1}-world w^{\prime}.
a. $\quad \mathfrak{M}_{0}=_{w} \neg \diamond \mathbf{S}(\mathbf{m})$
b. $\quad \mathfrak{M}_{1}=_{w^{\prime}} \diamond \mathbf{S}(\mathbf{m})$
a. $\quad \mathfrak{M}^{*} \models \models_{w_{0}} \neg \diamond \mathbf{S}(\mathbf{m})$

Quantification over alternative intensions

> b. $\quad \mathfrak{M}^{*} \not \vDash_{w_{1}} \diamond \mathbf{S}(\mathbf{m})$
> $\mathfrak{M}^{*}=_{w^{*}}[[\neg \diamond \mathbf{S}(\mathbf{m})] \wedge \diamond \mathbf{S}(\mathbf{m})]$

4
$(\forall \vec{x})(\forall \vec{y})\left[\vec{x} \neq \vec{y} \rightarrow\left[{ }^{\wedge} R\{\vec{x}\}\right] \neq[\wedge R\{\vec{y}\}]\right] \quad[=(12)]$
$(\forall R)(\forall \vec{x})(\forall \vec{y})\left[\vec{x} \neq \vec{y} \rightarrow\left[{ }^{\wedge} R\{\vec{x}\}\right] \neq\left[{ }^{\wedge} R\{\vec{y}\}\right]\right]$
$(\forall R)\left[\wp(R) \rightarrow(\forall \vec{x})(\forall \vec{y})\left[\vec{x} \neq \vec{y} \rightarrow^{\wedge} R\{\vec{x}\} \neq \wedge R\{\vec{y}\}\right]\right]$
Only three is an odd number.

$$
\begin{align*}
& (\forall x)[\mathbf{O}(x) \rightarrow x=\mathbf{3}] \tag{34}\\
& \left.(\forall p)\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{O}(x)\right] \rightarrow p={ }^{\wedge} \mathbf{O}(\mathbf{3})\right]
\end{align*}
$$

Only Mary is one of John and Mary and exactly as tall as either one.

$$
\begin{equation*}
(\forall p)\left[\left[^{\vee} p \wedge(\exists x) p=\wedge[[x=\mathbf{j} \vee x=\mathbf{m}] \wedge(\forall y)[[y=\mathbf{j} \vee y=\mathbf{m}] \rightarrow \mathbf{h}(x)=\right.\right. \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\left.\mathbf{h}(y)]]] \rightarrow p={ }^{\wedge}[[\mathbf{m}=\mathbf{j} \vee \mathbf{m}=\mathbf{m}] \wedge(\forall y)[[y=\mathbf{j} \vee y=\mathbf{m}] \rightarrow \mathbf{h}(\mathbf{m})=\mathbf{h}(y)]]\right] \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\left.(\forall p)\left[{ }^{\vee} p \wedge p=p_{\mathbf{j} \approx \mathbf{m}}\right] \rightarrow p=p_{\mathbf{j} \approx \mathbf{m}}\right] \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\left[(\forall p)\left[\left[^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{S}(x)\right] \rightarrow p=\wedge \mathbf{S}(\mathbf{m})\right] \wedge \mathbf{S}(\mathbf{m})\right] \tag{40}
\end{equation*}
$$

$$
\equiv \quad\left[(\forall p)\left[\vee^{\vee} p \wedge(\exists x) p=\wedge \mathbf{S}(x)\right] \leftrightarrow p=\wedge \mathbf{S}(\mathbf{m})\right]
$$

$$
\begin{equation*}
[(\forall x)[\mathbf{S}(x) \rightarrow x=\mathbf{m}] \wedge \mathbf{S}(\mathbf{m})] \tag{41}
\end{equation*}
$$

$\equiv \quad(\forall x)[\mathbf{S}(x) \leftrightarrow x=\mathbf{m}]$

$$
(\forall x)[\mathbf{S}(x) \leftrightarrow x=\mathbf{m}]
$$

$$
\begin{equation*}
(\forall x)[\mathbf{O}(x) \leftrightarrow x=\mathbf{3}] \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
(\forall p)\left[\left[^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{O}(x)\right] \leftrightarrow p={ }^{\wedge} \mathbf{O}(\mathbf{3})\right] \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
(\forall x)[[x=\mathbf{j} \vee x=\mathbf{m}] \wedge(\forall y)[[[y=\mathbf{j} \vee y=\mathbf{m}] \rightarrow \mathbf{h}(x)=\mathbf{h}(y)] \rightarrow x=\mathbf{m}]] \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\left[(\forall p)\left[\left[{ }^{\vee} p \wedge p=p_{\mathbf{j} \approx \mathbf{m}}\right] \rightarrow p=p_{\mathbf{j} \approx \mathbf{m}}\right] \wedge\right. \tag{44}
\end{equation*}
$$

$$
\equiv \quad\left[(\forall p)\left[\left[{ }^{\vee} p \wedge p=p_{\mathbf{j} \approx \mathbf{m}}\right] \rightarrow p=p_{\mathbf{j} \approx \mathbf{m}}\right] \wedge \mathbf{h}(\mathbf{m})=\mathbf{h}(\mathbf{j})\right]
$$

$$
[[\mathbf{m}=\mathbf{j} \vee \mathbf{m}=\mathbf{m}] \wedge(\forall y)[[y=\mathbf{j} \vee y=\mathbf{m}] \rightarrow \mathbf{h}(\mathbf{m})=\mathbf{h}(y)]]]
$$

$$
\equiv \quad \mathbf{h}(\mathbf{m})=\mathbf{h}(\mathbf{j})
$$

a. John only meets MARY.
$[=(6-a)]$
b. $\quad(\forall p)\left[\left[{ }^{\wedge} p \wedge(\exists y) p={ }^{\wedge} \mathbf{M}(\mathbf{j}, y)\right] \rightarrow p={ }^{\wedge} \mathbf{M}(\mathbf{j}, \mathbf{m})\right]$
$[\approx(6-b)]$
c. $\quad(\forall P)[[P\{\mathbf{j}\} \wedge(\exists y) P=\hat{x} \mathbf{M}(x, y)] \rightarrow P=\hat{x} \mathbf{M}(x, \mathbf{m})]]$
a. Harry only meets SuE.
b. $\quad(\forall P)[[P\{\mathbf{h}\} \wedge(\exists y) P=\hat{x} \mathbf{M}(x, y)] \rightarrow P=\hat{x} \mathbf{M}(x, \mathbf{s})]$
a. $\quad \lambda y \cdot \lambda Q \cdot(\forall z)[Q\{z\} \rightarrow z=y]$

$$
\begin{array}{ll}
\text { b. } & \lambda p \cdot \lambda \mathscr{A} \cdot(\forall q)\left[\left[{ }^{\vee} q \wedge \mathscr{A}(q)\right] \rightarrow q=p\right] \\
\text { c. } & \lambda x \cdot \lambda P \cdot \lambda \mathscr{S} \cdot(\forall S)[[S\{x\} \wedge \mathscr{S}(S)] \rightarrow S=P]
\end{array}
$$

A: I only advise co-housing Fluffy with a distinct one of Fluffy and Buffy.
B : Really? I assume you also advise co-housing BUFFY with a distinct one of Fluffy and Buffy.
A:That's the same thing. To co-house Buffy with a distinct one of Fluffy and Buffy is to co-house Fluffy with a distinct one of Fluffy and Buffy.

$$
\begin{equation*}
\Phi(\mathbf{b}) \tag{49}
\end{equation*}
$$

$$
\equiv \quad(\exists y)[\mathbf{C}(\mathbf{b}, y) \wedge[y=\mathbf{f} \vee y=\mathbf{b}]]
$$

$$
\equiv \quad(\exists y)[\mathbf{C}(\mathbf{b}, y) \wedge y=\mathbf{f}]
$$

$\equiv \quad \mathbf{C}(\mathbf{b}, \mathbf{f})$
$\equiv \quad \mathbf{C}(\mathbf{f}, \mathbf{b})$
$\equiv \quad(\exists y)[\mathbf{C}(\mathbf{f}, y) \wedge y=\mathbf{b}]$
$\equiv \quad(\exists y)[\mathbf{C}(\mathbf{f}, y) \wedge[y=\mathbf{f} \vee y=\mathbf{b}]]$
$\equiv \quad \Phi(\mathbf{f})$
$\equiv \quad(\forall x)\left[\mathbf{A}\left(\mathbf{a},{ }^{\wedge} \Phi(x)\right) \rightarrow x=\mathbf{f}\right]$
(51) $\quad(\forall p)\left[\left[{ }^{\vee} p \wedge(\exists x) p={ }^{\wedge} \mathbf{A}\left(\mathbf{a},{ }^{\wedge} \Phi(x)\right)\right] \rightarrow p={ }^{\wedge} \mathbf{A}(\mathbf{a}, \wedge \Phi(\mathbf{f}))\right]$

$$
\begin{equation*}
(\forall q)\left[\left[\mathbf{A}(\mathbf{a}, q) \wedge(\exists x) q=^{\wedge} \Phi(x)\right] \rightarrow q={ }^{\wedge} \Phi(\mathbf{f})\right] \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
\left(\forall q:(\exists x) q=^{\wedge} \Phi(x)\right)\left[A(a, q) \rightarrow q=^{\wedge} \Phi(\mathbf{f})\right] \tag{53}
\end{equation*}
$$

References

Krifka, Manfred. 2001. For a Structured Meaning Account of Questions and Answers. In Caroline Féry \& W. Sternefeld (eds.), Audiatur Vox Sapientiae. A Festschrift for Arnim von Stechow, 287-319. Berlin: Akademie Verlag.
Rooth, Mats. 1985. Association with Focus: University of Massachusetts at Amherst at Amherst Thesis.
Rooth, Mats. 2016. Alternative semantics for 'only'. Email to author. March 21.

