Compositionality Problems and How to Solve Them

Thomas Ede Zimmermann, Frankfurt

1. Compositionality ...

(1)

(2)

(3)

(4)

John loves Mary

Generalised Principle of Compositionality

The V of a complex expression functionally depends on the Vs
of its immediate parts and the way in which they are
combined.

Ordinary Principle of Compositionality

The meaning of a complex expression functionally depends
on the meanings of its immediate parts and the way in
which they are combined.

Extensional Principle of Compositionality

The extension of a complex expression functionally depends
on the extensions of its immediate parts and the way in
which they are combined.

Intensional Principle of Compositionality

The content of a complex expression functionally depends on
the contents of its immediate parts and the way in which
they are combined.

John loves Mary

//

//xx
loves Mary

The boss is asleep

T~

the boss is agleep

John or Jane and Mary

-
P

——

John or Jane and Mary

or Jane and Mary

Jane and Mary
,”’//-M\"“w.
and Mary

John or Jane and Mary

—
-

John or Jane and Mary
// e

John or Jane and Mary
O~

orf'f Jane

(5)

(6)

John seeks a unicorn

-
e
e
——
I

.—-/-
John seeks a unicorn
./--/
- -
seeks a unicorn
— _\\

a unicorn

John seeks a unicorn

/

a unicorn John seeks u
— ™ _—
a unmcorn John seeksu
T .
seeks wu
2. Problems...
(7)
WHOLE
N
LEFT RIGHT
(8)
Type 0:
WHOLE vV
/
LEFT? RIGHT?
Type I:
a) or: b)

(9a)
(b)

(c)

(10a)
(b)
(c)

WHOLE Vv WHOLE Vv

. ~~
LEFTY RIGHT? LEFT? RIGHT vV
Type 2:
WHOLE v
LEFTY RIGHT Y

[Mary is coughing | = {(w,t) | Mary is coughing in world w at time ¢}
| The boss is laughing ||

{(w,t) | whoever is the boss in w at ¢, is coughing in w at ¢}
[Sentence] C I

[Mary is coughing|| = I'([Mary [,] is coughing||)
[The boss is laughing || = I'([| the boss]||,| is laughing)
[Sentence] = I'(|Term]|,| Predicate])

(11)

(12)

(13)
(b)
(c)
(14a)
(b)
(c)
(15)

(16)
(17)

(18a)
(b)
(c)

(19a)
(b)
(c)
(20)

(21a)
(b)
(c)

(22) T([NounPhrase]|,|Predicate]) =

Sentence v

o

Term ? Predicate?

Sentence v

-

-

I/
Term+ Predicate ?

[Mary [|(w,t) = Mary
| the boss ||(w,t) = the boss in w at ¢
[Term]: 1 — p)

|is coughing ||(w,t) = {x | x is coughing in w at ¢}
|is laughing ||(w,t) = {x | x is laughing in w at ¢}
[Predicate]: I — p(U)

I'([Term],| Predicate]) = {(w,t) | [Term|(w,t) € [Predicate](w,t)}

Everyone is shouting.

Sentence v

T
T

QuantifierPhrase ? Predicate v
[kill] = {(x,y)EU2 | x kills y}

[introduce]|| = {(::c,y,z)EU3 | x introduces z to y}
[Verdb,|CU"

|John loves Mary || = I'([John],[|loves Mary|)) = 1
[Nobody loves Mary || = I'([| every boy |,[loves Mary]) = 0
[Sentence] = I'(| NounPhrase],|Verbd,|) C {0}

Senterice v

.
H“‘\-a._

NounPhrase? Verb v

[John] = {XCU| John € X}
[nothing || = {O}
[NounPhrase| C o (U)

[1,if [NounPhrase] € [Predicate]
| 0, if [NounPhrase]| ¢ | Predicate]

(23) [every semanticist| = {XCU | SCX} = I'([every],| semanticist|))

(24)
QuantifierPhrase v

R

T

Determiner? Noun ?

(25a) John says it is raining.
(b) Most experts believe Mary will win the election.

(26)
Verb v

Verb .? Sentence

(27a) [says it is raining]| = I'(|says||,[says it is raining]]

(b) [[believe Mary will win| = I'([believe]|,[Mary will win)
(c) |[Verb,|=1(|Verd..|,Sentence])

(28) mno linguist from India

(29)

NounPhrase vV

NounPi;rase' v PrepositionalPhrase ?
(30a) [no linguist from India] = I'([no linguist ||, from India]))
(b) [every pope from India] = ([every pope|,[from India)
(¢) |[NounPhrase|=1I(|NounPhrase'|,

| PrepositionalPhrase|))

(31) [[every popeﬂ = {XCU | {p)CX} ={XCU | {p}nX = O} = [[some pope]]

(32)
Verb, v

/
/

Verb,v NounPhrase
(33) TI([Verb,],| NounPhrase])
= k€U | {yeU | (x,y)€| Verd,|} € [NounPhrase]||}

(34a) Jones is looking for a sweater.
(b) Jones painted a unicorn.

(34a) If a farmer owns a donkey, he beats it.
(b) Every farmer who owns a donkey beats it.

3. ... and How to Solve Them
A compositionality problem is solvable just in case there is a way of replacing all
? by v without changing any V.

Observations cf. Zadrozny (1994), Hodges (2001)
Type 0 problems are always solvable.

A Type 1 problem is solvable iff
[RIGHT,| = [RIGHT,] implies: [WHOLE,] = [WHOLE

[or: |LEFT,| = |LEFT,| implies: [WHOLE, || = [WHOLE],]
for all i and j.

A Type 2 problem is solvable iff
[RIGHT,| = [RIGHT,] implies: [WHOLE,] = [WHOLE

and: |[LEFT,| =|LEFT,| implies: [WHOLE,| = [WHOLE],
for all i and j.

General Strategies for Unsolvable (and Solvable) Compositionality Problems

e Syntactic Solution: Redefine input.
Applications:

— Type 1 (unsolvable), creating another, solvable Type 1 problem‘:
From:

[every linguist from India] v

~
[every linguist]| v [from India]| ?
to:
[every linguist from India]) v
—

..—""/’—-
.,-r"/

-
[every] v [linguist from India] v

/
[linguist] v [[from India] ?

— Type 2 (solvable), but creating more Type 0 and Type 1 problems...
May (1985), Heim & Kratzer (1998)

[read a book]| v
///
[a book] v [read y] ?

o

o

[[yf]qf'; [read y] ?
T

[read]] v [y]?

¢ Ontological Solution: Replace semantic values by more fine-grained ones.
Applications:

- Type 1 (unsolvable): Frege (1892)
From:

[believes Smith is sick | v

.-/'

[believes] ? [Smith is sick] v

(where [| X || is X’s extension) to the solvable Type I problem:
[believes Smith is sick]| v

/
[believes| ? | Smith is sick | v

(where | X | is suitably fine-grained: sense, intension,...).

- Type 1 (unsolvable): Lewis (1975), Kamp (1981), Heim (1982)
From:

[If a farmer owns a donkey, he beats it] v
T

T
—

T~

M-\-\""\-\.

‘HH""—\
[a farmer owns a donkey| v [he beats it] ?

(where [| X || is X’s extension) to the solvable Type 2 problem:

| If a farmer owns a donkey, he beats it | v

—

—
-\-H'-\-\.

—_
| a farmer owns a donkey |V | he beats it | v

(where | X | is suitably fine-grained: relation, context change potential,...).

General Strategies for Solvable Compositionality Problems

e Strategy 0: Frege (1884)
Find covariation between one part and some other entity, and take the latter to

be the former’s semantic value.

More precisely, given

(L)

WHOLLE, WHOLLE, WHOLE, e WHOLLE,

_ _ " - '/\
LEFT, RIGHT LEFT, RIGHT LEFT, RIGHT LEFT RIGHT
[or:

(R)

WHOLE, WHOLE, WHOLE, ...

—
LEFT RIGHT, LEFT RIGHT, LEFT RIGHT, |
find objects x; such that:

H WHOLEE ” = [[WHOLEJ] just in case “ LEF]: " = [[LEFTJ]
|WHOLE,| = [WHOLE,] just in case [RIGHT:|| = | RIGHT] |

[or
Then put:
[LEFT,] :=x, [or [RIGHT,] :=x;]
Applications:
[Mary coughed] v
[Mary|| = Mary [coughed] ?
or:

[Mary coughed] v
_’__;-r‘/

[[Maffj] ? | coughed| = set of coughers
[every book] v

/’--/

o

[every] ? [book] = set of books
e Strategy 1: Frege (1892); cf. Kupffer (2008); Zimmermann (in prep.)
Determine primary occurrences of valueless expressions and construct their

values as contributions in primary occurrences. More precisely, given
|RIGHT,|, | RIGHT,|,... and | WHOLE, ||, [WHOLE,| construct:

[or:
[RIGHT,| [WHOLE,] [LEFT,| |[WHOLE,]
|RIGHT,| | WHOLE,] [LEFT,| ||WHOLE,]
[RIGHT]| |[WHOLE,] [LEFT [[WH'C')'LEI-]]]

and put | LEFT | := f such that:

f(RIGHT]) = [WHOLE,] [or f(ILEFT]) = [WHOLE]

Application:
[a unicorn coughed] v

T

™~
[a unicorn] = f [coughed] Vv

where:
f([coughed]) = | a unicorn coughed ||,
f([neighed]) = || a unicorn neighed ||, etc.
e Strategy 2:

Define combination I by collecting all instances:
[(|LEFT,|, | RIGHT,|) = | WHOLE,]||

and find pattern.

Applications:
— quantified objects of transparent verbs:
I'([read]], |a book) = || read a book ||

[([read], | every book ||) = || read every book ||
[([buy], [|a book |) = || buy a book |
etc.

If | X | is X’s extension, we have:
F{(x,y) | xreads y}, \P.+ PNB£@) ={x | {y | xreadsyy "B+ @}
I'{(x,y) | xreads y}, \P.+ BC P04 ={x IBC{y | x reads y} }
L{(x,y) | xbuys y}, \AP.+ PNB#@) ={x | {y | xbuysy)NB=0}

etc.
— the pattern being:

I(|LEFT,], |RIGHT,)) = [RIGHT,|((x | {y | (x,y) € [LEFT,[}})

— quantified objects of opaque verbs:
[seeks a unicorn] v

/,/\
[seeks] = f [aunicorn] v

where:
(*) f([a unicorn]) = [seeks a unicorn ||

f(|[a horse]) = | seeks a horse ||, etc.
If [X]| is X’s extension, then:
[a unicorn]|| = [[a ghost||
and so:
f(|a unicorn]|)) = f(|[a ghost|))
BUT: f(|[a unicorn]) = [[seeks a unicorn| = {x | x seeks a unicorn}
- {x | x seeks a ghost} = [seeks a ghost|| = f([a ghost|))
=> NO EXTENSIONAL SOLUTION!
If | X || is X’s intension, then:
f([a unicorn |))(7) = {x | x seeks a unicorn at [index] i}
f(|a horse|))@) = {x | x seeks a horse at i}
f([[a ghost|)(i) = {x | x seeks a horse at i}

unclear how (and even: whether) value depends on argument
=> additional strategy needed:

Reduction by paraphrase
... also works for (34b)

References
(on request)

