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[...]

Details
[..]

p. 15: Condition 1* is not just Condition 1 repeated in that it replaces elementhood by subsethood; also it
should force the choice to be non-empty whenever the domain is: @ = f(d,E)CE if E=@. This is well motivated

in terms of the intended applications and in terms of formalism (see my Condition 11 below) but it is not
covered by the other conditions.

p. 15: The motivation of Condition 2* is somewhat incomplete. In fact, together with (modified) Condition 1 it
turns out to be equivalent to the choice being based on a universal (centered) salience/similarity ordering.
(See the appendix below.) Makes me wonder why the whole story is not told directly in terms of orderings in
the first place, especially given the fact that the restrictions (transitivity, well-foundedness) are more easily
formulated and motivated than Condition 2*. (This also applies to von Heusinger’s original approach.)

[...]



Appendix
Let U and D be non-empty sets and f: Dx o (U) — U. Consider the following conditions
(depending on dE€D):

(C1%) @ = f(d,E)CE, for each and non-empty EC U.
(C2%) f(d,E") = f(d,E) N E' whenever d€D, E'CECU and f(d,E) N E' = .

Then (for any d€D) the conjunction of (C1%) and (C2%) holds iff there is a transitive
well-founded relation <; such that f(d,E) = {¢CE | for all e'€E: e <; e'}.

Proof
Fix d€D and omit reference to it: f(E) := f(d,E),e<e' :=e <y e'.

llcll.

ad (C1%): 'This is the well-foundedness of =.
ad (C2%): (This is what the argument at the bottom of p. 15 is about.)
Assume E'CECU, f(E) N E' = @ and e€E. It must be shown that:
ecf(E") iff eef(E) N E', i.e. that:
) [e€EE" and for all e'€EE'": e <e'] iff [e€EE'and for all e'EE: e <é |
"=": Assume e€E' and e <e', for all e'€E'. Pick e*€f(E) N E' (= O, by
assumption). Then e < e* (because e*€E'). But if e'€E, then
e* < e', because e*cf(F). Hence, by the transitivity of <,e <e'.
"<<": Obvious because E'CE.

llzli:

Now assume (C17%) and (C2%) and, for given dE€D, put:
=4 = {(e,e)EE leEf(d,{ee})}.

The following propositions must be shown:
a): < is transitive;

b): < is well-founded;

c): f(E)={e€E | for all e'€E: e <e'}.



ad a):

ad b):

ad ¢):

Assume e <e' <e". It is to be shown that (*) e < e". We first show that:

(#) ecf(E),

where E = {e,e',e"}. From this (*) follows: Since ecf(E)N{e.e"}, (C2%)
implies: e€f({e,e"}), i.e. e < e".

Now for (#). There are two cases:

Case 1:e'ef(E). Hence f(E)N{e,e't = @. So (C2*) applies and (since e<e'):
eEf({e,e't) = f(E)N{e,e'}. So (#) holds.

Case 2:e'¢f(E). Then (#) must hold. For assume otherwise. Then e"Ef(E),
in view of (CI*) — and (since e'se"): e'Ef({e',e"}) = f(E)N{e',e"}, by (C2%)
and given that e"€f(E)N{e',e"}, in contradiction to the case assumption.
Assume O=ECU. It must be shown that there exists e*€E such that e*<e,

for all e€E. By (C1t), @ = f(E)CE (given that E= @). Pick e*&f(E) and
arbitrary e€E. By (C2%), f({e*,e}) = f(E) N {e*,e} (given that {e*,e}CE
and e*€ f(E)N{e*,e}). Hence — again given that e*€f(E)N{e*,e} —
e*cf({e*,e}), i.e.: e* <e.

C: If eef(FE), then e€E, by (C1%). If, moreover, e'€E, then {e,e'}CE and
f(E)N{e,e't = @. Hence, by (C2%), f({e,e'}) = f(E)N{e,e'}. However,
eEf(E)N{e,e'}, and so ecf({e,e'}).

D: Let e€E and assume that (+) e <e', for all e'€E. E=0 and so, by (C1%),
there is some e*€f(E)NE. By (+), e <e*, i.e.: e€f({e,e*}) = f(E)N{e,e*},
by (C2%). So e€f(E).



