
1 Zimmermann, Formal Semantics

1. Compositionality

1.1Frege’s Principle

Any decent language, whether natural or artificial, contains more than
just finitely many expressions. In order to learn and understand all
these expressions, i.e. to associate a meaning with each of them, it does
not suffice to learn just a vocabulary list: there must be some systematic
way of associating meanings with forms – just like there is a systematic
way of construing these forms, viz. syntactic rules. Indeed, it seems
plausible to assume that there is some connection between the rules that
govern what an expression is and those that say what it means. An
initially plausible assumption on how this connection is made is a
principle that has been attributed to Frege but which, for reasons of
philological accuracy, should perhaps better be called by some neutral
term like:

The Principle of Compositionality
The meaning of an expression is uniquely determined by the meanings
of its parts and their mode of combination.

Something should be said about the meanings of the expressions used in
stating this principle. As it stands, the principle presupposes some
part/whole relation among linguistic expressions. It should be clear that
this must be provided by some syntactic account of the language in
question. Thus, e.g., under a straightforward constituent analysis the
sentence (1) contains (2), but certainly not (3) as a part, even though (1)
does contain the former in some other, ‘physical’ sense:

(1) Whenever Tom sees a lollipop he wants to eat it.
(2) Tom sees a lollipop.
(3) Tom sees a lollipop he wants to eat.

More complicated part/whole relations may arise out of more involved
syntactic descriptions. It may thus not be entirely implausible to engage
some transformational analysis that partly reduces (1) to something like
(4), which would then, in a sense, be a part of (1):

(4) Tom wants to eat the lollipop.

We do not seriously want to defend any such analysis but merely point
out that the notion of a part of an expression is not as innocent and

2 Zimmermann, Formal Semantics

straightforward as it may appear from the above formulation of Frege’s
Principle.

A second possible misunderstanding of the Principle of Compositionality
concerns ambiguous expressions like the following two:

(5) Linguists discovered a hidden ambiguity resolution method.
(6) Not all rulers are straight.

Since (5) has more than one meaning, we cannot expect ‘it’ to be
(uniquely) determined by whatever the principle assumes. So we must
either put the whole principle in the plural, or exclude ambiguous ex-
pressions, or understand ‘expressions’ to refer to underlying (syntactic)
structures which we may assume to be unambiguous. We take the
third option, extending it even to clear cases of lexical ambiguity which
we also assume to be resolved on some syntactic level at which, e.g., sub-
scripts distinguish at least two different nouns ruler.

A third source of possible unclarity is a meaning’s being uniquely de-
termined by something else. In the present context, this should be
taken in the weakest sense possible, viz. as functional dependence: the
meaning of the whole is uniquely determined by the meanings of the
parts if there is a function taking the meanings of the parts as its
arguments and yielding the meanings of complex expressions as its
values. Whether and in what sense this function is known to the
language users and how complex it is (whether it is recursive etc.) will
be of no concern to us here.

If we know all parts of a complex expression and at the same time know
how they combine, we know the expression itself. Given this reasoning,
it might appear that the Principle of Compositionality applies vacuously:
the parts of an expression and the way they are combined determine the
expression which in turn determines its meaning in the weak sense
that the latter is unique. However, Frege’s Principle is stronger than
that. For it is not the parts themselves that we have to combine but their
meanings. In order to see the exact meaning of this, consider two
distinct expressions the corresponding parts of which have the same
meanings:

(7) My brother, who lives in Aachen, is an oculist.
(8) My brother, who dwells in Aix-la-Chappelle, is an eye-doctor.

Let us, for the purpose of this discussion, imagine that each word in (7)

3 Zimmermann, Formal Semantics

has exactly the same meaning as the corresponding word in (8). Since
the way the words are combined in these two sentences is obviously the
same, the Principle of Compositionality immediately implies that (7) and
(8) must have the same meaning. Clearly, this is a non-trivial claim.

Not trivial, but not very exciting either; for all it says is that replacing
one or more words (ultimate constituents) by synonyms results in a
synonymous complex expression. And it is easily seen that this is the
only kind of prediction one gets by literally applying Frege’s Principle.
However, there is a different reading of the term parts that leads to a
considerable strengthening of the principle: if by a part of an expression
we mean an immediate part of it, we get slightly more substantial
claims about synonymies. From the (assumed) synonymy of the noun
phrases Tom and everyone who is identical with Tom we may, e.g.,
conclude that (9) and (10) must have the same meaning:

(9) Tom is asleep.
(10) Everyone who is identical with Tom is asleep.

At least under a straightforward analysis, the immediate parts of (9) are
the subject Tom and the predicate is asleep; those of (10) are the subject
everyone who is identical with Tom and the same predicate as in (9).
Since the subjects are supposed to be synonymous and the predicates are
anyway, Frege’s Principle implies that so are the sentences. But it
should be noted that this implication only holds under the strong read-
ing of ‘part’ as ‘immediate part’; otherwise the internal combination of
the lexical material in (9) and (10) would make the principle in-
applicable.

A generalization of this kind of argument reveals an important im-
plication of Frege’s Principle, viz. the Substitutivity of Synonyms: re-
placing one part of an expression by a synonymous one results in a
synonymous expression. (9) vs. (10) is already an example and by em-
bedding it we see the validity of the general principle:

(11) Alain erroneously believes that Tom is asleep.
(12) Alain erroneously believes that everyone who is identical with Tom

is asleep.

Having established the synonymy of (9) and (10) we can now go on like
this: since (9) is an immediate part of that Tom is asleep and (10) is an
immediate part of that everyone who is identical with Tom is asleep, the
two that-clauses must be synonymous, again by the Principle of Com-
positionality. Moreover, the complex verb erroneously believes is clearly

4 Zimmermann, Formal Semantics

synonymous with itself and, once more, combining it with either that
Tom is asleep or the synonymous that everyone who is identical with
Tom is asleep must result in two synonymous verb phrases. One more
step like that and we’re home; we leave it to the reader. The general con-
clusion to be drawn from this is that the Principle of Compositionality
implies:

The Substitution Principle
Synonymous parts may be substituted for each other without changing
the meaning of the complex expression in which they occur.

The Substitution Principle will prove to be helpful in evaluating Frege’s
Principle. However, it must be kept in mind that any apparent counter-
instance to the Substitution Principle does not necessarily constitute an
argument against compositionality but may equally well serve as
evidence against one of its underlying assumptions like, e.g., a certain
syntactic analysis or the notion of meaning involved. Concerning the
latter, we will gradually see that the Principle of Compositionality can be
regarded as a restriction on what meanings are; some simplistic con-
cepts of meaning are incompatible with Frege’s Principle.

Before looking at specific examples and counter-examples, we must
finally get clear about the status of the Principle of Compositionality: is
it an empirical hypothesis, a methodological assumption, or what? This
depends on how exactly we want to understand it. On one, rather strong
reading the principle says that the only (empirically correct) way of
assigning meanings to complex expressions is compositional. It turns
out that this reading of the principle immediately leads to problems: as
we will see in section 1.3, a very straightforward interpretation of
predicate logic is non-compositional and it is not unlikely that the
characteristic features responsible for this failure carry over to natural
language. So we will not favour an empirical reading of Frege’s
Principle but rather a weaker, methodological one: a compositional (and
empirically correct) way of assigning meanings to expressions is to be
preferred to its non-compositional rivals. Since it can be shown that,
under reasonable assumptions, there is always some (empirically cor-
rect) compositional way of assigning meanings to complex expressions,
the Principle has a universal applicability. But why should we adopt it?
Because it teaches us something about the complexity of meaning. This
will best be understood from some standard examples to which we will
now turn.

5 Zimmermann, Formal Semantics

1.2Compositional meaning assignments: some examples

In order to get some feeling for the content of Frege’s Principle, let us
first look at some cases in which it clearly applies. The easiest one is a
traditional analysis of meanings in terms of semantic features or com-
ponents. According to this approach, meanings are sets (or maybe lists)
of semantic features which themselves are the ingredients of some com-
plex universal conceptual structure. The basic idea is that meaning
relations hold among expressions in virtue of the conceptual relations
holding among the features that these expressions mean. Thus, e.g.,
one reading of the word bachelor may be analyzed into the components
<+HUMAN>, <–FEMALE>, and <–MARRIED>, and its semantic re-
lation to one reading of man can be read off the latter’s presumed
meaning {<+HUMAN>, <–FEMALE>}: subsethood amounts to hypo-
nymy. (Note that, while we represent these components in some binary
feature notation mainly derived from English, they are abstract con-
ceptual entities.) Given this approach, it is at least tempting to analyze
meanings of complex expressions like (13) as the unions (or con-
catenations) of the meanings of their parts, as shown in (13'):

(13)
N

A
young

N

bachelor

(13')
{<–AGED>,<+ANIMATE>,<+HUMAN>,

 <–FEMALE>,<–MARRIED>}

{<–AGED>,
<+ANIMATE>}

{<–AGED>,
<+ANIMATE>}

{<+HUMAN>,
<–FEMALE>,<–MARRIED>}

{<+HUMAN>,
<–FEMALE>,<–MARRIED>}

(Note that, due to redundancy rules governing conceptual structure,
the top node of (13') might turn out to be equivalent to {<–AGED>,
<+HUMAN>,<–FEMALE>,<–MARRIED>}.) It is obvious that this
analysis, however naive and narrow in its scope, is in accord with the
Principle of Compositionality.

6 Zimmermann, Formal Semantics

An equally simple and familiar example of compositional semantics is
provided by the interpretation of (constant) arithmetic terms built up
from numerals 1, 2, 3, etc. and the symbols ‘+’ and ‘×’ for addition
and multiplication. If we take the numerals to be lexical expressions (or

ultimate constituents) and identify the meaning “δ‘ of such a term δ
with the number it denotes, we have a simple compositional meaning
assignment, as exemplified in (14):

(14) “5 + (7 × 9)‘ = “5 ‘ + “(7 × 9)‘ = 5 + (“7‘ × “9‘) = 5 + (7 × 9) = 68.

In (14), the difference between the numeral ‘5’ and the number 5 as
well as the corresponding difference between the symbol ‘+’ and the
arithmetical operation of addition (denoted by ‘+’) should be noted. More-
over, the bracketing is essential in that it indicates the underlying
syntactic structure. What (14) shows is that, if the meanings of complex
arithmetical terms are numbers, they can be computed by applying
arithmetical operations to the meanings of their immediate parts. How
do we know which operation is to be applied in a given case? This
obviously depends on the term’s mode of composition, i.e. whether it is

an additive term (= one of the form ›(δ1 + δ2)fi) or a multiplicative one.
Using a tree notation as in (13') and omitting the surface brackets, we
thus have:

(14') (14")
+

5 ×
7 9

68
5 63

7 9

According to the analysis (14'), addition and multiplication are two dif-
ferent term constructions and, following (14"), each of them semantic-
ally corresponds to a different operation on numbers or semantic com-
bination. Of course, this is not the only way of syntactically analyzing

such terms. One may also think of ›(δ1 + δ2)fi as consisting of three im-

mediate constituents, the two sub-terms δ1 and δ2 plus the operation
symbol ‘+’. (According to (14'), ‘+’ does not really constitute a part of
the term but merely indicates the syntactic construction; traditionally
speaking, it is analyzed as a syncategorematic expression.) In that case
we have an equally straightforward and, indeed, very similar
compositional interpretation:

7 Zimmermann, Formal Semantics

(14''')
Term

Term
5

Operation

+

Term

Term
7

Operation

×

Term
9

(14'''')
68

5
5

+
+

63

7
7

×

×

9
9

Thus time the function symbols ‘+’ and ‘×’ are interpreted as denoting
operations, whereas the combination of two term meanings (i.e.
numbers) and an operation is interpreted by applying the operation to
the two term meanings. As far as compositional interpretation is con-
cerned, there is therefore no essential difference between treating the
function symbols as syncategorematic or letting them denote (or ‘mean’)
something. We will encounter many analogous situations as we go
along.

The third example, the truth-table interpretation of propositional logic,
is very similar to the arithmetical one. This time our meanings are the
truth-values 0 (= false) and 1 (= true). The meanings of complex
expressions can be computed by applying truth-functions to the
meanings of their parts:

(15)
“(p∧ ¬p)‘g = 1

iff “p‘g = 1 and “ ¬p‘g = 1
iff “p‘g = 1 and “ p‘g = 0

The main difference between this example and the preceding ones is
that in the case of propositional logic, meaning (truth or falsity) is no
longer absolute but rather depends on some function g assigning a
truth-value to any basic (atomic) expression. However, the formula in
(15) will be assigned the truth-value 0, no matter which function g we
may pick.

8 Zimmermann, Formal Semantics

1.3Non-compositional meaning assignments: examples

It is now time to look at two counter-examples to the Principle of Com-
positionality, each of which are, in a sense, extensions of propositional
logic. In the first case, we add a one-place operator T (that syntactically
behaves like negation) and the following interpretation clause:

(16) “Tϕ‘g = 1 iff “ϕ‘h = 1, for all h.

The new operator thus expresses that the formula embedded under it is
a tautology in the truth-functional sense. Under the assumption that
meanings are truth-values, (16) is a non-compositional rule: we can

have: “p‘g = “¬(p∧ ¬p)‘g = 1, i.e. p and ¬(p∧ ¬p) have the same
meaning, but only the latter is a tautology and thus:

(17) “Tp‘g = 0 ≠ “T¬(p∧ ¬p)‘g = 1.

This example is simple and admittedly artificial. So let us try a real-life
case, predicate logic. Again we assume that meanings are truth-values.
The interpretation of atomic formulae and connectives are then as in
propositional logic. For the quantifiers we have:

(18) “(∃ x)ϕ‘g = 1 iff “ϕ[x/a]‘h = 1, for some individual constant a.

(‘ϕ[x/a]’ denotes the result of replacing all free occurrences of the

variable x in the formula ϕ by the constant a.) This clause, the so-called
substitutional interpretation of quantification, only works if everything
in the domain of discourse has a name, but at least for the sake of the
argument we may assume this to be the case. As a homework exercise
will show in detail, (18) is non-compositional, as long as we are
identifying meanings and truth-values. We thus face a compositionality
problem: an initially plausible way of interpreting a certain con-
struction (in our case: quantification) turns out to violate Frege’s
Principle. There are various things one can do about such a problem,
depending on how severe it is and what is intuitively felt as its cause. Let
us look at two interesting strategies, one of them concerning
quantification.

9 Zimmermann, Formal Semantics

1.4Compositionality problems and how to solve them

Suppose we agree on the following branching for restrictive relative
clauses:

(A1) NP

NP

every girl

RElCl

who smiles

Assume, moreover, that (A2) NPs in general are interpreted as
(generalized) quantifiers, i.e. as sets of sets of individuals. Thus, e.g.,
we would have:

(19) “every girl‘ = {X ⊆ D “girl‘ ⊆ X}
“no girl‘ = {X ⊆ D “girl‘ ∩ X = Ø}
“some girl‘ = {X ⊆ D “girl‘ ∩ X ≠ Ø}
“Jane‘ = {X ⊆ D j ∈ X},
etc.

(D is the domain of individuals, j is Jane.) Thirdly, it seems to be quite

straightforward to have (A3) relative clauses denote sets. So “who

smiles‘ = “smiles‘, etc. We might now wonder whether (?) there is
any systematic way of deriving the denotation of a complex NP
containing a relative clause from its parts.

(?) is one kind of compositionality problem: we know (or suppose we
know) what the meanings of the parts of a given kind of expressions are,
we also know what the meaning of the whole expression should be, but
we do not know how to combine the parts in order to obtain the resulting
meaning. As we will see in a homework exercise, under the
assumptions (A1) - (A3), there is no way of combining the meanings of
relative clauses and NPs to obtain the desired result: any compositional
treatment of (restrictive) relative clauses will have to give up at least one
of the assumptions.

The standard way of avoiding (?) is give up the syntactic assumption (A1)
and adopt the following bracketing instead: (every(girl(who smiles))),
so that the relative clause combines with the noun. One welcome
consequence of this strategy is that, according to this analysis, proper

10 Zimmermann, Formal Semantics

names cannot take restrictive relative clauses: they do not contain
proper nouns. But then neither would lexical quantifiers like nobody,
unless we reanalyzed them as complex (lexical decomposition into no +
body); this is certainly a less welcome result.

An alternative way to compositionally interpret NPs with relative
clauses consists in giving up (A2). A brief discussion of that strategy will
have to wait till we get to categorial techniques!

Let us now turn to the compositionality problem discussed in the
previous section, the interpretation of variable-binding quantifiers. We
have seen that the so-called substitutional interpretation of quantific-
ation is non-compositional. However, this does not mean that there is no
compositional interpretation of predicate logic. One way of getting one
(due to Tarski) is by giving up the assumption that meanings (of form-
ulae) are truth-values. The basic idea behind Tarski’s construction is

that the truth value of ›(∃ x)ϕfi does not only depend on ϕ’s actual truth-
value but rather on all possible truth-values that ϕ might have. The
actual truth value depends on what x (actually) refers to whereas other,
possible truth-values are determined like the actual one – except that x
might refer to something else; in order to define alternative truth-
values, we thus need the notion of a variable assignment, i.e. a function
determining the referent of every variable (including x). The actual
truth-value of the formula ϕ then generally depends on the actual
variable assignment and what it does to x; the (actual) truth-value of

›(∃ x)ϕfi depends on ϕ’s truth-value at other possible assignments g' that
let x refer to alternative referents:

(20) “(∃ x)ϕ‘g = 1 iff “ϕ‘g' = 1, for some g' that differs from g in (at most)
x’s value (i.e. g'(y) = g(y) whenever y ≠ x).

Note that, unlike (!), the actual truth-value of a quantified formula is re-
lated to the (possible) truth-values of its (immediate) parts. However,
this does not quite prove that (20) is compositional: we still need a
suitable notion of meaning. It cannot be the actual truth-value because
then (20) would be non-compositional! How about the possible truth-
values, then? Can they be used as the meanings in a compositional
interpretation of predicate logic, along the lines of (20)? The answer to
this question partly depends on what precisely we mean by ‘possible
truth-values’. For if we simply mean the set of all truth-values that a
formula can possibly have, won’t get much further than with the actual

11 Zimmermann, Formal Semantics

truth-value. So a more sophisticated notion is needed. Here it is: the

meaning “ϕ‘ of a formula ϕ of predicate logic is ϕ’s truth-value as it
depends on all possible variable assignments or, mathematically speak-
ing, the function taking each variable assignment g to ϕ’s truth-value at
g. We can now show that (20) is compositional in that it can be re-
formulated as a combination of meanings of formulas and variables.

(The meaning “x‘ of a variable x is, of course, x’s denotation as
depends on the assignments, i.e. the function taking each g to g(x).

(21) “(∃ x)ϕ‘(g) = 1 iff “ϕ‘(g') = 1, for some g' such that g'(y) = g(y),
whenever “y‘ ≠ “x‘.

(21) implicitly presupposes that “(∃ x)ϕ‘ is a function from variable
assignments to truth-values; thus its value on a given g will be 0 if the

above condition is not met. Note that we could now define “(∃ x)ϕ‘g as an

alternative notation for “(∃ x)ϕ‘(g), i.e. “(∃ x)ϕ‘’s value on g. The only
difference between (20) and (21) would then be in the reformulation of the

condition ‘y≠x’: (21) gives this condition in terms of x’s meaning “x‘,
as required by compositionality.

Are (20) and (21) equivalent? In order to see that they actually are, one
must first investigate the somewhat neurotic case that the universe of
discourse contains exactly one element. (By definition, it cannot be
empty.) It is easily seen, that in that case there is only one variable

assignment and hence the two clauses amount to: “ϕ‘(g) = 1. But if there
are (at least) two distinct individuals a and b, we could define an
assignment g* by putting: g*(x) = a and g*(y) = b for any y ≠ x; then

(20)’s condition y ≠ x implies: “y‘(g*) = g*(y) = b ≠ a = g*(x) =

“x‘(g*), and hence “y‘ ≠ “x‘. Since the other direction (if “y‘ ≠ “x‘,
then y ≠ x) is obvious, we have actually proved that (20) can be re-
formulated in a compositional way.

1.5 Homomorphisms

Up to now we have relied on an intuitive understanding of the main
concepts surrounding the Principle of Compositionality. There is,
however, a very elegant and general way of making this principle
precise without dramatically changing its content. In order to see how it
works, we need a general and precise notion of the kind of entities the

12 Zimmermann, Formal Semantics

principle should be applied to, i.e. a universal notion of an (underlying)
structure. In the examples discussed above, structures were usually
represented by trees like:

(22)
(a) N

A
young

N

bachelor

 or (b) T

5 + T
7 × 9

 or (c) F

p C2

∧
F
C1

¬ p

Note how each structure encodes the way it has been construed using
structure-building rules. Thus, e.g., (22a) was built up from the basic
(lexical) items young and bachelor by applying two lexical rules (R1:

A → young, R2: N → bachelor) and combining the results with the the

attributive-adjective-rule (R3: N → A + N). We might thus think of the
rules as operations combining structures. R3, e.g., combines arbitrary

structures of the form A

∆
 and N

∆ '
 into more complex structures

N

A

∆
N

∆ '

;

the combined sub-structures ∆ and ∆' might or might not be lexical
items. The tree (a) can thus be rewritten as: R3(young, bachelor). The
latter is an algebraic term denoting the result of applying the operation
R3 to two specific lexical structures. In that sense the structure tree
(22a) is, or closely corresponds to, an algebraic term.

So instead of having syntactic operations build up trees we might as well
think of them as building up terms describing those trees. Each term is
either lexical – in which case it cannot be obtained by any operation – or
complex and there is only one way of construing it:

(23)
(i) If Y is a lexical term, then there are no (n-place) operations F and

terms X1,…,Xn such that F (X1,…,Xn) = Y.

(ii) If F (X1,…,Xn) = G (X'1,…,X'n), then F = G, n = m , and Xi = X'i
for all i≤ n.

If we replaced ‘terms’ by ‘trees’, (23i) would say that the lexicon
shouldn’t contain any structures that can be construed using the con-
struction rules for logical forms (or whatever the syntactic input to our
compositional semantics may be); similarly, (23ii) imposes a restriction
on complex structures: they must not be construable in more than one

13 Zimmermann, Formal Semantics

way. Taken together, (23i) and (23ii) would then rule out any kind of
ambiguous structures. Thus, e.g., tree transformations yielding the
same output for different inputs would violate these conditions. How-
ever, the corresponding terms describing the transformational history
of a given tree structure would again be unambiguous in the sense of (i)
and (ii): even if the transformation F yields the same tree when applied
to distinct structures ∆ and ∆', the terms ‘F (∆)’ and F (∆')’ would be
distinct.

We thus may and, in fact, will assume that the syntactic input to a com-
positional semantic framework always consists of a collection A of
structures and operations satisfying (23i) and (23ii). Given these re-
strictions, any such structure can be thought of as exactly cor-
responding to the term describing it: a tree is (almost) a term. Con-
sequently, such A are called term algebras (or free algebras) in
mathematics and they are usually presented as n+1-tuples or
sequences of the form A = (A;F1,…,Fn), where A is the domain of
structures (or terms) and the F1,…,Fn are the structure-building
operations. Even though the structures of a term algebra are essentially
terms, in order to get a better understanding of the algebraic recon-
struction of the compositionality principle, it is helpful to think of them
as trees again: a tree is a term is a tree. To every term ‘F (X1,…,Xn)’
there is the corresponding tree:

(24) F(X1,…,Xn)

X1 … … … Xn

If our initial system of syntactic inputs (logical forms etc.) already met
the disambiguity requirements (23i) and (23ii), the trees (24) would close-
ly correspond to the original structures. Thus, e.g., the (24) correspond-
ing to the context-freely generated tree structure:

(25) N

A
young

N

bachelor

would be the hybrid tree:

14 Zimmermann, Formal Semantics

(25) N

A
young

N

bachelor

A
young

young

N

bachelor

bachelor

which, for all practical purposes, could and should be identified with the
original tree. However, the detour via corresponding term algebras is
more general in that it can also handle (i.e. differentiate between) iden-
tical structures with different histories.

What does a compositional meaning assignment do to a tree? The
examples in 1.2 reveal that every node gets its meaning by combining the
meanings of its daughters in an appropriate way. Two questions
remain: (a) what happens if there are no daughters, i.e. with terminal
nodes? And (b) what are the appropriate ways of combining meanings?
The answer to (a) is that, in order to make the compositional apparatus
work, we will have to assume that each lexical item is given its
meaning independently, by some lexical meaning assignment f. As to
(b), appropriateness seems to depend on the particular ‘mode of
combination’, i.e. on the structure-building operation applied in
arriving at that node. In other words, a tree of the form (24) would be in-
terpreted by combining the meanings of X1,…,Xn in the way corres-
ponding to F. In addition to the lexical meaning assignment f we will
thus have to assume that, to each structure-building operation F, there
corresponds a semantic operation G (with the same number of places
as F) that assigns meanings to meanings. We may now collect all our
semantic operations G and the meanings B to obtain a semantic algebra
B = (B;G1,…,Gn). We are then in a position to characterize the main

property of a compositional meaning assignment “‘:

(C) “Fi(X1,…,Xn)‘ = Gi(“X1‘,…,“Xn‘).

Mathematically speaking, (C) says that “‘ is a homomorphism from
the term algebra A = (B;G1,…,Gn) to the semantic algebra B =
(B;G1,…,Gn). The algebraic characterization of compositionality, then,

15 Zimmermann, Formal Semantics

is: a meaning assignment is a homomorphism from a free algebra to a
semantic algebra.

Intuitively speaking, all we need to know in order to compositionally de-
termine the meaning of a complex structure is the meaning of its
ultimate constituents and the relevant semantic operations. In other
words, given f and B, the meanings of all structures are uniquely deter-

mined by (C) and the fact that “‘ extends f (i.e. f ⊆ “‘). This could
actually be proved in the algebraic framework sketched here, but we will
not do it. We should however, be aware of the fact that the proof
essentially depends on the syntactic structures’ satisfying (23i) and
(23ii).

Does the semantic algebra have to satisfy (23i) and (23ii)? One might
expect this to be the case simply because of the existence of a homo-
morphism. However, this is not so, as a simple example shows. Even
though the trees corresponding to the formulae (p∧ p) and p are clear-
ly different (one is basic, the other is complex), they are always assigned

the same truth-value, i.e.: “(p∧ p)‘ = “p‘ × “p‘ = “p‘, and hence the
meaning of the lexical expression p can be obtained by applying the
operation (×) corresponding to conjunction (∧) to the same expression,
thus violating (23i). A similar example can be used to show that the
semantic algebra of propositional logic violates (23ii). In fact, it can be
shown that, due to the unambiguous nature of term algebras, any
algebra (with the correct number of operations of the correct numbers of
places) can be made the target of a compositional ‘meaning’ assign-
ment, so that (C) imposes no restriction on possible meanings and their
combinations.

We end this part with some speculations about status of the Principle of
Compositionality as captured by the algebraic notion of a homomor-
phism. Let us first observe that in this framework it can be shown that,
in a sense, compositionality does not impose any restriction on what an
interpretation is; more dramatically: any meaning assignment can be
made compositional. One proof of this quite surprising result involves a
fairly straightforward generalization of Tarski’s interpretation of
quantification by means of variable assignments. Loosely speaking, the
(conceptually) simple strategy of substitutional quantification did not
satisfy the compositionality requirement because, in predicate logic,
there is more to a variable than just denotation. So the notion of meaning

16 Zimmermann, Formal Semantics

has to be adapted to this case by taking into account everything that the
variable might denote, i.e. the function taking every denotation assign-
ment (for variables) to denotation under that assignment. Now we only
have to observe that the original, non-compositional notion of meaning
in substitutional semantics coincided with denotation. So Tarski’s con-
struction replaced non-compositional meanings d (= denotations) of ex-
pressions (variables) ∆ by functions D∆ taking arbitrary meaning

assignments g (for variables) to the meanings the ∆s would have under
these assignments g: D∆(g) = g(∆). If we now generalize this con-
struction by performing the same trick on arbitrary expressions rather
than just variables, it turns out that any meaning assignment, whether
compositional or not, will be turned into a compositional one. More pre-
cisely, if we are given a function G assigning to every structure ∆ of a
certain language L a meaning G(∆) taken from a set M, we let the cor-
responding compositional meaning G*(∆) of any ∆ be that function
from M-assignments to members of M that yields F(∆) whenever
applied to an M-assignment F. (An M-assignment is a function from
arbitrary structures ∆ of L to members of M.) It is easy to check that the
compositional meanings of any two structures must be distinct, as long
as M has at least two members. (Otherwise compositionality isn’t a
problem anyway.) In particular, there is a function G taking the compo-
sitional meanings G*(∆1),…,G*(∆n) of the parts ∆1,…,∆n of a complex

expression F(∆1,…,∆n) to the compositional meaning of F(∆1,…,∆n): G’s

arguments G*(∆1),…,G*(∆n) uniquely determine ∆1,…,∆n, to which F
and then G* can be applied: G(G*(∆1),…,G*(∆n)) = G*(F(∆1,…,∆n)).
Thus G may be regarded as the semantic operation corresponding to the
syntactic construction F. Schematically we have:

(26)
syntax: original interpretation: compositional interpretation:

F(∆1,∆2)

∆1 ∆2

G(F(∆1,∆2))

G(∆1) G(∆2)

G*(F(∆1,∆2))

= G(G*(∆1),G*(∆2))

G*(∆1) G*(∆2)

Clearly, the new, compositional meanings are much more abstract than
the ones that we started with; but, just as in the case of predicate logic
there is a simple and canonical way to recover the old, intended
meaning of an expression from its new one; we only have to apply the

17 Zimmermann, Formal Semantics

latter to the interpretation function G:

(27) G(∆) = G*(∆)(G)

However, the price to pay for this achievement is rather high. For it is
easily seen that semantic algebra arrived at by this construction is, in
effect, a term algebra, isomorphic to the algebra of syntactic structure.
This means that instead of applying the complicated procedure in-
dicated in (26), we may as well regard the syntactic trees themselves as
‘abstract’ meanings and replace the canonical rule (27) by the somewhat
less exciting trivial equation (27'), which may be read: the meaning of a
syntactic structure qua compositional meaning is the original meaning
of the same structure:

(27') G(∆) = G(∆)

Of course, one difference between (27) and (27') might be that the former
is less trivial and hence more interesting. But there is more to the
generalization of Tarski’s construction. For, as the case of predicate
logic shows, it sometimes helps to apply the procedure ‘locally’, i.e. only
to a certain class of expressions (e.g. variables) and (partial) inter-
pretations (like variable assignments). Now, the general idea under-
lying the Tarskian strategy is to retain as much as possible of the
original, simple but non-compositional analysis and only apply the pro-
cedure (26) where the old interpretation leads to non-compositionality.
We cannot go into the details of this strategy here but will nevertheless
try to indicate its significance. For although it generally leads to more
complicated and messy interpretations, it may be of use to assess and
compare the complexities of meaning assignments. The more the com-
positional interpretation obtained by applying Tarski’s construction
diverges from the original one, the more complex the new meanings
will become and, a fortiori, the more complex the original inter-
pretation. In that sense compositionality may not always be a desirable
property of a meaning assignment; but the Tarski-type compositional
interpretations may be regarded as normal forms of semantic theories,
and their purpose lies in helping us to understand their complexities.

-

18 Zimmermann, Formal Semantics

Exercises

1. Show that, under the assumption that predicate logic formulae denote
truth-values, the substitutional interpretation (!) of quantification is
non-compositional. Hint: Assume that the extension of a given
predicate P is neither empty nor identical to the universe of discourse
D and consider the formulae (∃ x) P(x) and (∃ x) ¬P(x).

2. Show that there is no compositional treatment of relative clauses that
meets (A1) - (A3) and is equivalent to the standard bracketing plus

interpretation, according to which “Det + (N +RelCl)‘ is obtained by

combining “Det‘ with “N‘ ∩ “RelCl‘. Hint: Assume that the
extension of the noun president is a singleton {b} and that its
intersection with that of the relative clause is wise is empty. Then
consider the NPs every president, some president, every president
who is wise and some president who is wise.

19 Zimmermann, Formal Semantics

2. Model-Theoretic Semantics

2.1Logic and Semantics

Model-theory is a branch of mathematical logic that has proved to be
very helpful as a tool of natural language semantics. The main purpose
of this chapter is to introduce some of the central ideas and concepts of
model theory. But before we even start doing this, let us briefly discuss in
what way a mathematical discipline can be of help to the task of
describing the meaning of natural language expressions: Why does
logic matter to semantics? There are at least two reasons:

(a) Logic is concerned with truth, semantics with meaning, and the
two concepts are related, at least by what Cresswell has called the
Most Certain Principle: difference in truth value implies difference
in meaning.

(b) The task (or one task) of a semantic theory is to correctly predict
meaning relations (or sense relations) among expressions. But all
meaning relations are (or are reducible to, or variants of) logical
relations. Thus, e.g.:

- Hyponymy is (schematic) implication: green HYP coloured
because x is green (logically?) implies x is coloured, whatever x
is.

- Incompatibility is reducible to implication (and negation): green
INCOMP red because x is green implies x is not red, i.e. the
negation of x is red.

A logical relation among linguistic expressions is one that can be re-
duced to the notion of (logical) implication. Logical semantics can be
understood as the attempt to describe all (relevant) semantic relations in
terms of logical relations (and leave the rest to pragmatics). Here are
some examples of logical relations:

entailment: this is just the special case of logical implication holding
among two sentences.

validity: a valid sentence is one that is implied by any sentence
whatsoever.

20 Zimmermann, Formal Semantics

self-contradictory: a property that a sentence ϕ has just in case ϕ im-
plies any sentence whatsoever.

negation: a sentence ϕ (classically) negates a sentence ψ iff ϕ and ψ
together imply a self-contradiction and the only sentences both of them
imply individually are valid.

As many approaches to natural language semantics, logical semantics
faces a very general problem that we will refer to as Mates’s Trap: it
seems impossible to escape the conclusion that synonymy is logical
indiscernibility and thus (presumably) weaker than identity. But this
seems to contradict the fact that, for any two distinct expressions α and
β, the first of the following sentences should be true whereas the second
appears to be false:

(M1) It is possible for someone to believe that α is the same as α
without believing that α is the same as β.

(M2) It is possible for someone to believe that α is the same as α
without believing that α is the same as α.

(Note that the precise form of these sentences might have to be changed
according to the syntactic categories of α and β.) By the Most Certain
Principle, then, (M1) and (M2) differ in meaning and thus a com-
positional meaning assignment would have to assign different mean-
ings to α and β.

In a sense, this problem reveals the limits of logical semantics. This
does not necessarily imply that the logical approach to semantics only
gives a rough picture of meaning that should ultimately be replaced by
something more sensitive (and sensible). It might be that the meaning
difference between (M1) and (M2) should be analyzed in pragmatic,
rather than semantic, terms.

2.2 Models (and Classes of Them)

One leading idea behind the model-theoretic approach is that logical im-
plication is schematic, i.e. it holds between sentences if these are
instances of general patterns. Thus, e.g., the fact that This book is
heavy implies Something is heavy is not an isolated observation about

21 Zimmermann, Formal Semantics

these two English sentences. Rather, sentences of the form ›NP VPfi

always imply the corresponding existential generalization ›Something

VPfi (provided that the subject NP is referential).

The relevant inference scheme is:

(I1) Whenever ϕ is a true sentence of the form ›αβfi, where α is a refer-
ential NP and β is a VP, then ›Something βfi is also a true sentence.

We might thus say that (T) This book is heavy logically implies
(∃) Something is heavy because the two sentences are instances of a
general pattern of inference, viz. (I1).

Given the Most Certain Principle (MCP), meaning determines truth-
value in the sense that two sentences with the same meaning will have

the same truth-value. So to every sentence meaning “ϕ‘, there cor-

responds a truth-value V(“ϕ‘). Moreover, by the principle of com-

positionality, “ϕ‘ can be obtained by breaking up ϕ into its parts γ1,…,γn

and combining their meanings “γ1‘,…,“γn‘ in the way G determined by

ϕ’s structure: “ϕ‘ = G(“γ1‘,…,“γn‘). Schemes like (I1) can thus be re-
formulated with reference to meanings rather than expressions:

(I2) Whenever bn and bv are meanings of referential NPs and VPs, re-

spectively, and V(G(bn,bv)) = 1, then V(G'(“something‘M,bv)) =
1.

G' occurs instead of G in order to allow for the possibility that the
structure of the quantified conclusion differs from that of the premiss
with the referential subject; this does not exclude an analysis according
to which G' = G.

The formulation (I2) of the inference scheme shows that one does not
have to know what the meanings of this book and is heavy are to see
that (T) implies its existential generalization (∃). In other words, which-
ever meanings bn and bv we may choose to assign to the two express-
ions, the conclusion will be true if the premiss is. The technical term for
a way of assigning meanings to (lexical) expressions is model. We have
thus seen that (T) logically implies (∃) because, in any model M in which

(T) is true, (∃) is true; for whichever meanings bn (= “this book‘M) and

22 Zimmermann, Formal Semantics

bv (=“is heavy‘M) M may assign to this book and is heavy, the truth-

value of (∃) is 1 if only (T) is true:

(I3) If M is any model such that V(GM(“this book‘M, “is heavy‘M)) =

1, then V(G'M(“something‘M, “is heavy‘M) = 1.

(I3) lets the combinations GM and G'M of meanings depend on the model
M. We will soon see why this is necessary.

Even though (I3) was just a reformulation of (I1), it differs from it in that
it can be generalized in different ways. Before we do that, let us first ob-
serve that the relation between (I1) and (I3) is analogous to that between
the substitutional interpretation of quantification (!) and its more com-
positional, Tarskian reformulation (!!) discussed in section 1: in (I1)
generality, i.e. the schematic character of the implication, is brought out
by substituting certain expressions with others, just like (!) construes
the generality expressed by the quantifier as a statement about sub-
stitutions of variables by names; and in (I3) we consider alternative
meanings of the expressions actually occurring in the sentences related,
just like (!!) has the quantifier look at alternative denotations of the
variable it binds. We could even say that schematic implication is (uni-
versally) generalized material implication (= truth-table conditional)
and that (I1) is its substitutional, (I3) its Tarskian version. [Incidentally,
(I3) is close to, but not identical with, Tarski’s standard notion of logical
implication; (I1) is more like Bolzano’s.] It should, however, be noted
that the two are only equivalent on the assumption that the meanings
assigned by models are precisely the meanings that can be found in
some expressions (or possible substitution instances); this corresponds
to the tacit assumption in (!) that everything has a name. And it is this
assumption that we will give up in our final, model-theoretic account of
logical implication. As a motivation of this step, we will briefly sketch an
example.

Suppose we interpreted VPs like go to the moon by sets of people; this is
certainly an oversimplification but it helps to see our point more clearly.
Since we would not want a sentence like

(1) Only Armstrong went to the moon.

to come out as self-contradictory, at least one model M0 would have to
make it true: otherwise models M that make it true would make any

23 Zimmermann, Formal Semantics

sentence whatsoever true, for there would not be any such M. According
to M0, the interpretation of went to the moon would be a singleton; and,
more importantly for our present purposes, the interpretation of did not
go to the moon would be its complement, i.e. the set C of all individuals
different from Armstrong (or whoever the name Armstrong refers to in
M0.) How many elements does C have? That depends on the entire
number of individuals. Let us suppose the universe of discourse
contains exactly 520 individuals. Then the sentence

(519) Five-hundred-and-nineteen people did not go to the moon.

would be true in M0. In fact, it would be true in any model that makes (1)
true: for such models would only differ from M0 as to which set of
individuals they assign to which lexical expression – but not with
respect to what an individual is, viz. a member of the meaning of some
VP. Using the same criterion as we did in (I1) - (I3), we would thus find
that (1) implies (519). Well, maybe it does, but this is not what is usually
taken to be a logical implication.

The example just sketched is one kind of unintuitive result we would
obtain if we were to define models as ways of assigning actual meanings
of expressions to (possibly different) expressions. We can avoid it by a
more liberal notion of model that includes ways of assigning meanings
that do not co-exist in the same model: (1) would no longer have to imply
(519) because we might now include models based on a different domain
of individuals. (There are other ways of avoiding the result just
sketched, based on alternative ways of defining logical implication. We
might return to these matters in part 5.) It is this new possibility of
allowing models with totally different domains and, in general,
‘mutually incompatible’ meanings that forces us to let the semantic
operations depend on models.

In general, then, a model has (at least) the following ingredients:

- a realm of meanings;
- a lexical meaning assignment;
- semantic operations;
- a way V to determine truth-values for sentence meanings.

Here are two examples from formal logic:

24 Zimmermann, Formal Semantics

propositional logic:
- meanings: {0,1};
- lexical meaning assignment: truth-value assignment to atomic

formulae;
- semantic operations: truth-tables;
- VM is identity: truth-values are meanings.

predicate logic:
- meanings: functions from variable assignments to extensions (e.g.

truth-values);
- lexical meaning assignment: the mapping from variable

assignments g to g(x) + stipulations about predicates and individual
constants;

- semantic operations: (!!!) + appropriate clauses for propositional
connectives;

- VM gives the truth value of any given formula under a fixed
assignment gM.

Since we assume the Principle of Compositionality and every model M
contains a lexical meaning assignment (plus a specification of the
semantic operations), the meaning of any expression α is uniquely

determined by M; we will continue to denote this meaning by “α‘M.
Using this notation, we are now in a position to give a general, model-
theoretic characterization of logical implication (due to Tarski):

A set of sentences Σ (of a given language L) logically implies a sentence
ϕ (of L) iff in every (intended) model M in which all of Σ is true (i.e.
VM(“ψ‘M) = 1, whenever ψ∈Σ), ϕ is true (i.e. VM(“ϕ‘M) = 1).

What the hell is an intended model? In order to get an idea about this,
let us first note that the above criterion would almost collapse if we
dropped this restriction: it should be intuitively clear that, for any set Σ
of sentences and any sentence ϕ not already in Σ, we could define some
‘model’ M* (with all the ingredients from our above list) that makes Σ
true but ϕ false. Just to take an example: The set {ϕ∧ψ } would not ‘imply’
the formula ϕ of propositional logic because we could, e.g., interpret the
operation ∧ of conjunction by the truth-table usually attributed to
disjunction (∨); in such a model ϕ∧ψ would be true if only ψ is true but ϕ
might well be false at the same time. Of course, interpreting conjunction
as disjunction is no longer logic but it can be done without violating the
general definition of a model of propositional logic. In order to rule out
such models, we thus have to restrict our attention to those M that

25 Zimmermann, Formal Semantics

intuitively do the right thing. And such M are called intended models.
This is, of course, not a precise definition but merely a hint that every
concrete application of Tarski’s criterion of implication must first pro-
vide a class of intended models. (Note that the above examples from
logic already did provide such a restricted notion of a model.) Why a
class and not just a set? This has to do with the very foundations of set
theory: in the case of propositional logic, a set would do (i.e. the class of
intended models is a set), but in predicate logic we would like to have
models based on any given (non-empty) set of individuals. So for any
(non-empty) D the whole collection C of all intended models of predicate
logic contains models containing D as one of their ingredients. C would
thus have to be very large, too large indeed to be a set.

2.3 Logical constants and meaning postulates

Even if the class of all (possible) models of a language is generally too
large to be of interest, one might attempt to find a general definition of
intended models – or at least some conditions that the class of intended
models of a language should meet. Several such conditions have
actually been proposed in the logical literature (on what is called
abstract model theory). The most straightforward one, presumably
inspired by the notion of an intended model of predicate logic, is this:

Neutrality of Subject-Matter
Given two possible models M and M' that differ with respect to their
ingredients but not with respect to their internal structures, then M is
an intended model iff M' is and, moreover, the two should make the
same sentences true.

To take a concrete example: If a model of predicate logic has the set
{1,2,3} as its domain and assigns to the only (unary) predicate P the
extension {3} and 1, 2, and 3 to the (only) constants a, b, and c
respectively, then it makes the same formulae true as a model based on
the domain {Alfred, Bertrand, Charles} that assigns {Alfred} to P and
Charles, Bertrand, and Alfred to a, b, and c respectively. The example
hopefully reveals where the principle got its name from.

Another, very general principle to be satisfied by any class of intended
models might be called closure under sub-topics: whenever the mean-
ings in a model allow the expressions to refer to or make statements

26 Zimmermann, Formal Semantics

about objects in a certain domain D, then there should be analogous
models for each of D’s subdomains. We will not state this principle here
explicitly because it would appear even more vague and obscure than the
previous one and in the attempt to make it more precise we would face a
lot of technical complications. But these examples may suffice to give a
flavour of the whole enterprise of finding general restrictions for in-
tended classes of models. In particular, it appears that, whatever the
value of such general principle may be, they do not seem to get us very
far: more substantial and, presumably, less general restrictions will
have to be imposed on the class of intended models of a given language.

In order to see what kinds of restrictions are likely to apply to intended
models of a language, we will again look at the special but illuminating
case of predicate logic. One reason why certain arbitrary models are un-
intended is that they do not provide the intuitively correct interpretations
of certain expressions: any intended model should assign to a one-place
predicate symbol (a constant function from variable-assignments to) a
set of objects of a given domain (fixed throughout the model) and not,
say, an object of that domain or a truth-value or a fifteen-place relation;
similarly, in first-order logic a variable x must be assigned a function
taking any variable-assignment g (over that domain) to g(x), rather
than, say, a function taking g to the singleton {g(x)} or to the truth-table
for conjunction. This ‘minimal correctness’ in what kind of objects the
meanings of expressions of a given category are can be called type
matching. A model of predicate logic thus has to assign to each (lexical)
expression a meaning of the correct type. Types of meanings will be the
object of part 3 and the general notion of type matching will again be dis-
cussed in part 4; so we will not discuss these fundamental restrictions
on models at this point any further. But one should be aware of their
existence.

Obviously, type matching is not enough. For as we have already seen, a
(possible) model interpreting ‘∧ ’ as disjunction is clearly unintended –
even though conjunction and disjunction happen to be objects of the
same kind, viz. truth-tables. (For ease of exposition, we now think of ‘∧ ’
as a lexical expression of the category ‘binary connective’; type matching
restrictions would also apply if we introduced it by a syntactic operation.)
So an additional restriction on the notion of an intended model of pre-
dicate logic would have to say that ‘∧ ’ means (a constant function from
variable-assignments to a certain truth-table. Similarly, we would have
a restriction on the interpretation of ‘¬’ as negation (rather than the

27 Zimmermann, Formal Semantics

identical mapping on truth-values), ‘∀ ’ as the universal (rather than the
existential) quantifier, etc. On the other hand, no such restrictions apply
to any individual variable or constant. The lexicon of predicate logic is
thus divided between those expressions (like ‘∧ ’, ‘¬’, and ‘∀ ’) whose
interpretation is fixed throughout all intended models and the rest of
them that behave in a more arbitrary way. Note that, strictly speaking,
the meanings of logical constants are not the same in all intended
models. Thus, e.g., what the universal quantifier refers to depends on
the universe of discourse D. On the other hand, for any given D, the
meaning of ‘∀ ’ is literally the same throughout all intended models that
have D as their universe. Moreover, the meaning of ‘∀ ’ in one model
corresponds to its meaning on any other model: it is always (the
constant function from all assignments to) the singleton of the universe.
This way of describing the meaning of ‘∀ ’ also show that it is always a
very special kind of object: it can be defined in purely structural terms
(‘set’, universe’), without reference to any particular members of
features of the universe of discourse. (This is,e.g. not true of the mean-
ing of the quantified NP every bachelor.) Similar things can be said
about the other expressions whose meaning remains constant across all
intended models of predicate logic. We will return to these observations
towards the end of part 3.

What has been said about predicate logic also holds for model-theoretic-
ally interpreted languages in general: some expressions, the logical
constants (or logical words), will have fixed meanings in all intended
models. Does that mean that all other (lexical) expressions are only sub-
ject to type-matching restrictions? No. For one thing, the distinction
between variables and constants is usually not taken as a type distinc-
tion. (This is, of course mainly a terminological point concerning the
term type.) More importantly, in model-theoretic interpretations of
(fragments of) natural languages, one needs many restrictions on the
meanings of non-logical words, simply because without them certain
logical implications could not be predicted. There are two different kinds
of such non-logical restrictions, subcategorial and relational ones. A
restriction of the first kind is, e.g., the requirement that proper names
are to be interpreted as quantifiers of a very special kind: each of them
must denote the set of those sets of individual that contain one particular
individual (intuitively speaking, the bearer of that name) as a member.
Note that this requirement does not fix the denotation of the proper
name: there are always many quantifiers of that kind (= subtype). An
example of a relational restriction on non-logical lexical items is the

28 Zimmermann, Formal Semantics

(over-simplified) lexical decomposition of kill into cause to die: it
establishes the relation of identity among the meaning of kill and a
combination of the meanings of cause and die.

Restrictions on the interpretation of non-logical words usually have an
effect on the implications and other logical relations holding in virtue of
what counts as an intended model. Thus, e.g., the fact that the sentence
John sleeps logically implies Someone sleeps can be seen to be partly a
consequence of the above-mentioned restriction on proper names (pro-
vided one chooses to interpret them as quantifiers at all, that is).
Similarly, given a suitable analysis of gerunds and certain other con-
structions, the decomposition of kill may have the consequence that (*)
will come out as valid:

(*) Killing someone is causing that person to die.

In fact, it is to be expected that the models in which (*) holds are
precisely those that satisfy the decomposition restriction. So instead of
putting a restriction on the interpretation of the lexical items kill,
cause, and die, we might as well say that in any intended model the
truth-value of (*) must be 1. Such sentences whose truth is, by definition,
a necessary condition on intended models are called (direct) meaning
postulates. The use of meaning postulates is thus a technique of im-
posing restrictions on the non-logical part of the lexicon. However, not
all such restrictions can be expressed by (direct) postulates: under
certain background assumptions about the class of intended models, the
restriction that proper names be interpreted as quantifiers of a certain
kind cannot be expressed by a direct meaning postulate. However, we
will see (in part 4) that we will be able to express this restriction by an
indirect meaning postulate, i.e. one to be expressed in a (logical)
language different from (and more powerful than) the one to be
analyzed.

2.4 A word about alternative approaches

It must be emphasized that the model-theoretic approach to meaning,
although standard, is by no means the only one to have ever been
suggested. In this section, some of its most popular alternatives will be
mentioned. Some of these alternatives can be motivated by Mates’s trap
and similar alleged shortcomings of model-theoretic semantics. A

29 Zimmermann, Formal Semantics

radically different approach to meaning would seek to avoid these
problems by stipulating that meanings themselves are expressions of
some language (of thought). Any such semantic theory can be called
representational. In one of its more naïve forms representationalism
may favour the trees of componential analysis mentioned in part 1. Note
that at least some meaning relations can be defined on such tree
representations without further interpreting them (model-theoretically
or otherwise). In particular, hyponymy might be reduced to the subset
(or sublist) relation. To be sure, more sophisticated notations will be
needed to account for the semantic structure of any significant portions
of natural languages but the semantic features give at least an idea: a
representationalist analysis semantically analyses natural language
expressions (or utterances) by relating them to representations, i.e.
expressions of some other language; and all meaning relations are
directly defined on these representations without any model-theoretic
detour. One might wonder what these representations are: are they
supposed to be or somehow represent neurological structures or
processes, are they universal innate ideas or combinations thereof, or
are they merely nice little formulas whose very existence is justified in
their success (if any) in descriptive semantics? The answer to this
question depends on the particular representationalist approach. So
does any criticism from a model-theoretic point of view.

If meanings are more subtle (or ‘fine-grained’) than whatever logical
semanticists take them to be, this does not mean that they have to be
expressions of another language. Maybe they are objects in their own
right, irreducible to the stuff model-theoretic semantics is made of and
following their own rules. In that case it would be surprising if the
logical approach to meaning would be of any help in developing a theory
of these semantic objects. But how could one arrive at such a theory? One
approach would be by listing as many basic general facts about
meanings as one can find and as one needs for natural language
semantics and then try to get everything into a neat (usually axiomatic)
theory. Such is an intensionalist approach to meaning (or my
caricature of it). Quite surprisingly, the outcome very often not only
closely resembles the results of model-theoretic semantics, the methods
used in establishing them are even essentially the same. But there are
differences: intensionalists usually have no problems with the subtleties
of meaning that lead more conventional semanticists into Mates’s and
other peoples’ traps. Moreover, intensionalist accounts of even very
simple semantic phenomena tend to be very complex. Finally, whether
any intensionalist theory will arrive at the same descriptive breadth and

30 Zimmermann, Formal Semantics

compatibility with linguistics (and philosophy of language) remains to
be seen.

Even if we accept the fundamental connection between meaning and
truth and agree that semantics should be based on logic, we might still
look for alternative approaches to logic itself. It is well-known that, in
the case of first-order logic, logical implication can be defined without
any reference to truth, reference, or models: a first-order implication
holds if and only if it can be established by the use of some suitable proof-
procedure. (This is the content of Kurt Gödel’s famous Completeness
Theorem.) The essential point about these proof-procedures is that they
are purely formal (or ‘syntactic’, as logicians say) in the sense that they
are manipulations of formulas that only depend on their structure. So
couldn’t natural language semantics be based on proofs rather than
models? This has, in fact, been suggested by various logicians but again,
a concrete application to any significant fragment of some language has
yet to be elaborated. But the program of proof-theoretic semantics has
been around for a while. Three things about it should be noted. The first
is its representationalist flavour: like the representationalist definitions
of semantic relations, proof-theoretic techniques are purely syntactic.
Secondly, the Completeness Theorem holds for first-order logic but
nowhere beyond. (This can be seen as a consequence of the Un-
definability of Arithmetical Truth established by Tarski.) Now there is
some indication to the effect that natural language should be analyzed
as being of higher order. Although this would by no means imply that
proof-theoretic techniques are unavailable, their scope would be more
limited than in the first-order case. Thirdly, something positive must be
said about the proof-theoretic approach: even if, in its orthodox form, it is
completely equivalent to the model-theoretic approach (to first-order
logic), it generalizes in quite different ways. In particular, some
notorious difficulties with model-theoretic analyses of natural language
sentences can be overcome by switching to proof-theory and slightly
adjusting some techniques; this is, at least, what some logicians have
suggested.

There are less radical alternatives to model-theoretic semantics in the
sense discussed above. One of them, realism, should be mentioned
explicitly because it is easily confused with what we have done in section
2.3. However, we will only be able to discuss it in part 5.

31 Zimmermann, Formal Semantics

Exercise

3. Show that, at least for classical propositional logic, the definition of
negation given on p. 10f. is correct: any formula ϕ negates a formula ψ
if and only if ϕ is logically equivalent to ¬ψ, i.e. if “ϕ‘g = “¬ψ‘g for any
truth-value assignment g. You may assume that self-contradictions
always get the truth-value 0 and that the valid formulae are the
tautologies. Hint: One direction is simple. The other one is to show

that “ϕ‘g = “¬ψ‘g for any g; it is best to distinguish the cases “ϕ‘g = 1

and “ϕ‘g = 0 and use one of the two properties of negation in each
case.

32 Zimmermann, Formal Semantics

3. Extensional Types

3.1Motivation

Although we have seen that compositionality forces us to use highly
complicated objects as semantic values (or meanings), we will try to
avoid them as often as we can. In particular, they will not play any role
in the classification of meanings according to their types. Instead, we
will concentrate on the extensions of expressions. What are extensions?
There are various non-equivalent ways of defining this notion. A good
characterization (for our purposes) is this: the extension of an
expression is that object in the world that the expression corresponds to.
In the case of a referential NP, the extension is thus the referent; the
extension of a VP is the set of individuals having the property (engaging
in the activity, …) described by it; the referent of a sentence is its truth-
value, etc. (The latter option can be justified by thinking of sentences as
0-place predicates denoting one of the two sets of 0-tuples, Ø and {Ø}, i.e.
0 and 1.) If we want to apply it to the expressions of predicate logic,
extensions are thus whatever we get when we apply meanings to a
particular, given variable assignment; extensions are thus model-
dependent. Our classification of extensions will then give rise to a
classification of meanings according to which types of extensions will be
their values in any given models. Similarly, we will think of natural-
language expressions as having extensions that are determined by their
meanings and whose classification carries over to these meanings.

We have already seen that different kinds of expressions of predicate
logic differ with respect to the kinds of extensions that they have: some of
them, variables and individual constants, refer to individuals (from a
given universe of discourse), others (predicates) correspond to relations
of various arities, formulas (or sentences) ‘denote’ truth-values, con-
nectives) stand for truth-tables, etc. Although these differences in ex-
tensions do not reflect all semantic distinctions to be found among the
expressions of predicate logic, they will be sufficiently rich and inter-
esting to provide a basis for our classification. But what is the use of
such a classification? One, very basic application has already been
announced in the previous part: it will allow us to define a notion of type
matching that is useful in the definition of a (class of) intended models.
A more substantial applications of the classification of extensions into
types is the theory of meaning combinations (or semantic operations),
i.e. the general structure of semantic algebras in the sense of section 1.3.

33 Zimmermann, Formal Semantics

3.2 Types and Ontologies

The type of object that may serve as the extension of a predicate logic
expression obviously depends on its syntactic category (variable,
individual constant, formula, etc.). In other words, to each syntactic
category there corresponds a kind of extension. the same seems be true
of natural language expressions, or so we will assume for the time
being. Here is one plausible correspondence covering the most obvious
cases:

(1)
Category Kinds of extensions

S truth-values
NPref individuals
VP sets of individuals
N sets of individuals
Det binary relations among

sets of individuals
NPquant sets of sets of individuals

Vtrans binary relations among individuals

Since sets and binary relations closely correspond to characteristic
functions, all extensions appearing below the second line of the above
table can be thought of as functions with domains that can be built up
from truth-values and individuals, i.e. the extensions of sentences and
referential NPs. Using t as short-hand for ‘truth-values’, e for
‘individuals’ (or ‘entities’), and ‘(ab)’ for ‘function from a to b’, the
above table can be rewritten in the following way:

(2)
Category Kinds of extensions

S t
NPref e
VP (et)
N (et)
Det ((et)((et)t))
NPquant ((et)t)

Vtrans (e(et))

34 Zimmermann, Formal Semantics

Tables like (2) (or, rather, their completions) are called type assign-
ments or type correspondences: they assign to each syntactic category
the corresponding type of meanings (or extensions) of the expressions of
that category. A straightforward way of specifying conditions of type-
matching, then, is by stipulating that all intended models are subject to
a given type assignment. Given the compositional approach to
semantics, it would, of course, suffice to postulate that the lexical
meaning assignment satisfies the type assignment and that the
semantic operations G are in accord with it: whenever F is a syntactic
operation combining (structures of) expressions X1,…,Xn of categories

κ 1,…,κ n into F (X1,…,Xn) of category κ n+1 and κ 1,…,κ n,κ n+1 are

assigned the types a1,…,an,an+1, then GM (“X1‘M,…,“Xn‘M) is of type
an+1. (GM is, of course the semantic operation corresponding to F,
according to the model M.) Note that while to every syntactic category
there corresponds a type, there may be types corresponding to no or
more than one category: sets of individuals, i.e. objects of type (et), are
extensions of both nouns and VPs and, at least according to the
assignment (2), there is no category whose expressions denote functions
from truth-values to individuals, i.e. objects of type (te).

Given these preliminaries, we can now define the set T of types of ex-
tensions or extensional types as containing (exactly) everything that
can be obtained by starting from the basic types e and t and taking
pairs; T is generated by the context-free grammar {S → e, S → t,
S → (S + S)}, where ‘e’, ‘t’, ‘)’, and ‘(’ are terminal symbols and ‘S’
is the non-terminal start-symbol. Note that the types themselves are only
symbols, labels, names. Which objects they correspond to varies with the
universe of discourse D. But the set Da of possible extensions of type a
(given a non-empty universe D) can again be defined recursively:

(3) De = D;
Dt = {0, 1};
D(ab) = Db

Da , i.e. the set of those functions f that are defined for any
u ∈ Da and assign to it a value f (u) ∈ Db.

A system or family (Da)a∈ T of such typed domains will be called an
ontology and the individual Da are the ontological layers. Ontologies
are thus uniquely determined by their universe of discourse (= layer of
individuals of type e). Apart from truth-values and individuals, which
layers does an ontology satisfying (3) consist of? In order to answer this

35 Zimmermann, Formal Semantics

question, it is best to concentrate on such normal ontologies whose
domain D of individuals contains neither functions nor truth-values;
then any of its objects is of exactly one type, i.e. it occurs in exactly one
layer. As already mentioned, for any type a, D (at) contains all
characteristic functions χA

a of subsets A of Da. For most purposes, these
χA

a can be identified with the corresponding sets A. However, sometimes
one must take a little care. A case in point is the empty set Ø whose
characteristic function can be found in every layer of the form D(at) –
simply because Ø is a subset of every Da. But if a ≠ b, then Da ≠ Db

and hence no χA
a is identical with any χB

b: their domains do not coincide.
In particular, then, χØ

a ≠ χØ
b, even though there is only one empty set.

Under the normality condition, Ø is the only set that gets characterized
by more than one function in one ontology. Keeping this exception in
mind, it is therefore not too dangerous to actually think of layers D(at)
as power sets. Other identifications are equally harmless. In particular,
to every function f of a type (b(at)) (i.e. f ∈ Db(at)) there corresponds

exactly one binary relation R ⊆ D a × D b: uRv – i.e. (u,v) ∈ R – iff
f (v)(u) = 1, i.e. if the result of applying the function f to v characterizes a
set of individuals among which u can be found. f (v) thus characterizes
the set of v’s R-predecessors. There is obviously something arbitrary in
this way of identifying binary relations with functions: why should we
get the pair (u,v) by first applying to u, and then to v? Why not the other
way round? The reason for this particular choice lies in a nice con-
sequence of it: we can continue to think of (at least certain) transitive
verbs as denoting binary relations and then analyze sentences like John
loves Mary by subsequently applying the extension (l ∈ De(et)) of the

verb to that of the object (m ∈ De) and the subject (j ∈ De): l (m)(j). Unlike
the first-order formalization, this semantic analysis reflects (part of) the
constituent structure of the sentence. – The correspondence between
Db(at) and Da × Db can obviously be generalized to n-place relations
and we will later make use of this possibility without further warning.
But it should be kept in mind that all such identifications must be taken
with care.

3.3 Coverage and Size

Since there are infinitely many types but only finitely many syntactic
categories (in a given language), it is clear that not every type can
correspond to a category (of that language). In particular, then, not

36 Zimmermann, Formal Semantics

every object in a given ontology can be the extension of an expression of a
given language). If, on the other hand, some type a does correspond to a
syntactic category C, one might expect C to cover a in the sense that,
in any ontology, every object u of type a (i.e. u ∈ Da) is a possible
extension of at least some expression of category C. But is this really so?
Let us check the type assignment (2)! In the case of sentences, coverage
of t is obvious: some (English) sentences are true, others are false. The
case of referential noun phrases is also quite straightforward: as we
have seen in section 2.3, it should not really matter which individual is
denoted an individual constant in predicate logic; and, at least if we
assume that proper names are analyzed in an analogous fashion, a
name like John should be able to denote any individual whatsoever –
depending on the particular model. As to VP and N, it also seems
plausible to assume that any set of individuals of any ontology can, in
principle serve as the extension of a lexical item like sleep or woman.
Similarly, it appears reasonable to assume that there should be no
restriction on which binary relation Rx could be denoted by the lexical
verb kill; even the restriction that R must at the same time be the
extension of cause to die does not bear on the issue who actually kills
whom.

In the remaining two cases, the situation is different. Many
determiners (like every, no, some, etc.) are logical words and their
meanings is thus fixed once we are given a set of individuals, Moreover,
it should be clear that, in any ontology, there exist lots of objects of type
(et)((et)t) that are not denoted by any of these logical determiners. But
even the non-logical determiners (like many or John maybe) satisfy
certain restrictions that prevent them from denoting arbitrary relations
among sets of individuals. The most obvious such restriction (but
possibly not the only one) is their conservativity that holds because each
δ of them satisfies:

(CONS) δ(A)(B) = δ(A)(B∩A)

(Note that in (CONS), ∩ combines the characteristic functions of two sets
into the characteristic function of their intersection.) The conservativity
constraint reflects the basic observation that any sentence of the form

›Det N VPfi has the same truth conditions as the corresponding sentence

›Det N is a N and VPfi: no woman is asleep means no woman is a
woman and is asleep, etc. Now, clearly, in any ontology one can find

37 Zimmermann, Formal Semantics

relations δ of type (et)((et)t) that do not satisfy (CONS). Thus, if every
determiner satisfies (CONS), Det does not cover (et)((et)t).

How about NPquant, then? The question of whether every set of sets may
serve as a possible extension is rather difficult to answer and so we will
be happy with one simple observation: unlike NPref, VP, N, and TV, the
category NPquant does not contain any such flexible lexical items that
can denote any object whatsoever of the corresponding type: the meaning
of everybody is bound to be a restricted universal quantifier and, e.g.,
cannot turn out to be {Ø}. And even if we take all lexical NPquants
together, their extensions will only cover a small percentage of all
objects of type (et)t. Moreover, the inclusion of ‘lifted’ proper names,
i.e. quantifiers of the form {S ⊆ D|u ∈ S} (for some fixed u ∈ De) would
not give us full lexical coverage either: all quantifiers of the form
{S ⊆ D|u ∉ S} would still be left out of the spectrum.

One may wonder whether there is any way of predicting whether a given
syntactic category covers or even lexically covers its corresponding type.
One attempt at finding such a criterion is:

Keenan’s Thesis
If a category C lexically covers a type a, then a must be small.

Intuitively speaking, a small type a is one with relatively few elements
in Da. In order to make this notion more precise, one would first have to
compare different ontological layers with respect to their sizes, i.e.
cardinalities. In order to do this, two things should be noted. The first is
that the size of some layers does not depend on the particular ontology:
whatever the domain D of individuals is, Dtt will always contain
exactly two elements, the size of Dt will be 4, etc. In fact, if a is any type
containing only ts, then Da does not depend on De and consequently its
cardinality is fixed (and finite). The second observation to be made is

that, no matter what a and b are, the cardinality of Da
Db is Da

Db where
Da and Db are Da’s and Db’s respective cardinalities. If both Da and Db

are natural numbers, this can be proved by induction on Db. (The
essential point is that each function from a domain with Db members
can be extended to Da new functions on a domain with Db +1 members.)

If one of the two is infinite, ‘ Da
Db ’ denotes the cardinality of Da

Db

(almost) by definition. In particular, then, the power set D(et) of the

layer De contains exactly 2De members, whereas its power set, De(et),

38 Zimmermann, Formal Semantics

contains 2 2 n, where n = |De| is the number of individuals. Now the
former is the cardinality of the type lexically covered by VP, whereas the
latter is the number of generalized quantifiers, a type that might is not
lexically covered. So, if the above thesis is right, the borderline between
small and large types must lie between the two. In order to determine it,
one must keep in mind, that a cardinality such as 2n still depends on
the number n of individuals. So what we are comparing are functions
from such n to natural numbers. The general pattern for determining
these functions is:

#n(t) = 2;
#n(e) = n;

#n((ab)) = #n(b)#n(a).

We may call the function taking any n to #n(a) the size of type a. So
when is a small, in the sense of Keenan’s Thesis? One answer that
draws the line where we want it to be is this: its size must not exceed the

2φ(n), where Φ is a fixed polynomial, i.e. an algebraic term construed
with +, ×, fixed numerals, and n. Let us check this for the type e(et)
corresponding to TV:

#n(e(et)) = #n(et)#n(e) = #n(et)n = [#n(t)#n(e)]n= [2n]n = 2n×n,

so the polynomial Φ(n) is: n×n. In order to show that the types
corresponding to Det and NPquant are not small, one would have to prove

that their sizes cannot be represented in the form ‘2φ(n)’, which can
indeed be done by purely mathematical methods outside the scope of this
course.

Even if Keenan’s Thesis (or something like it) were correct, wouldn’t it
just be an odd observation about natural language? Or, worse, wouldn’t
it just be an observation about this type-theoretic framework? We will not
answer these questions here but merely indicate that Keenan himself
has worded his thesis more carefully and at least tried to explain it (or
make it plausible) by considerations on the learnability of lexical items
and their meanings. Whatever the merits of these attempts, it would
presumably be more satisfactory to somehow reduce Keenan’s Thesis
(if correct and meaningful) to some more basic principles about the
ranges of denotations and the logical behaviour of lexical items. This
has not (yet) been done.

39 Zimmermann, Formal Semantics

3.4 Combinations of Types

One of the major advantages of a type-theoretic framework lies in the
fact that it naturally leads to a theory (or a variety of theories) of possible
semantic operations, i.e. combinations of meanings corresponding to
structure-building operators. We start with a simple observation. In
many cases, syntactic combinations semantically amount to functional
application, i.e. applying the extension of one expression to the
extension(s) of the other(s) that are combined with it. Thus, as was
already mentioned above, the truth-value of John loves Mary can be
computed by applying the extension of loves Mary to that of John; and

the former is obtained by applying “loves‘ to “Mary‘:

“(S John (VP loves Mary))‘

= “loves Mary‘(“John‘)

= “loves‘ (“Mary‘) (“John‘),

which is 1 iff the pair (“John‘,“Mary‘) is in the relation described by

the e(et))-function “loves‘. Similarly, combining a quantified NP with
a VP can be interpreted by applying the denotation of the NPquant to

“VP‘:

“everyone sleeps‘

= “everyone‘ (“sleeps‘),

which is 1 iff “sleeps‘ ⊆ “person‘. So to each of the structure-building
principles:

(4) S → NPref VP

(5) VP → TV NPref

(6) S → NPquant VP

there corresponds the semantic combination of functional application:

(4') “S‘ = “VP‘(“NPref‘)

(5') “VP‘ = “TV‘(“NPref‘)

(6') “S‘ = “NPquant‘(“VP‘)

40 Zimmermann, Formal Semantics

Remember that, in the framework discussed in section 1.5, the context-
free rules (4) - (6) can be thought of as binary operations on trees. The
order in which these operations take their arguments does not
necessarily coincide with the order in which they arrange them. So in
all three cases the first argument might as well correspond to the
category corresponding to the function type ab. The semantic operation
would then always be the very same one, viz. application of the first
argument to the second.

Let us now consider quantified direct objects:

(7) VP → TV NPquant

An interesting effect of our type-theoretic framework is that it tells us
that, whatever the semantic operation corresponding to (7') may be, it
cannot be functional application (FA), as in the first cases. Why not?
Because FA only applies if one of the extensions is of a type ab and the
other is of the argument type a:

(8) (ab), a FA b

(8) says that FA combines objects of type ab with objects of type a into
objects of type b, but according to our type assignment (2), the types in
(7) are e(et) and (et)t, and they don’t match the pattern (8). But maybe
there is another, equally straightforward way of combining them:

(9) (e(et)), (et)t XY et

To be sure, there is no problem in defining the particular combination
XY needed in our special case: given the extension R ∈ De(et) of a

transitive verb and the extension Q ∈ D(et)t of a quantified NP, the
result of combining the two expressions by (7) should denote the set of all
individuals that bear R to a quantity in the denotation of Q:

(10) XY (R,Q) = {x∈ De|{y∈ De|xRy} ∈ Q}

(Note that we have identified functions with the sets and relations they
characterize.) Applying (10) to examples like sell everything shows that

it does make the correct predictions: {x∈ De|{y∈ De|x“sell‘y} ∈ {De}}

= {x∈ De|{y ∈ De|x“sell‘y} = De} = {x∈ De|(∀ y ∈ De)x“sell‘y}. But

41 Zimmermann, Formal Semantics

whereas FA seemed to be the natural thing to do given the input and
output types of (7), XY looks much more idiosyncratic. Or is the dif-
ference between FA and XY only an illusion caused by the complicated
nature of the types in (9)?

The type-theoretic approach to delimiting the kinds of semantic
operations to be met in natural languages is to associate with any
combination of types the most natural combination(s) of meanings
(extensions) of those types. One would thus try to predict that, under the
type assignment (2), rules (4) - (6) should be interpreted by functional
application, whereas (7) has XY as at least one natural interpretation.
Using the arrow notation introduced in (8), we can characterize this
task as that of supplying naked type combinations of the form (11) with
suitable operations G, as noted in (12):

(11) a1, …,an an+1

(12) a1, …,an G an+1

There are two natural starting points for attacking this problem, and we
will discuss both of them. The first one will be introduced in this section
and continued in part 4: it consists in finding independent evidence (and
methods) for narrowing down the possible naked type combinations (11)
and only later worry about how to obtain the G. The second possibility is
to look for plausible general criteria that semantic operations G should
meet and only then wonder which type combinations they correspond to.
One such method will be discussed in section 3.5, another one will
naturally come up in part 4.

A straightforward formal procedure for defining all plausible (naked)
type combinations is to generate them from some axiomatic system.
How could such a system be construed? An answer to this question
comes from formal syntax theory. For there is a close analogy between
types and the categories of (classical) categorial grammar: expressions
denoting functions of type ab may be thought of as incomplete (or, in
Frege’s terms: unsaturated) terms denoting b-type objects: they lack
an a-type argument-term. So according to classical categorial analysis
(due to Ajdukiewicz), they would be classified as being of a functor
category B/A, which is read ‘B over A’. (Note the unfortunate in-
version). Generalizing this idea then gives us a one-one correspondence
between our functional types and the categories to be construed from

42 Zimmermann, Formal Semantics

NPref and S by slashing. Thus, e.g., the types (et)t and e(et) cor-
respond to the categories S/(S/NPref) and NPref/(NPref/S), respectively.
From a categorial point of view, we might thus be tempted to read
‘NPquant’ and ‘TV’ as abbreviations of the latter functor categories. An
obvious result of such an analysis would be the prediction that Nobody
loves Mary is a sentence:

(13) S

S/(S/NPref)

nobody

S/NPref

(S/NPref)/NPref

loves

NPref

Mary

(13) is a well-formed categorial tree because it is based on the principle
C of classical categorial grammar that combines expressions of functor
categories A/B with their arguments of category B, resulting in complex
expressions of category A. (Note that C can be expressed by a scheme of a
context-free rules ‘A → A/B B’.) Clearly, C closely corresponds to FA in
that the latter is applicable in just the same situations (given our
correspondence between types and the categories of categorial
grammar). And, as one can easily check, FA is actually what we need
in order to compute the extension of (13).

In the attempt of applying categorial techniques to natural language
syntax, it has been observed that the principle C is insufficient. For, as
we have just seen in terms of combining types by means of FA, we would
not be able to derive sentences with quantified direct objects with the
kind of lexicon underlying (13). Of course, we may enrich our lexicon by
a double classification of, say, loves: VP/NPquant → loves [i.e.:
(S/NPref)/(S/(S/NPref) → loves] would do for our present purposes. But
then we would get the same kind of lexical ambiguity all over the place;
and it certainly is not the only one to be encountered. So instead of ad-
mitting ever more homonyms, one should try to find a more systematic
account of what is going on. And one way of arriving at such an account
is to replace the classical principle of combination C by a more liberal
system of possible combinations. The most celebrated of these enriched
systems of categorial grammar is Lambek’s Calculus to which we will
now briefly turn.

43 Zimmermann, Formal Semantics

3.5 Lambek’s Calculus

It must be kept in mind that our interest in Lambek’s Calculus is not to
repair classical categorial analysis but rather to find a theory of possible
type combinations in the sense of (11). So we might as well use the type
notation directly and immediately forget about the slash categories. The
calculus then provides a system of deriving certain type combinations
from a collection of basic ones, the axioms. The latter are easily intro-
duced and motivated:

(L0) a a

(L1) (ab), a b ; a, (ab) b

The first axiom is absolutely trivial: as a principle of type combination it
says that a (unary) semantic operation may map extensions of a given
type to extensions of the same type. A typical case of (L0) is the inter-
pretation of a lexical insertion rule: the meaning of the lexical item is
passed on to the node immediately dominating it: the extension of a tree
like

(14) …

… N

bachelor

can be determined by:

(14') …

… {John Paul II, George III, Ringo IV, …}

{John Paul II, George III, Ringo IV, …}

Note that the semantic operation corresponding to the lexical rule ‘N →
bachelor’ is the identical mapping ID. So we already know how to
complete (L1) by a suitable semantic operation:

(L0') a ID a

However, at this point it is not clear whether ID should always be

44 Zimmermann, Formal Semantics

considered the only possible semantic operation taking us from a to a.
And, as was already mentioned, the problem of associating semantic
operations with type combinations will not be attacked (systematically)
before part 4.

There is not much to be said about the axiom schemata (L1): they
express that whatever functional application does is a possible type
combination. The reason why we have two versions of this scheme is
that we do not want to be biased as to the order in which functor and
argument are supplied by the syntactic construction. Of course, when
read as a categorial axiom scheme, the fact that (L1) goes both ways is
less trivial. Indeed, in more syntactically oriented versions of Lambek’s
Calculus one will find more sophisticated formulations of (L1). In any
case, the scheme will always be a version of the fundamental law C of
classical categorial grammar.

Note that, on our type reading of Lambek’s Calculus, it is again unclear
whether the completion (8) of (L1) by functional application should
always be the only way of providing a corresponding semantic operation;
but it is certainly always a straightforward possibility.

(L0) and (L1) are the only axioms. All other combinations will be derived
from them by means of three schematic inference rules. Before we go
into them, we must say something about their format. One might expect
the rules allow us to deduce the possibility of some type combination
a1, …,an an+1 from that of some other, previously established type

combination(s). However, the actual rules are somewhat more general.
To motivate their format, let us look at a very simple example. We
certainly would like the following to be a possible type combination:

(15) e, e, e(et) t

(15) states that the extension of a transitive verb can be combined with
two NPref-extensions so that the result will be a truth-value. Although
there might be no immediate use for this kind of combination, we
certainly do not want to rule it out as an impossible combination of types.
Now note that in our above discussion there was no need for (15) because
we got the same result by iterating FA. But this fact in itself might be
seen as a justification of (15): the type combination should be possible,
because we could get it by iteration of other, possible type combinations.
In order to turn such a justification into a formal proof (from the axioms

45 Zimmermann, Formal Semantics

of our Calculus, that is), we could argue along the following lines: by
(L1) we know that we can get the type et of the VP out of the TV’s type
e(et) and the referential object’s type e:

(i) e(et), e et

This combination should also be applicable in the situation (15), where
there is still another e around (corresponding to the referential subject).
From the possibility of (i) we should thus be able to infer the possibility of:

(ii) e, e(et), e e, et

Note that the type e of the subject still appears on the right hand-side:
we do not want to combine the meanings of transitive verb, subject, and
object into that of the VP. But what we get as the result from (ii) may
now be fed into the scheme (L1) again:

(iii) e, et t

So, the argument goes on, we can plug (ii) and (iii) together and obtain
(15).

An important point about this derivation of (15) is the intermediate step
(ii) which is not of the general form (11) of a (naked) type combination but
rather of the more general form. i.e. it contains more than one resulting
type:

(16) a1, …,an b1, …,bm

The above example hopefully illustrates that we can understand these
more general combinations as steps in a derivation. In the syntactic
interpretation of Lambek’s Calculus these intermediate steps could be
made more sense of: (16) can be read as stating that a string of
expressions of categories a1,…,an can always be analyzed as consisting
of expressions of categories b1,…,bm.

A closer look at the derivation of (15) reveals that it involved two general
principles, corresponding to the first two inference rules of Lambek’s
Calculus. In order to get from (i) to (ii) we argued that a type possible
combination should remain possible in the presence of other types. We

46 Zimmermann, Formal Semantics

thus have the following principle of ‘contextual freedom’ of type
combinations:

(L2) If
a1, …,an b1, …,bm

is a possible type combination and c1,…,ck, d1,…,dl are types,
then

c1, …,ck, a1, …,an, d1, …,dl c1, …,ck, b1, …,bm, d1, …,dl

is a possible type combination.

(We tacitly adopt the convention that something like c1,…,ck might be
an empty string of types.) If we denote arbitrary strings of types by cap-
ital letters, (L2) can be expressed in a shorter form that we will adopt:

(L2) If A B, then: C, A, D C, B, D .

The second principle of argumentation that we have used above was in
plugging (ii) and (iii) together to obtain (15). We have thus made implicit
reference to a ‘transitivity principle’ for type combinations:

(L3) If A B and B C then: A C.

In order to motivate the final inference rule, we have to look at another
example, the interpretation of the word not in the quantified NP not
every student. As one can easily show, a plausible and straightforward
interpretation of this negation of NPquant is by taking it to denote the

complement of its argument: “not every student‘ = D(et)t \ “every

student‘, which in our type-theoretic framework amounts to:

“not every student‘(P) = 1 iff “every student‘(P) = 0.

Or, equivalently:

“not every student‘(P) = ¬(“every student‘(P))

where ¬ is the (metalinguistic way of referring to) ordinary truth-
functional connective of negation. Given this connection, one might
wonder whether there is no direct way of combining ¬ ∈ Dtt with
quantifiers. We would thus need the type combination:

47 Zimmermann, Formal Semantics

(17) tt, (et)t (et)t

Here is how we could argue for (17): given the axioms and rules already
introduced, it is easily seen that (18) is a possible type combination:

(18) tt, (et)t, et t

Now note the categorial reading of (18): a predicate (category S/NPref), a
quantified NP (S/(S/NPref)) and negation (S/S) combine into a sentence.
So if we omit the predicate we get a sentence lacking a predicate, i.e.
something of category S/(S/NPref), the category of quantified NPs
corresponding to type e(et). But this is precisely what (17) says. The
general principle underlying this derivation of (18) from (17), then, is:

(L4) If A, b c, then: A bc, whenever A is non-empty;

similarly, if b, A c, then: A bc, whenever A is non-empty.

One might conjecture that (L4) can also be used to explain the use of or
in, e.g., reads or writes as an instance of the type combination:

(19) t(tt), e(et), e(et) e(et)

However, it turns out that (19) is not derivable in Lambek’s Calculus. We
will return to this problem in part 4.

(L0) - (L4) constitute Lambek’s Calculus. We will now check that it does
give us the type combination needed for the operation XY that combines
transitive verbs and their quantified objects into VPs:

(20) (e(et)), (et)t et

In order to derive (20), we first note that we can get it from (21) by (L4):

(21) e, (e(et)), (et)t t

So the task is to derive (21), which is not hard: the name type e combines
with e(et) into et, by (L1), and this combination is also possible in the
presence of the quantifier (et)t to the right, by (L2), giving us et, (et)t,
which in turn can be reduced to t, by (L1). Plugging the last two results

48 Zimmermann, Formal Semantics

together by means of (L3) the gives us the desired combination (21). The
whole derivation of (20) can now be represented in a (hopefully self-
explanatory) proof tree form:

(22)
L1: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t
_ _
L3: e, e(et), (et)t t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e(et), (et)t et

Here is a more complicated derivation of the same combination:

(23)
L1: e(et), e et
_ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), e e, et ; L1: e, et t
_ _
L3: e, e(et), e t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t
_ _
L3: e, e(et), (et)t t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e(et), (et)t et

We will later see that different derivations in Lambek’s Calculus may
correspond to different completions of the type combinations derived. In
this particular case, (23) corresponds to the operation XY defined in (10)
above, but (22) doesn’t. Although the systematic reason for this
difference can only be fully understood on the background of the
material in part 4, there is already an intuitive way of seeing the crucial
difference between the two derivations above. For we may distinguish
different occurrences of e in (22) and (23) according to whether they
correspond to the subject or object positions of the transitive verb. In fact,
we may think of them as corresponding to slightly different types of
individuals, es and eo. Thus, e.g., the first line of (22) becomes:

eo, eo(est) est

49 Zimmermann, Formal Semantics

because the object is supposed to correspond to the outermost argument,
according to our characterization of binary relations. If we carry this
indexing through both derivations, we will find that the result of the
combination in (23) is a set of subject es, whereas the e on the right side
of the result in (22) must be co-indexed with the object:

(22') eo(est), (est)t eot
(23') eo(est), (eot)t est

Intuitively speaking, (23') says that the NPquant quantifies over the object
position, so that the result of the combination will be the set of in-
dividuals satisfying the subject position; this is exactly what XY does.
But in (22') it’s just the other way round: the quantifier binds the subject
position, and the combination leaves us with the set of individuals that
fill the object position. Note that, while this is not what we wanted as our
interpretation of the rule that combines transitive verbs with their
quantified objects, this semantic operation might still be of some use: it
does, e.g., open up the possibility of allowing a quantified subject to take
narrow scope with respect to the quantified object. We will return to this.

The type combination (20) can be seen as a special case of the general
scheme (24) of combinations derivable in Lambek’s Calculus:

(24) ab, bc ac

If we replace all occurrences of ‘et’ in (22) by a schematic b and then
the remaining ts and es by cs and as, respectively, we can check that
the derivation still goes through. (The one in (23), however, does not.)
This type combination seems to be particularly fruitful. Note that, if we
permute the input types, (17) also turns out to be a special case of this
scheme; and the derivation we gave for it has the same structure as that
in (22). Another application of (24) is in the derivation of a famous
categorial principle called Geach’s Shift that we can obtain by applying
(L4) to (24):

(GS) bc (ab)(ac)

The categorial reading of (GS) is that we can recategorize functions of
some type bc into functions of a type (ab)(ac). On our type-theoretic
interpretation of Lambek’s Calculus it says that we can have unary
syntactic operations to this effect. Thus, e.g., we may analyze negated

50 Zimmermann, Formal Semantics

quantified NPs in this way:

(25)
NPquant

Negquant

Neg

not

NPquant

Det
every

N

student

where we assume the type assignment (2) plus:

(2')
Category Kinds of extensions

Neg tt
Negquant ((et)t)(et)t

Then the rule ‘Negquant → Neg’ could be taken care of by (GS). Though
the precise semantic content of (GS) will only be discussed in section 4, it
should be clear that in the case of negation the result will always be the
complement operation.

Unary type combinations like (GS) are usually called type shifts. If the
input type is smaller or equal in size to the output, the corresponding
operations can (but need not) be 1-1 functions, in which case they are
usually referred to as (type) liftings. We will, e.g., see that the most
obvious interpretation of Geach’s Shift is a type-lifting operation. An-
other famous lifting is Montague’s re-categorization of referential NPs
as quantifiers:

(MS) e ML (et)t

where ML(u) is defined to be {P ⊆ De| u ∈ P}. In the presence of the type
assignment (2), (MS) can be used for construing and interpreting co-
ordinations like John or Mary as NPquants:

51 Zimmermann, Formal Semantics

(26)
NPquant

NPquant

NPref

John

or NPquant

NPref

Mary

The interpretation of this particular co-ordination F (NPquant, NP'quant)

would be: {P ⊆ De| “NPquant‘(P) = 1 or “NP'quant‘(P) = 1}, and it would
be the same operation as in some girl or every boy.

(MS) is only a special case of a general scheme that is easily derivable in
Lambek’s Calculus:

(27) L1: ab, a b
_ _ _ _ _ _ _ _ _ _ _
L4: a (ab)b

Just put a = e, b = t, and you’ll get (MS). Again, we will see that (27)
gets the interpretation ML.

If we let (GS) and (MS) interact, we may find a solution for the com-
positionality problem about relative clauses discussed in section 1.4.
Before we can show this, a difficulty concerning the type of (restrictive)
relative clauses must be overcome. For up to now we have assumed that
their extensions are sets so that they would be assigned the type et.
However, this type-assignment is, in a sense, incompatible with Lam-
bek’s Calculus, because it would not even make the (Det (N RelCl))
analysis possible: the type combination et, et et is not derivable – even

though it does have the natural interpretation of intersection. Although
this is a serious problem for the approach under discussion, we shall
not deal with it at this point but rather assume that relative clauses
should be typed differently in the first place, viz. as modifiers of nouns,
i.e. functions taking sets to sets. The type corresponding to RelCl would
thus be (et)(et), and a clause like who loves John would be interpreted

by that function in D(et)(et) that takes arbitrary P ⊆ De to P ∩ “loves

John‘. (The intersection has thus been built into the relative clause
meaning.) Clearly, the combination of the noun with the relative clause
now is only a matter of functional application. But how about the other

52 Zimmermann, Formal Semantics

bracketing? We could get it by recategorizing the noun as something that
still needs to be modified by a relative clause, i.e. a function of type
((et)(et))(et). This kind of type shift is just a special case of (MS). In
order to still be able to combine the determiner with this re-categorized
noun, we can have Professor Geach lift it:

(28) (et)((et)t) (r(et))(r((et)t)) ,

where r is the type (et)(et) of the relative clause. (Thank you, Sir!) So
we are in a position to combine the extension of (lifted) determiner and
(lifted) noun by functional application. The result is an NP of the odd
type (r((et)t)) of something that is still waiting for a noun modifier in
order to become an extension of a (quantified) noun phrase. Of course,
the noun modifier is supplied by the relative clause that can now be
attached by functional application.

This specific rebracketing analysis, whose interpretation we will have to
check later, is due to van Benthem, but the general idea underlying it is
a standard categorial technique that has, e.g., been excessively used in
generalized phrase structure grammar. Its major complication is that
it multiplies syntactic categories and the types corresponding to them, so
that people favouring it have tried to do away with global type assign-
ments like (2) and argued for a policy of type driven interpretation
according to which semantic combinations should be predictable from
the type combinations involved. However, time, space, and the teacher’s
lack of competence force us to leave this strategy out of consideration.

Before we go on to another type-theoretic approach to constraints on
semantic operations, a word should be said about the relation on
Lambek’s Calculus to propositional logic. The general format of the
axioms and rules introduced in this section is strikingly similar to a
certain proof-theoretic approach to (propositional and predicate) logic,
viz. Gentzen’s Sequent Calculus, which is designed to derive all valid
logical implications among logical formulae. Closer inspection of the
analogy reveals that Lambek’s types (or categories) correspond to
Gentzen’s formulae, the type combination arrow ‘ ’ plays the
analogous role of logical implication (‘|=’), and functor types ab behave
essentially like material implications (ϕ→ψ). In particular, any
Lambek-derivable type combination can be translated into a valid im-
plication among formulae of propositional logic that are built up from
the atomic formulae e and t using only material implication. Our

53 Zimmermann, Formal Semantics

example (21) of combining the types of a proper name, a transitive verb
and a quantified NP into t would become:

(29) e, e→ (e→t), (e→t)→t |= t,

which states that the three formulae to the left of the ‘|=’ logically imply
the atomic proposition t, which certainly is the case. And in general,
every type combination derivable in Lambek’s Calculus corresponds to a
logical implication in propositional logic. On the other hand, there are
many instances of valid inferences whose proofs transcend the axioms
and rules allowed by Lambek. A trivial example is the underivable type
combination (19) above that would be needed for combining the type t(tt)
of binary connectives with transitive verbs. It corresponds to a trivial
implication in propositional logic:

(30) t→ (t→t), e(e→t), e(e→t) |= e(e→t)

The fact that (the type combination corresponding to) this implication
cannot be derived in Lambek’s Calculus shows its incompleteness with
respect to (the →-fragment of) propositional logic. This in itself is, of
course, not necessarily a defect; for it was not propositional logic that the
calculus was designed for. However, there is some evidence for the
conjecture that any way of strengthening Lambek’s Calculus for getting
a more adequate theory of semantic operations must get it closer to
logical implication. (30) already points in that direction. More evidence
will be found as we go along.

3.6 Logicality

As was already mentioned in section 3.4, another approach to a theory of
semantic operations is to look for properties all existing cases (and,
plausibly, all possible ones) share. One such property is logicality, i.e.
the fact that they are all purely structural operations, that their values
for specific arguments only depends on their logical relations to each
other and on nothing else. So while there might be semantic operations
that give us the intersection of two sets X and Y, we never seem to get the
oldest members of X and Y, or their grandmothers. Maybe this is not the
only property semantic operations have in common, but it seems to be
hard to find any plausible counter-examples. So logicality is a good
guess for at least one constraint on semantic operations.

54 Zimmermann, Formal Semantics

The problem is how to make these ideas precise. But then an advantage
of the type-theoretic framework is that it naturally leads to at least one
necessary condition on logicality. (Moreover, we will see that it might
also throw some light on other approaches to constraining semantic
operations.) Before we start looking at this condition, we should note that
the kinds of operations we are interested in can all be found in the
ontologies themselves! For if G appears in a type combination like:

(12) a1, …,an G an+1,

it is a function taking us from Da1 × … × Dan to Dan+1. Now, using the
same kind of correspondence as we did between De(et) and ℘ (De × De),
we may think of G as a function of type (an(…(a1an+1)…), viz. as that fG
satisfying: f(un)…(u1) = G(u1,…,un). So our operation XY combining
binary relations and quantifiers into sets of individuals could be found in
type (((et)t)((e(et))(et))). Consequently, instead of looking for logicality
among semantic operations, we may as well search an ontology for its
logical objects: if the operation G is logical, then so is its counterpart fG,
and vice versa. In what follows, we will think of logicality as a property
of objects in an (arbitrary) ontology.

In order to motivate our criterion of logicality, we will fix an ontology
and successively look at some of its layers Da trying to figure out which
of its elements are logical. Our hope is that some pattern will emerge. So
let us start with type t. Dt contains the truth-values 0 and 1, and they
certainly are logical objects. So if we write ‘La’ for the logical objects of
type a (in our ontology), it seems plausible to assume that Lt = Dt.
Next, consider tt, the type of unary truth-functions of which there are
exactly four:

F = 0 0
1 0

; idt = 0 0
1 1

; ¬ = 0 1
1 0

; T = 0 1
1 1

Again it seems clear that all of the above are logical objects: negation
and identity are anyway, and there is certainly something logical about
constant functions to logical objects, or so we will assume. Hence Ltt =
Dtt. If we now look at the type t(tt) of binary truth-functions, i.e. the
extensions of binary connectives, we will again find that there is
something logical about all of them: ∧ , ∨ , →, etc. are logical constants,
and since each of them, together with ¬, can be used to define all other

55 Zimmermann, Formal Semantics

binary truth-tables, the latter should all count as logical: for it seems
safe to assume that whatever can be defined solely in terms of logical
objects is again logical. (The latter assumption will actually be
questioned later on; but these doubts will not affect the present
considerations.) So we may adopt the equation Lt(tt) = Dt(tt). By the
same kind of reasoning it follows that all truth-tables should count as
logical objects, i.e. Lt(…(tt)…) = Dt(…(tt)…). In fact the criterion of
logicality to be developed will tell us that La = Da whenever a is made
out of ts only; this principle also covers more exotic types like (tt)(tt),
(t((t(tt))(tt))), etc.

So how about the other types? The simplest of them is e, and this time it
is obvious that it does not contain any logical objects at all: the
ontological framework treats individuals as objects without any internal
structure and so, in particular, none of them has any logical structure
that distinguishes it from the others of its type. (A little care must be
taken if the ontology is not normal; for then an individual might be a
logical object of a type other than e. Still it wouldn’t be logical qua
individual, i.e. it would not be in Le.) We thus conclude that Le = Ø.

What is true of individuals, is not true of sets of them. For the type et
does contain at least two members that are determined by their
structure, viz. Ø and De(or, more accurately, their characteristic
functions). The former is that function that assigns to any individual
whatsoever the logical object 0, and the latter does the same thing with 1.
In particular, these two objects can be described without any reference to
what an individual is, how many of them there are, and how they can be
distinguished from each other. And that clearly indicates that both Ø
and De are logical objects of type (et). Are there more? Apparently not.

For consider a set like {u, v, w} ⊆ De. What should be logical about it?
The fact that it contains u? No, because u is just any old individual and
containing it as a member is not a structural feature of {u, v, w}. How
about the fact that this set contains three members? Well, if De happens
to coincide with {u, v, w}, then this may actually be taken as a purely
structural feature that can be used to single out this set. But then it
would be in Let anyway. If, on the other hand, De is larger, then the
property of having 3 members is shared by, say, {u, v, w'} and so it
cannot be used to distinguish {u, v, w} from the latter. The conclusion
to be drawn from these considerations is that Let = {Ø, De}.

Checking the examples discussed so far, one might guess that logical

56 Zimmermann, Formal Semantics

objects are either truth-values or constant functions to logical objects.
However, things are more complicated, as a quick glance at the type ee
of functions from individuals to individuals shows. For although the
range type e does not contain any logical objects (i.e. De = Ø), one logical
function of type ee certainly exists, viz. the identity function over ide
that maps every individual to itself. Again we may wonder whether ide
is the only element of Lee. And again the answer is positive. To see this

consider a non-identity f ∈ Dee on the very small domain {u, v, w}:

u v
v u
w w

A purely structural description of f is easily given: f is a 1-1 function
mapping exactly one individual onto itself. (This is only one possible
description of f’s structural features.) The following function g meets the
same criteria:

u u
v w
w v

Since f and g are distinct but structurally identical, none of them can be
identified by its structural features, and so none of them is a logical
object. Now it should not come as a great surprise that the same kind of
reasoning can be turned into a general argument to the effect that no
non-identity is logical. Hence we conclude that Lee = {ide}.

We are now in a position to see the general pattern behind the distinction
of logical and non-logical objects. For the reason why we did not want to
count {u, v, w} ⊆ De as logical was that replacing w by w' would have
resulted in a structurally indistinguishable set. Similarly, a comparison
of the two ee-function f and g above shows that the latter can be obtained
from the former by (simultaneously) replacing u by v, v by w, and w
by u. So what makes these objects non-logical is the fact that certain
replacements of individuals lead to structurally identical but distinct
objects. This can never happen with a logical object, because nothing but
itself is structurally identical to it: if we drew a picture containing
arrows from its arguments to its values but without identifying any
individual, the logical object would still be uniquely described. This is
the essence of our criterion of logicality. In order to make it precise, we
only have to say what it means to change one object into another one by

57 Zimmermann, Formal Semantics

replacing individuals. But this is not very hard. A replacement of
individuals or permutation is simply a 1-1 function from De onto De,

i.e. a function π (∈ Dee!) such that π(u) ≠ π(v), whenever u ≠ v, and

such that every v ∈ De is the value of one u ∈ De, i.e. π(u) = v. Given

such a permutation π, we must then describe its effect on objects of
arbitrary types. This can be done by a simple recursion resulting in a
family (πa)a∈ T of (structure-preserving) permutations:

(31) (a) πe(u) = π(u), if u∈ De;

(b) πt(u) = u, if u∈ Dt;

(c) πab(f) = {(πa(u),πb(v))|f(u) = v}.

Clause (b) is only needed for the induction; of course, replacing in-
dividuals has no effect on truth-values. Clause (c) makes use of the fact
that functions are sets of ordered pairs. What happens to them can be
easily visualized by representing them as matrices, as we did above: if
we substitute the individuals in the left column, the corresponding
changes have to be made on the right side. A not too complicated
inductive proof would show that, for any type a, πa is always a
permutation on Da, although not every permutation on Da can be

obtained by starting out from some πe.)

Given (31), we can now define logicality to be the property of not being
affected by permutations of individuals:

(32) La = {u∈ Da| πa(u) = u, for all permutations π on De}.

In order to see that (32) matches (or comes at least close to) our previous
intuitions about logical objects, we just check the types discussed above.
Clearly, the truth-values come out as being logical because, due to
clause (b) of (31), no permutation whatsoever affects them and hence the
defining clause in (32) is always met. Moreover, this observation can be
used in a homework exercise to show that La = Da, whenever a does
not contain e. So let us go on to the other types.

The type e of individuals seems to present no problem, because
apparently every u ∈ De can be permuted by, say:

58 Zimmermann, Formal Semantics

(33)
u v
v u
w w
w ' w '
w " w "
… …

,

i.e. the function interchanging u and v and mapping everything else
onto itself. However, for this trick to work, there must be at least one v
different from u and thus the ontology must contain at least two
individuals. This is not an undesired effect: if there is only one in-
dividual, it can be singled out by its structural property of being an (i.e.:
the) individual! In fact, it can be shown that, in this limiting case, La
will always coincide with Da. However, apart from this somewhat
neurotic case, we can always use functions as in (33) to show that Le =
Ø, as desired.

In order to see that sets of individuals are only logical if they happen to
contain everything or nothing, we consider some set M ⊆ De that is
neither empty nor identical to De and show that it can be mapped onto
something different from itself. M is not empty; so there must be some
u ∈ M. M is not universal; so there must be some v ∈ De\M. Surely,

u ≠ v. Now let π be the permutation depicted in (33). We want to show
that π does not map M onto itself, i.e. that πet(χM

e) ≠ χM
e . It suffices to

find one argument over which the two disagree; u is one:

πet(χM
e)(u) = 1

iff (u,1) ∈ πet(χM
e), by notational convention,

iff (πe(u),πt(1)) ∈ χM
e , by (31) (c),

iff (πe(u),1) ∈ χM
e , by (31) (b),

iff πe(u) ∈ M, by definition of χM
e ,

iff v ∈ M, by definition of π,

which is not the case. So πet(χM
e)(u) ≠ 1; but, clearly, χM

e (u) = 1, because
we picked u from M. So, as long as M is not empty or universal, we
can always find a permutation π that maps it onto a different set, so that
M cannot be in Let. The fact that, conversely, both Ø and De are in Let
will be shown in a homework exercise.

59 Zimmermann, Formal Semantics

We finally check the type ee. If f ≠ ide, we must disturb it by some per-

mutation π. But since f ≠ ide, we can find some distinct v and w such
that f(w) = v. If we now pick a third element u from De, we can again

use the permutation given in (33) to show that πet(f)(w) ≠ v. We will not
go through this calculation, because it is similar to the above argument
about πet(χM

e)(u). (We should note that this construction depends on De
having at least three elements; in fact, if there are only two of them, we
get one more logical object, viz. that 1-1 function on De that is not the

identical mapping!) We must also verify that ide ∈ Lee. However, this is

trivial, because any permutation π and any u ∈ De satisfy:

πee(ide)(u) = u

iff (πe(u),πe(u)) ∈ ide

iff πe(u) = πe(u).

Moreover, this argument is quite independent of the type e, so that in
general we can conclude that ida ∈ Laa. Note that this does not mean
that Laa = {ida}; a = t was a counter-example.

Returning to our original motivation for this investigation in the notion
of logicality, it may already be intuitively clear that all semantic
operations discussed so far are indeed logical objects. We only check a
very simple case, functional application (FA). FA is actually schematic
in the sense that it appears in different types. Thus, for any types a and
b, application of ab-type functions to a-type objects corresponds to the
operation FAab ∈ D(ab)(ab) defined by:

FAab(f)(u) = f(u).

So FAab assigns to any f ∈ Dab that function g ∈ Dab that assigns f(u)

to any u ∈ Da. Hence f and g agree on all u ∈ Da, which means that f
= g! So FAab turns out to be idab, and that is in L(ab)(ab), as was just
pointed out.

As to the other semantic operations discussed above, we will soon see a
general method of proving that certain objects are logical; and although
this method does not cover all possible cases, it will be applicable to
them. In particular, we will see that not only the rather complicated

60 Zimmermann, Formal Semantics

operation XY is logical, but also certain operations that correspond to
type combinations underivable in Lambek’s Calculus. Thus, e.g.,
intersection of sets of individuals and the disjunction of quantified NPs
both correspond to logical objects, as will become clear from the dis-
cussion in part 4. So is the criterion (32) of logicality the key to the
problem of determining what a possible semantic operation is? No. For
there are several indications to the effect that it is incomplete. One is
that it might allow for too many semantic operations to be of interest. For
as types a get larger, the cardinalities of the La increase considerably:
it can, e.g., be proved that L(et)t contains more elements than there are
natural numbers, provided that De is an infinite set. Another problem
concerns combinations of two sets of individuals into another one: inter-
section is one logical operation, but union is another one. Unfortunately,
the latter does not seem to appear in any applications and, without any
additions, the approach under discussion does not say why one should
be preferred over the other. The biggest problem about the definition (32)
of logicality, however, is its inherent locality: it can only be applied
within a previously fixed ontology, and there is no obvious way of
generalizing it across ontologies. However, this would have to be done,
given our general model-theoretic approach: functional application,
even restricted to a fixed combination of types, is not just one operation
but a whole family of them, with a member in each ontology. It thus
seems that the logicality approach to constraining semantic operations
cannot be the whole story. But to some semanticists it appears to be a
promising first step; and it can also be used to learn more about the
other approaches.

-

Exercises

4. Given any universe D (≠ Ø), what should be the generalized quantifier

“nothing‘ ⊆ ℘ (D)? Which function fnothing ∈ D(et)t does it cor-
respond to?

61 Zimmermann, Formal Semantics

5. The following clause relates any binary truth-functional connective K
to a corresponding function fK of type (t(tt)):

fK (v)(u) = K(u,v), whenever u and v are truth-values.

Thus every K corresponds to a binary relation among truth-values.
Specify the relations thus corresponding to ∧ (conjunction), ∨ (dis-
junction),and → (material implication).

6. Here is yet another derivation of (20) in Lambek’s Calculus:

(!)

L1: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e, e(et) e, et ; L1: e, et t
_ _
L3: e, e, e(et) t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t
_ _
L3: e, e(et), (et)t t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e(et), (et)t et

Apply the method of indexing according to object/subject positions to
determine whether (!) corresponds to XY.

7. The type shift:

(↑) e(et) n(nt) ,

where n is the type (et)t of quantified NPs is usually attributed to
Montague. Show that one can derive (↑) in Lambek’s Calculus. Try to
find a derivation that makes the leftmost n correspond to the object
position. Hint: Assume the derivation (22) for

e(et), n et

and then take the second n into account.

62 Zimmermann, Formal Semantics

8. Show that La = Da whenever a does not contain any e. Hint: Proceed
inductively starting with a = t; for complex types bc you may then
assume that Lb = Db and that Lc = Dc.

9. Show that the characteristic functions of Ø and De are in Let.

63 Zimmermann, Formal Semantics

4. Indirect Interpretation

4.1Use and abuse of notation

Indirect interpretation is a popular and powerful method of defining
and presenting semantic analyses. The method basically consists in
systematically assigning formulae of a suitable logical language to
natural language expressions or their structures. These formulae will
then be compositionally interpreted in a model-theoretic framework
based on a theory of types, and this interpretation carries over to the
original natural language expressions.

Although the advantages of indirect interpretation can only be fully
appreciated when one has seen it at work, some a priori considerations
about its usefulness can be used to motivate the introduction of this
formal apparatus. The first point to be made is that the use of formal
notation often (though by no means always) leads to a better under-
standing and handling of complex material problems: it would have
been very hard to define and understand the semantic techniques and
concepts discussed in the previous parts without the use of any quasi-
mathematical notation; and the formulae to be used in indirect
interpretation systematize (and reduce) our notational inventory.
Secondly, a canonical notation for all sorts of semantic analyses can
serve as a kind of semantic lingua franca that not only increases
readability but may also allow for the possibility of convenient and
precise comparisons of rivaling descriptions. More importantly, since
the languages used in indirect interpretation are formally (i.e.
mathematically) defined objects, they give rise to natural measures of
semantic complexity and, thereby, to substantial constraints on the
semantic structure of natural language. We will, e.g., be in a position to
formulate various definability hypotheses to constrain the notion of a
possible semantic operation as one that can be defined within (a
fragment of) a certain language of indirect interpretation.

Indirect interpretation also bears its risks and dangers that one should
be aware of and try to avoid. Two of them must be particularly
emphasized. The first is that the method easily gives the user the
impression that its product, i.e. the logical formulae, are semantic
analyses or even meanings in themselves. From our present armchair
perspective, this confusion might appear far-fetched: the formulae only
serve as alternative means of expressing what the natural language

64 Zimmermann, Formal Semantics

expressions say and, as such, they must be interpreted to be made sense
of; for who would say that the meaning of the German word Tür is
(identical to) the English word door, even though the latter may be used
to explain the meaning of the former? It is still true that excessive use of
indirect interpretation frequently leads to the kind of confusion
indicated. The best remedy against it is a permanent awareness of the
fact that formulae are formulae and only get their meanings from
semantic procedures and definitions; beginners should develop and
cultivate this awareness by frequent ‘evaluation exercises’, in which the
real meanings of logical formulae are determined. The second trap of
indirect interpretation is its compositionality which is only guaranteed if
the whole procedure meets certain conditions. Again, experience shows
that it is easy to forget about these conditions, which may result not only
in non-compositional assignments but even in inconsistency. We will
have to return to this point in section 4.6.

4.2 Ty1: identity, application, abstraction

We will now look at one particular logical language that has proved
useful in the indirect interpretation of certain fragments of natural
language. It is the language Ty1 of one-sorted type theory. (One-sorted-
ness is the feature that distinguishes it from a language based on a
richer hierarchy of types to be discussed in part 5.) Like first-order logic,
Ty1 contains certain basic expressions (variables and constants) and
ways of combining them (like the connectives and quantifiers). But
unlike first-order logic, it has infinitely many syntactic categories
corresponding to the functional types introduced in part 3. It is this
feature and the particular choice of basic means of expressions that
make it a better tool for indirect interpretation than predicate logic.
Unfortunately, this choice cannot be motivated by just considering the
purpose of Ty1; we will instead just introduce them in the firm hope that
they will prove to be useful for us.

Since we want the syntactic categories to match the functional types, we
may as well identify the two sets. So instead of the usual category labels
like ‘S’, ‘NP’, etc. (in natural language) or ‘wff’, ‘individual term’, etc.
(in predicate logic), Ty1 has ‘e’, ‘t’, ‘(et)t’, etc. And, as a façon de
parler, we will often speak of expressions of a category a ∈ T as
expressions of type a. This should not give rise to confusions. (But be
aware of the above warnings!) The simplest, lexical expressions of Ty1

65 Zimmermann, Formal Semantics

are the variables and constants. We will assume that, for each a ∈ T,
we have infinitely many variables of type a. This may sound a bit ex-
aggerated, but it will put us in a position to quantify over everything in
the ontology (though not simultaneously) and to have arbitrarily deep
nestings of such quantifiers. How many constants there are and which
types they belong to is not so important. Their role will be (just like in
first-order logic formalizations) to translate lexical expressions of
natural language (unless we want to decompose them). What is
important, though, is the fact that we think of these constants as non-
logical, like the predicates and individual constants of first-order logic.
Thus, there are no logical constants in Ty1. This may appear odd, but
let’s wait and see.

There are three ways of combining Ty1-expressions, and two of them are
very easy to define and understand. The first one is the operation of
Identity which transforms two expressions, α and β, of the same

category a ∈ T into the equation ›(α = β)fi, which is an expression of
category t, i.e. a sentence. The other simple operation is Application,
i.e. that syntactic operation of Ty1 that can be applied to α of category ab

and β of category a and yields the expression ›α(β)fi of category b.
Although we we will provide the precise semantic definitions in a
second, the intended interpretation of these two operations should
already be clear: Identity gives the truth-value 1 if the to expressions
flanking the equality sign extensionally coincide; and Application

expresses FA, so that ›α(β)fi denotes the result of applying the function
denoted by α to β’s extension.

The interpretation of the third and final operation of Ty1 is less obvious.
We will motivate it by an example. We have seen that, according to one
plausible analysis of restrictive relative clauses, they denote sets of in-
dividuals. Thus, e.g., (1) could be analyzed as denoting the set M of
those individuals that love Mary:

(1) who loves Mary

How can we compositionally assign M to (1)? The most straightforward
way is this: we analyze the relative clause exactly in the same way as we
would the corresponding sentence, except that we think of the relative
pronoun as a variable (ranging over individuals). So (1) would have to be
treated just like:

66 Zimmermann, Formal Semantics

(1') x loves Mary

Given the indirect approach to interpretation, such an analysis should
not be too difficult: we would just have to translate who by the variable
x of type e. We could then use the same mechanisms of interpretation
in (1) as we would use in analyzing

(2) John loves Mary,

the only difference between the two being that (1) has a variable where (2)
has a constant of the same type. However, this cannot be the whole story
about relative clauses. For the result of analyzing (1) in the same way as
(2) would give us an object of type t, i.e. a truth-value. And, what is
worse, this truth-value would depend on the denotation of the free
variable x. This is certainly not what we want as the denotation of (1).
What we do want is a set of individuals, viz. the set of those x that
satisfy (1'). In other words, we do not want to read (1') – or whatever
formula will correspond to it – as a statement about some particular
individual x, but rather as a condition on arbitrary x. We would thus
have to change the type of (1') from t to et and at the same time make
sure that the x gets bound. Here is the notation:

(1") [λx x loves Mary]

Thus ‘λ’ is an operator binding the variable x of type e and turning the
type-t-expression (1') into the set-denoting expression (1"). How do we
read (1")? The ‘λx’ turns free and fixed x into an arbitrary argument. So
(1") is the et-function that yields (1') when applied to an arbitrary x in
its domain. This formulation already shows how to read the λ-operator
in the general case. To get some more feeling about what it does, let us
look at a few more examples. One of the most revealing ones is from
high-school mathematics, where poor little kids spend a long time dis-
cussing certain functions from real numbers to real numbers, like the
one taking every number x to x2. It is common practise to refer to this
function by one of the following quasi-formal notations:

(3) f(x) = x2

(3') y = x2

Note that both the above expressions are equations and thus, strictly

67 Zimmermann, Formal Semantics

speaking of category t (if we were to think of them as logical formulae).
So none of them would actually denote a function. With the λ-operator
we would, however, have a straightforward and unambiguous way of
referring to the intended function:

(3") [λx x2]

Note that the x gets bound, because (3") is supposed to denote that
function that takes arbitrary numbers x to x2. What is the type of this
function? If we assume that real numbers are of some type r, then (3")
denotes a function of type (rr), because its arbitrary arguments x are of
type r and so are its values x2 (since x2 is a real number as long as x is).

In natural language semantics, λ-operators are particularly useful in
solving certain kinds of compositionality problems. We will illustrate the
basic idea by a well-known example, the analysis of quantified noun-
phrases. Concentrating solely on the subject position, the problem of
finding suitable denotations for NPquant-expressions α can be attacked by

considering adequate translations of sentences in which the αs occur
and observing that they schematically vary when we replace the VP,
leaving α in subject position: if α = every student, we always get some-
thing of the form (4), where ‘S’ symbolizes the extension of student;
similarly, the noun phrase α = some student will always lead to trans-
lations of the form (5), no matter which VP we take it to be the subject of.
(To be sure, the ‘always’ in these statements has to be taken cum grano
salis, because for some sentences these formalizations do not work, for
one reason or another; but let us for the moment ignore these trouble-
makers.)

(4) (∀ x) [S(x) → X(x)]
(5) (∃ x) [S(x) & X(x)]

It is the ‘X’ in these formulae that systematically changes with the VP:
once we fix a particular verb phrase β, we may identify X with β’s ex-
tension. Note that, in case β is complex, we might not know how to ex-
press its extension by a formula, let alone how to obtain this formula in a
systematic way. But we do (usually) have some intuitions about which
set this extension is going to be. And in any given case, we can think of X
as referring to this extension.

68 Zimmermann, Formal Semantics

The undetermined character of X in (4) and (5) suggests that we may
take it to be a variable ranging over (possible) predicate denotations; the
type of this variable would thus be et. And the fact that (4) and (5) each
systematically depend on X indicates that we may think of the cor-
responding noun phrases as each denoting a function taking VP de-
notations X to the truth-value of the complete formula:

(4') [λX (∀ x) [S(x) → X(x)]]
(5') [λX (∃ x) [S(x) & X(x)]]

(4') and (5') can thus be used as translations of the noun phrases every
student and some student, respectively. Clearly, the functions denoted
by them are exactly the sets of type (et)t that we had been using as
NPquant-denotations all along; but it is interesting to see how they can be
obtained from the intended translations of (certain) sentences by the use
of Abstraction.

In order to see how general the idea underlying the use of Abstraction in
the above example is, we apply it once more to obtain the translation of
the determiners every and some from (4') and (5'). Again we have a
systematic variation in the denotation of the NPquant, this time de-
pending on what the noun is: in general, noun phrases of the form

›every Nfi and › some Nfi denote quantifiers that can be symbolized by
(4") and (5") respectively:

(4") [λX (∀ x) [Y(x) → X(x)]]
(5") [λX (∃ x) [Y(x) & X(x)]]

(Y varies over (possible) denotations of nouns, i.e. it is a variable of type
et.) And again we can see that systematic variation amounts to func-
tional dependence, so that the determiners every and some can be
translated as:

(4∀) [λY [λX (∀ x) [Y(x) → X(x)]]]

(5∃) [λY [λX (∃ x) [Y(x) & X(x)]]]

The general pattern in these examples is that of semantic decompo-
sition by Abstraction: under the assumption that we can systematically

predict the extensions G (“α‘,“β‘) of complex expressions F (α,β) from
the (assumed) extensions of the βs, we may assign to α the function f

69 Zimmermann, Formal Semantics

yielding G (“α‘,x) when applied to any x (of the same type as the βs).

Now if G(“α‘,x) can be expressed by a logical formula ϕ, it is easily seen

that ›[λx ϕ]fi denotes f. Note that this method only works if the βs’ exten-
sions are somehow (assumed to be) previously given and, more im-
portantly, that extensionally equivalent β and β' can be substituted for
one another without changing the extension of the result. It should also
be clear that, even if this method is applicable, we are by no means
forced to apply it or even accept its conclusion that α’s denotation should
be f. But it frequently helps to determine denotations this way –
especially if we have no clue to what else they could be.

We are now in a position to give a precise formulation of the syntax and
semantics of Ty1. First the main syntactic definitions:

Syntax of Ty1:

(a) For each type a∈ T, let Vara (= { xan  n∈ω , a∈ T}) be the set of
variables of type a and let Cona be a suitable set of constants of type
a.

(b) The sets Ty1a of Ty1-expressions of category a∈ T are defined by the
following recursion:

(Lex) (Vara ∪ Cona) ⊆ Ty1a;

(Id) if α∈ Ty1a and β∈ Ty1a, then ›(α = β)fi ∈ Ty1t;

(App) if α∈ Ty1ab and β∈ Ty1a, then ›α(β)fi ∈ Ty1b;

(Abs) if x∈ Vara and α∈ Tyb, then ›[λxα]fi ∈ Ty1ab.

All other syntactic concepts are defined as their analogues in predicate
logic: a Ty1-sentence is a Ty1-expression of category t, variables (i.e.
their occurrences) within the scope of λ are bound, the others are free,
expressions without free variables are called closed, etc. Note that Abs-
traction is the only variable-binding operation in Ty1.

The semantics of Ty1 consists in compositional assignments of
extensions (of denotations) to the expressions of Ty1. These assignments
depend on models that take care of the lexical expressions (= variables
and constants) and that themselves depend on a previously defined
ontology. Since we want the whole procedure to be compositional, we will

70 Zimmermann, Formal Semantics

have to interpret variables by variable assignments and the variable
binding operation of Abstraction by an operation taking into account
several variables assignments at the same time. The procedure is just
as cumbersome as Tarski’s satisfaction semantics of predicate logic and
could just as well be replaced by a non-compositional treatment of
Abstraction by substitution. We will, however, give the Tarskian version
– be it only for the reason that it is the more standard one:

Semantics of Ty1:

(a) An interpretation (based on an ontology (Da)a∈ T) is a function F

taking each constant c ∈ Cona to an element of Da: F(c) ∈ Da,

whenever c ∈ Cona.

(b) A variable assignment (based on an ontology (Da)a ∈ T) is a

function g taking each variable x ∈ Vara to an element of Da: g(x)

∈ Da, whenever x ∈ Vara.

(c) A model is a triple ((Da)a∈ T, F, g), where (Da)a∈ T is an ontology
on which both the interpretation F and the variable assignment g
are based.

(d) Given a model M = ((Da)a∈ T, F, g), the extension “α‘F,g (= “α‘M)of

any Ty1-expression α is determined by the following recursion:

(Lex) “α‘F,g = F(α), if α is a constant, and “α‘F,g = g(α), if α is a
variable;

(Id) “α‘F,g = 1 if α is ›(β = γ)fi and “β‘F,g = “γ‘F,g; and “α‘F,g = 0

if α is ›(β = γ)fi but “β‘F,g ≠ “γ‘F,g;

(App) if α is ›β(γ)fi, then “α‘F,g = “β‘F,g(“γ‘F,g), i.e. the result of

applying the function “β‘F,g to the argument “γ‘F,g;

(Abs) if x ∈ Vara and α is ›[λxβ]fi, then “α‘F,g is the function

taking any u∈ Da to “β‘F,g[x/u], where g[x/u] is as g,

except that g(x) = u, i.e. g[x/u] = (g \ {(x,g(x)}) ∪ {(x,u}.

In case the clause (Abs) is a bit too much, here is a slightly more prosaic
version: ‘the extension of [λxβ] is that function which maps arbitrary u
on β’s extension, provided that x is understood as referring to u’. Note

71 Zimmermann, Formal Semantics

that the above clauses guarantee – and, in the case of (App), even pre-
suppose – that the extension of an expression of a category a∈ Ta is
always an object of type a. One particular case of this clause deserves
special attention both because it is somewhat neurotic and because it is
the most common one to be encountered in indirect interpretation. We
have seen how the λ-operator can be used to obtain a plausible logical
translations of relative clauses. But reading

(6) [λx L(m,x)]

as ‘that function that maps arbitrary individuals u to the extension of
L(m,x), where x is understood as referring to u’ does not make too
much intuitive sense because we usually do not think of a sentence (or
formula of category t) as referring to a truth-value even though tech-
nically speaking it does. In order to read notations like (6), it is therefore
better to switch from characteristic functions to the corresponding sets.
Since the function denoted by (6) yields 1 for precisely those objects of
which L(m,x) is true, it characterizes the set of individuals that satisfy
this condition. (6) is thus the Ty1-analogue of the meta-linguistic
notation (6') of set-abstraction that we have been using all the time:

(6') {u∈ De“L(m,x)‘F,g[x/u] = 1}

Consequently, and quite generally, Ty1-formulae of the form ›[λxa ϕ]fi
can be read ‘the set of x ∈ Da such that ϕ ’, provided that ϕ is of
category t. (The subscript on the first occurrence of a variable in a
formula indicates its type.) This simple insight will make a lot of λ-
terms much easier to read.

4.3 Expressive power

The formulae used in the above examples contained familiar logical
constants from predicate logic, although Ty1 does not. In fact, it might
appear that the expressive power of Ty1 is very restricted. However,
everything predicate logic has can be defined in Ty1 in pretty much the
same way as, e.g., all truth-functional connectives can be defined in
terms of & and ¬. In order to prove this, it obviously suffices to show that
universal quantification, negation, and conjunction are all definable in
terms of Identity, Application, and Abstraction.

72 Zimmermann, Formal Semantics

We start with ∀ . In order to reduce it to a combination of Ty1-operations,
we first observe that a universally quantified formula

(7) (∀ xa) ϕ

is true just in case the set of objects satisfying ϕ coincides with the
complete layer Da:

(7') {u∈ De“ϕ‘F,g[x/u] = 1} = Da

Now, from our above observation about abstractions from type-t-
formulae we see that the left side of (7) can be expressed in Ty1. More-
over, identity is a built-in operation of Ty1. So all we need in order to
express (7) is a way of denoting Da or, more precisely its characteristic

function χDa
a . Clearly, χDa

a is that function that assigns to any u∈ Da the
truth-value 1, so if the truth-value 1 is definable in Ty1, we could get χDa

a

by abstraction. But the truth-value 1 is the common denotation of all Ty1-

formulae of the form ›(α = α)fi. We thus have a way of expressing (7') and,
a fortiori (7), in Ty1:

(7") ([λxa ϕ] = [λxa (x = x)])

Consequently, we can think of (7) as a mere abbreviation of the Ty1-
formula (7"). (Note that the variable xa bound by the universal quantifier
in (7) must be the very same as that occurring in (7')!) In this sense Ty1
contains the means of expressing universal quantification.

There is a slightly different way of paraphrasing the universal
quantifier in Ty1. For if we take ∀ to be a generalized quantifier (of type
(at)t) meaning ‘everything of type a’, it is just the singleton {Da}. Can
we define it in Ty1? Yes, because singletons {u} are always definable
whenever their members u are: {u} = {v v = u}, which can be
obtained by set-abstraction from an identity statement. Our definition of
∀ as a generalized quantifier would thus be:

(8) [λPat (P = [λxa (x = x)])]

What is the relation between (7) and (8)? Since (7) can be read as

73 Zimmermann, Formal Semantics

‘everything in Da satisfies ϕ’, we could paraphrase it by applying the

quantifier defined in (8), i.e. {Da} to the set of objects satisfying ϕ:

(9) [λPat (P = [λxa (x = x)])] ([λxa ϕ])

This way of reducing (7) shows that we can think of the symbol ‘∀ ’ as
denoting a particular generalized quantifier (rather than a variable-
binding operator) that is applied to a set defined by abstraction:

(9') ∀ ([λxa ϕ]),

where ‘∀ ’ is just an abbreviation of (8) or name of the quantifier it de-
notes. Since (7") and (9) are obviously equivalent – a fact to which we will
return in due course – we do not have to decide which of them we are
going to adopt as our official definition of (7). In any case it is clear that
the following holds for arbitrary models ((Da)a∈ T, F, g):

(∀) If x ∈ Vara and ϕ is ›(∀ x) ψfi, then “ϕ‘F,g = 1 iff “ψ‘F,g[x/u] = 1, for

any u∈ Da.

Negation is a function of type tt and as such characterizes a certain set
of truth values, viz. {0}. Since this set is a singleton, a definition of its
member would immediately lead to a definition of the whole set. So we
need a definition of the truth-value 0, i.e. a Ty1-expression of category t
that always comes out as false. Such a formula would have to express
something that we know to be false of every ontology like, e.g., that it
does not contain any individual, i.e. that De = Ø. However, if we try to
express this equation in Ty1, it seems that the right hand-side requires
us to give a definition of Ø and hence of the truth-value 0, because Ø is
the function taking everything to 0. So this strategy does not seem to lead
anywhere. What else do we know to be false of every ontology? Since Dt is
always {0,1}, know that, e.g., none of the following equations holds:

(10) (a) Dt = Ø
(b) Dt = {0}
(c) Dt = {1}

Now trying to express any of (10) (a) of (b) seems to lead to the circularity
problem just encountered: it looks like we would have to find a definition
of 0 before we can formulate these equations. (10c) is different. For it only

74 Zimmermann, Formal Semantics

requires a definition T of the truth-value 1, from which we could then
obtain a definition of the singleton: [λxt x = T]. But we already got T and
thus get the following reduction of negation:

(11) ‘¬’ := ‘[λyt (y = ([λxt (x = x)] = [λxt x = (x = x)]))]’

Of course, negating a formula ϕ∈ Ty1t then amounts to combining ‘¬’

and ϕ by Application: ›¬(ϕ)fi. In order to be in accordance with usual
notational conventions, we will in this case omit the brackets.

We finally have to reduce conjunction to the expressive means of Ty1. We
have seen that conjunction can be thought of as a function of type t(tt)
characterizing the binary relation {(1,1)} among truth values, i.e. that
relation that holds among truth-values u and v iff (u,v) = (1,1).
Again, it looks like we just have to define a singleton, but this time our
old trick combining Abstraction, Identity, and a definition of the
member won’t work because the member (1,1) itself is not an element of
the ontology: the latter only contains sets of ordered pairs but no ordered
pairs by themselves. But there is a way around this difficulty. For
instead of directly expressing the equation:

(12) (u,v) = (1,1)

we can reformulate it using a version of Leibniz’s Law that says that w
and w' are identical if and only if they share all their properties, i.e. if
every set containing w also contains w'. This law is obviously true
because one of the sets containing w is {w}, which only contains w' if
w' happens to be identical to w. Applying Leibniz’s Law to (12) results
in the equivalent condition:

(12') For all M: (u,v) ∈ M iff (1,1) ∈ M.

Clearly, one can concentrate on such M that only contain pairs of truth-
values; the (12') would still be equivalent to (12). But the M containing
pairs of truth-values are precisely the binary relations among them, i.e.
the objects of type t(tt). Since we already know how to universally
quantify over arbitrary objects of the ontology and, moreover the material
equivalence is just Identity applied to truth-values (!), (12') is indeed
expressible in Ty1:

75 Zimmermann, Formal Semantics

(13) (∀ Rt(tt)) (R(y)(x) = R(T)(T)),

where ‘T’ is some trivial equation again. (13) still contains two free
variables corresponding to the arbitrary truth-values we are going apply
it to. It should be clear by now that these have to be bound by Abstraction
if we want to obtain the general definition of conjunction as a function of
type t(tt):

(13') ‘&’ := ‘[λxt [λyt(∀ Rt(tt)) (R(y)(x) = R(T)(T))]]’

Conjoining two formulae of type t amounts to iterated uses of Applic-
ation; we will thus take ‘[ϕ & ψ]’ to be an alternative notation for
‘&(ψ)(ϕ)’. The above reasoning made clear that we get the usual truth-
conditions:

(&) “[ϕ & ψ]‘F,g = 1 iff “ϕ‘F,g = “ψ‘F,g = 1.

The other connectives and the existential quantifier can now be defined
in the usual way. We will from now on freely use them in our Ty1-
formulae.

We have seen that, in spite of its low number of somewhat unfamiliar
semantic operations, Ty1 does have at least the expressive power of pre-
dicate logic. In fact, since quantification is not restricted to individuals,
Ty1 turns out to include second (third, …) order logic as well. Thus has
some possibly unwelcome side-effects on the computational complexity
of the logical relations holding among Ty1-expressions. Before we can
(briefly) discuss this, we better get familiar with some technical tools
that will allow us to turn complicated λ-expressions into more readable
formulae.

4.4 Logical reductions

Ty1-translations encountered in indirect interpretation procedures tend
to be very long and messy. As the above discussion about the
compositional translation of quantified noun phrases and determiners
already revealed, even a simple sentence like

 (14) Every student is asleep.

76 Zimmermann, Formal Semantics

will have to be translated by something like:

(14') [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S) (A) .

And, as we will soon see, the slightly more complicated

(15) Every student reads some book.

will come out as the almost unreadable:

(15') [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)
([λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])]) .

Even at a second glance, it might not be clear that (15') is a Ty1-
expression at all – let alone a sentence corresponding to (15). (The fact
that it is a category t-expression will have to be proved in an exercise!)
Yet (15') says no more and no less than the more familiar formula (15")
of predicate logic:

(15") (∀ x) [S(x) → (∃ y) [B(x) & R(x,y)]]

Similarly, (14') amounts to the first-order formula:

(14")(∀ x) [S(x) → A(x)]

We have just seen that first-order formulae like (14") and (15") can be
thought of as special cases of Ty1t-expressions, which puts us in a
position to define the relationship that holds between (14') and (14") and
between (15') and (15") as one of logical equivalence: any Ty1-expressions
α and β of the same category are said to be logically equivalent if and
only if “α‘F,g = “β‘F,g for all models ((Da)a∈ T, F, g). Why should (14')
and (14") be logically equivalent? One reason is, of course, that we
construed (14') in a way that should guarantee this equivalence. In
order to show that we have actually succeeded, we could argue as
follows: the translation of the determiner every denotes a function
fevery that assigns the extension of

(16) [λXet (∀ xe) [Y(x) → X(x)]]

to arbitrary sets U∈ Det that serve as a possible interpretations of Y. In

77 Zimmermann, Formal Semantics

(14') we get a specific value for Y, viz. the denotation M of S∈ Ty1et, the
translation of student. Thus, in (14'), the argument U of fevery is not
arbitrary, but coincides with the set M. So instead of pretending that the
variable Y refers to M, we may as well choose an expression that we
know to refer to M, viz. S. Instead of (16) we thus get:

(16') [λXet (∀ xe) [S(x) → X(x)]],

which we obtain from (16) by simply replacing Y by S. But (16) denoted
the result of applying fevery to M, i.e. the extension of:

(16") [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)

Since (16') and (16") refer to the same function, we may replace the
latter’s occurrence in (14') by the former, thus obtaining the shorter:

(14*) [λXet (∀ xe) [S(x) → X(x)]] (A)

(Note that we cannot do the same trick with (16) instead of (16'), since we
do not know whether the free occurrence of Y actually refers to M!) A
similar reasoning then shows that (14*) and, consequently, (14') have the
same extension as the first-order formula (14"). Since we did not make
any specific assumptions about the model with respect to which the
extensions of these formulae are to be determined, the argument
generalizes to all models and hence establishes the logical equivalence of
(14') and (14*).

The above reasoning is admittedly sketchy but it contains all ingredients
of a precise proof into which it can be turned easily. Instead of indulging
into this formal exercise, we will try to find the more general principles
underlying this specific argument. In order to find them, it suffices to
concentrate on the equivalence of (14') and (14*), which was established
in two steps: we first argued that the sub-expression (16") of (14') has
the same extension as the shorter (16') and then used this observation to
replace the former by the latter. The second step seems to reflect a very
general principle to the effect that substitution of an expression α by a β
with the same extension never changes the extension of the host, i.e.
the γ in which α originally occurred. A little care must be taken, though,
if one wants to give a precise account of this Substitution Principle.
First of all, one must realize that, in case that α is a variable, only its

78 Zimmermann, Formal Semantics

free occurrences should be replaced by extensionally equivalent β:

(17) (∀ x) P(x)

does not necessarily have the same truth value as

(17') (∀ x) P(y),

even if the variables x and y happen to denote the same individual u:
(17') will already be true if P’s extension is {u} but (17) will be false –
unless {u} is the universe. (Of course, renaming the bound variable,
i.e. replacing ‘x’ by ‘y’ in both the quantifier prefix and the formula
does work in this case – but that’s quite a different story to be told later.)
The same problem arises if α contains a variable that is bound, not in α
itself, but by an operator in the host: we should not replace the second
occurrence ‘f(x)’ in (18) by ‘y’, even if the two terms denoted the same
object:

(18) [Q(f(x)) & (∀ x) P(f(x))]

But the first ‘f(x)’ is outside the scope of the quantifier, and there is
nothing wrong with replacing it by ‘y’, thereby obtaining:

(18') [Q(y) & (∀ x) P(f(x))]

which has the same truth-value, if indeed ‘y’ and ‘f(x)’ are co-exten-
sional. So the notion of substitution must be one of substituting free
occurrences. It is possible (and not even too difficult) to define such a
notion by recursion on the host expression but we will just assume that
we know what we mean by ‘substituting all free occurrences of α in γ by

β’; and we will write ‘γ [α/β]’ for the result. (This is the same notation

that we used for modifying variable assignments; needless to say the two
should not be confused.) Care must also be taken if β happens to be or
only contain a free variable. For even if, say, ‘f(x)(y)’ and ‘z’ happen to
denote the same object, the formula

(19) (∀ x) (∃ y) (z = f(x)(y))

need not be true, but (19') certainly is, even though (19') = (19)[z/f(x)(y)]:

79 Zimmermann, Formal Semantics

(19') (∀ x) (∃ y) (f(x)(y) = f(x)(y))

What goes wrong is the fact that substitution has turned the free
variables x and y into bound variables that no longer get their extension
from the variable assignment. Substitution must thus be restricted to the
case where the β to be inserted does not contain any free variable that
would be bound if we replaced α by β. In other words, α must not occur
in γ within the scope of an operator that binds a variable occurring freely
in β. This condition is usually expressed as: α is free for β in γ. Again,
this condition could be given a rigorous recursive definition but we do
not need do this here. We are finally in a position to formulate the second
principle underlying our reduction of (14') to (14"):

Substitution Principle
Let ((Da)a∈ T, F, g) be a model and α, β, and γ be Ty1-expressions such

that “α‘F,g = “β‘F,g and α is free for β in γ. Then “γ‘F,g = “γ [α/β]‘F,g.

Given the appropriate definitions of the background concepts, the Sub-
stitution Principle can be proved by induction on γ’s complexity. We will
only sketch the proof. In order to get the induction off the ground, we
must show that any lexical γ (i.e. variable or constant) satisfies the
principle. There are two cases to be distinguished according to whether γ
happens to be the same expression as α: if so, replacing α (which would

be free) by β would result in β, i.e. γ [α/β] = β, and consequently “α‘F,g =

“β‘F,g trivially implies “γ‘F,g = “α‘F,g = “β‘F,g = “γ [α/β]‘F,g; if, on the

other hand, α is distinct from γ, then it does not occur in it (because γ is

lexical) and thus replacing it has no no effect on γ so that γ = γ [α/β], and

thus “γ‘F,g = “γ [α/β]‘F,g. In the inductive step we may assume that we

know the Substitution Principle to hold for the parts of the complex

expressions for which we want to prove it. Thus, if γ is of the form ›γ1(γ2)fi

and (*) γ1 and γ2 satisfy the Substitution Principle, we must show that

“γ1(γ2)‘F,g = “γ1(γ2) [α/β]‘F,g. But this is easily established, since the

latter is “γ1[α/β] (γ2[α/β])‘F,g, i.e. “γ1[α/β]‘F,g (“γ2[α/β]‘F,g) to which we

can apply the inductive hypothesis (*) giving us: “γ1‘
F,g (“γ2‘

F,g), i.e.

“γ1(γ2)‘
F,g. The case where γ is ›(γ1 = γ2)fi is similar. Abstraction is a little

80 Zimmermann, Formal Semantics

harder. If γ is of the form ›[λx γ1]fi and α happens to be the variable x

itself nothing is to be proved, because α (i.e. x) does not occur freely in

›[λx γ1]fi and so replacing its free occurrences once more does not have

any effect: ›[λx γ1] [α/β]fi = ›[λx γ1] [x/β]fi = ›[λx γ1]fi. And even if α is not the

variable x, there is still a possibility that ›[λx γ1] [α/β]fi = ›[λx γ1]fi; for α

might not occur freely in γ1 (‘vacuous substitution’), and again nothing

would have to be proved. But if α does occur freely in γ1, then x cannot be

free in either α or β: if x were free in β, it would get bound after
replacing α by β, and thus α would not be free for β in γ; and x cannot
have any free occurrences in α, because otherwise the latter would not
occur freely in γ (= [λx γ1] !). In particular, then, it does not matter to α or

β what g assigns to x and our assumption “α‘F,g = “β‘F,g implies

“β‘F,g[x/u] = “β‘F,g[x/u], no matter which u (of the appropriate type)
we take. (Or so we will assume; a proof of this elementary fact, known as
the Coincidence Lemma, would actually require a separate induction!)

But then “γ1‘
F,g[x/u] = “γ1[α/β]‘F,g[x/u] (for any u) because, according

to the induction, γ1 satisfies the Substitution Principle. We thus have:

“[λx γ1]‘F,g (u) = “[λx γ1[α/β]]‘F,g (u), for arbitrary u. Since α does not

contain free x, [λx γ1[
α/β]] = [λx γ1] [

α/β], and so we finally conclude that

“[λx γ1]‘F,g = “[λx γ1][α/β]‘F,g.

Two features about the above proof are worth emphasizing. One is that it
implicitly contains a definition of the operation of substituting the free
occurrences of one expression by another expression. Secondly, those
who feel they get lost in it should be aware of the fact that it would be
longer had we included more basic means of expressions in Ty1.

The Substitution Principle as we have formulated it above says some-
thing about substituting denotationally equivalent formulae. It is thus
much stronger than the fact that substitution of logically equivalent ex-
pressions again leads to logically equivalent expressions: the latter
follows directly from the compositional nature of the interpretation of
Ty1.

The Substitution Principle will help us to establish the other principle
we are interested in, the one responsible for the equivalence of (16") and

81 Zimmermann, Formal Semantics

(16'). The idea behind the above argument is simple (and general)

enough: an expression of the form ›[λx α] (β)fi denotes the result of apply-
ing a function f that takes any u to whatever α’s extension would be if x
denoted u; so applying f to a particular u that is actually denoted by β
should give us the extension of α [x/β]. Since the argument again in-

volves substitution, we should not be too surprised that the same restric-
tions apply as in the above principle: only free occurrences of x are sup-
posed to be replaced, and β should not contain any variables that would
get bound by the substitution. (The matter will be further pursued in an
exercise.) But given these restrictions the reduction principle is perfectly
general:

The Principle of λ-Conversion

Let ›[λx α] (β)fi be a Ty1-expression such that x is free for β in α. Then

›[λx α] (β)fi is logically equivalent to α [x/β].

Again we will only sketch a proof. Given a model ((Da)a∈ T, F, g), the

semantic rules of Ty1 tell us that “[λx α] (β)‘F,g = “α‘F,g[x/u], where u

= “β‘F,g. So it remains to be shown that:

(!) “α‘F,g[x/u] = “α [x/β]‘F,g.

We cannot immediately apply the Substitution Principle, because all we

have got is: “x‘F,g[x/u] = u = “β‘F,g, which is not enough because it in-
volves two different models. (It would suffice if either g(x) = u or β did
not contain x; but λ-conversion is much more general.) However, a little
trick (inspired by the substitutional interpretation of Abstraction!) will
help: we will pick a ‘neutral’ name for u, i.e. one that is not affected by
the difference between the two models. So let z be a variable (of the same
type as x) that occurs neither in α nor in β. In particular, then,

“β‘F,g[z/u] = “β‘F,g = u; and, clearly, “z‘F,g[z/u] = u. We can thus
apply the Substitution Principle, using α [x/z] as a host:

(*) “α [x/z]‘F,g[z/u] = “α [x/z] [z/β]‘F,g[z/u]

Of course, we must check that the Substitution Principle is actually
applicable, but there is no problem about that: the places where z occurs

82 Zimmermann, Formal Semantics

in α [x/z] are those where x occurs in α (because z was ‘new’) and they

are safe places for β’s free variables, because x is free for β in α. The left

hand-side of (*) is just “α‘F,g[x/u]: it makes no difference whether we
use x or z as a name for u. (Again, this can be seen as a consequence of
a version of the Coincidence Lemma.) But performing the substitutions
on the Ty1-expression mentioned on the right side of (*) leads to

“α [x/β]‘F,g[z/u], i.e. “α [x/β]‘F,g, because z does not occur in it. We have

thus established (*) and with it the famous Principle of λ-Conversion.

The equivalence between our alternative definitions (7") and (9) of the
universal quantifier can now be seen to be an instance of λ-conversion:

(7") ([λxa ϕ] = [λxa (x = x)])

(9) [λPat (P = [λxa (x = x)])] ([λxa ϕ])

(9) is of the form ›[λPat α] (β)fi and (7") is α [P/β]. Moreover, P is free for β

(= ›[λxa ϕ]fi) in α (= ›(P = [λxa (x = x)])fi), because it does not occur within

the scope of any λ-operator. Note that the fact that P is itself bound

within the functor ›[λPat α]fi is quite immaterial for λ-conversion.

Our formulation of the Principle of λ-Conversion might create the im-
pression that it is not always applicable and that consequently not every
complex Ty1-expression involving application of a λ-term can be reduced
by it. That this impression is at least misleading will become apparent
once we have seen two other principles of reduction the first of which is
motivated by the so-called extensionality of functions, i.e. the (set-theo-
retic) fact that a function f can be exhaustively described by its ‘course of
values’, i.e. by stating, for each argument u of f, which value f assigns

to u. If we think of an expression ›[λx α(x)]fi as such a description of a
function in terms of what (‘α(x)’) it assigns to any argument (‘x’),

extensionality amounts to stating that ›[λx α(x)]fi denotes the same
function as α itself. So we expect another general principle to hold:

The Principle of η-Conversion
Let α∈ Tyab be a Ty1-expression without free occurrences of x∈ Vara.

Then ›[λx α(x)]fi is logically equivalent to α.

83 Zimmermann, Formal Semantics

(‘η’ is for ‘extensionality’.) The principle is easily established. Given an
arbitrary model ((Da)a∈ T, F, g) and some u∈ Da, we must show that

“[λx α(x)]‘F,g (u) = “α‘F,g (u). (That this suffices is actually due to our
extensional, set-theoretic notion of a function!) But the semantic rules of
Ty1 tell us that:

“[λx α(x)]‘F,g (u)

= “α(x)‘F,g[x/u]

= “α‘F,g[x/u] (“x‘F,g[x/u])

= “α‘F,g[x/u] (u).

But since x does not occur freely in α, “α‘F,g[x/u] = “α‘F,g, and we’re
home.

It is worth pointing out that the condition on x’s non-occurrence in α is
essential in that it blocks applications to formulae like [λx [λy (y = x)] (x)]
where it would lead to undesired results (as should have become clear
from one of the homework exercises).

The principles of λ-conversion and η-conversion can be combined to
prove a very fundamental fact about renaming bound variables, one that
should already be familiar from predicate logic:

The Principle of Alphabetic Variants
Let α be a Ty1-expression such that (i) y∈ Vara does not occur freely in α

and (ii) x is free for y in α. Then ›[λx α]fi and ›[λy α [x/y]]fi are logically
equivalent.

(Note that (i) and (ii) are both met if y does not occur in α at all, whether
free, bound, or in a λ-prefix!) Two formulae that are equivalent due to
the above principle are called alphabetic variants of each other. The
content and truth of the principle should be intuitively obvious: the pre-
cise choice of a bound variable is immaterial. And, with what we have
already got, the proof is quite simple: given a model ((Da)a∈ T, F, g), we

find that “[λx α]‘F,g = “[λy [λx α] (y)]‘F,g, by η-conversion, and then λ-
conversion gives us the desired result.

Since the quantifiers were all defined in terms of Abstraction, the above

84 Zimmermann, Formal Semantics

principle also carries over to the variables they bound. Thus, e.g.,
‘(∀ xe) Pet(x)’ is equivalent to ‘(∀ ye) Pet(y)’, etc. But this should be clear
anyhow. The reason why we are interested in the renaming of bound
variables is that, in a sense, it enables us to apply λ-conversion when-

ever we have a formula of the form ›[λx α] (β)fi, whether x is free for α or
not. For if not, some λ in α (with an occurrence of x in its scope) would
bind a variable y that is free in β. But if we rename this bound variable
with some z that occurs nowhere else in α and is not free in β, the λ
would not do any harm to β’s free ys anymore. And if there is more that
one such binding of originally free variables, we can go through the
procedure again, until the resulting formula meets the criteria of λ-
conversion. This strategy of renaming bound variables before applying
λ-conversion will be called critical λ-conversion. Instead of defining
this complicated procedure in detail, we will look at it in one specific
case and then understand how it works in general. The example will be
a formula we have already mentioned, viz. the translation (15') of every
student reads some book, here repeated as:

(20) [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)
([λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])])

The overall structure of this expression is ›[λY α] (β) (γ)fi, where β is the

constant S of type et. Since S does not contain any variable, ›[λY α] (β)fi is

logically equivalent to α[Y/β], so that (20) becomes:

(20') [λXet (∀ xe) [S(x) → X(x)]]
([λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])])

The argument does not contain any free variables, so X is free for it and
λ-conversion turns (20') into (20"), where the original argument has
been underlined for better readability:

(20") (∀ xe) [S(x) →
[λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])] (x)]

Since the underlined functor is of the form ›[λx δ]fi, we would like to
apply λ-conversion – which is no problem because its argument only
contains x as a free variable and x certainly cannot be bound if we

85 Zimmermann, Formal Semantics

‘substitute’ it for x wherever x is free in δ! (Note that this is quite

generally so; hence any expression of the form ›[λx δ] (x)fi is logically
equivalent to δ itself.) So we get:

(20''') (∀ xe) [S(x) →
[λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])]

Once more we can perform an unproblematic λ-conversion because B is
a constant not containing any endangered variables:

(21) (∀ xe) [S(x) → [λXet (∃ xe) [B(x) & X(x)]] ([λye R(y)(x)])]

Now we would like to further reduce (21) by applying λ-conversion to its
sub-expression:

(22) [λXet (∃ xe) [B(x) & X(x)]] ([λye R(y)(x)]),

which, of course, we are not supposed to do: the argument contains a
free x and replacing it for the underlined occurrence of X in (22) would
get it into the scope of the existential quantifier. (Note that the fact that x
is bound in (21) does not help: it is the ‘local’ property of being free in
the argument that counts.) So we must apply critical λ-conversion and
first rename the bound variable causing trouble. We may pick some
‘new’ variable z, but note that y would also do because it is bound in β
and does not occur in α. We would then get:

(21') (∀ xe) [S(x) → [λXet (∃ ye) [B(y) & X(y)]] ([λye R(y)(x)])]

to which we can apply λ-conversion, thus obtaining:

(22') (∀ xe) [S(x) → (∃ ye) [B(y) & [λye R(y)(x)] (y)]],

which can be turned into the desired first-order formula by one more
trivial λ-conversion:

(15") (∀ x) [S(x) → (∃ y) [B(y) & R(x,y)]]

(We regard ‘R(y)(x)’ and ‘R(x,y)’ as notational alternatives.) Apart from
illustrating the strategy of critical λ-conversion, the above example also

86 Zimmermann, Formal Semantics

shows how important the reduction of Ty1-formulae by λ-conversion in
general is: in order to turn (20) into the shorter and more readable (15"),
we had to perform no less than six λ-conversions, one of which was
critical. We will see in the examples further below that this situation is
by no means exceptional.

Our reduction of (20) to (15") can be used to illustrate an important
feature of λ-conversion, the so-called diamond-property. Since λ-con-
version turns one Ty1-formula into a logical equivalent one, it may be

used to replace arbitrary sub-expressions ›[λ x α] (β)fi of larger formulae

by the corresponding α [x/y], just as we have done, e.g., in getting from

(20") to. (20''') above where we did not apply λ-conversion to the whole
formula but only to one of its parts. We could even have applied such an
‘inner’ λ-conversion to our starting point (20) itself: instead of trading in
the top-level ‘λY’ for the argument ‘S’ in (20), we might as well have
reduced the ‘λY-term’ (corresponding to the noun phrase some book) by
inserting ‘B’ for ‘Y’ (and dropping the λ-prefix). The Principle of λ-Con-
version tells us that the result would have been equivalent to(2). Similar-
ly, we could have eliminated this second ‘λY’ immediately after the first
one; and we would have had the corresponding choice of either getting
rid of the other ‘λY’ or of the second ‘λS’ if we had chosen to reduce (20)
by inserting‘B’ for the second ‘λY’, in the way just indicated. Some of
these reductions might not seem very orderly but they are certainly
licensed by λ-conversion. And, as one easily sees, there are lots of such
alternative ways of ultimately reducing (20) until λ-conversion cannot be
applied anymore. (Actually this point might not have been reached yet
with (15"); this depends on our precise ‘implementation’ of the connect-
ives and quantifiers. We will ignore this complication.) An interesting
fact about all these alternative reductions is that they all lead to
essentially the same result, as one could verify by trying them out.
(‘essentially’, because we may get alphabetic variants of (15").) And this
is no coincidence but reflects a general feature of reduction by λ-
conversion. In order to formulate it properly we will say that a Ty1-
formula α λ-reduces to β iff successive application of (possibly critical)
λ-conversion eventually turns it into β to which no more λ-conversions
can be applied, i.e. β does not contain any part of the form ›[λ x γ] (δ)fi. We
can now state a following result:

87 Zimmermann, Formal Semantics

Strong Normalization Theorem (for Ty1)
λ-reduction in Ty1 has the diamond property, i.e. if any Ty1-formula α λ-
reduces to both β and β', then β and β' are alphabetic variants of each
other.

Our main interest in the above theorem (the proof of which is far beyond
the present course) lies in the fact that it allows us to perform λ-
reductions in whatever way we like: the ultimate result will always be
the same. In particular, then, we may apply λ-conversions as early as
possible, i.e. to sub-expressions whose translations we have determined
without already knowing the translation of the whole sentence. So if we

know that a determiner D translates into ›[λX α]fi and that the noun N
it is combined with translates as β, then we may safely apply (critical) λ-

conversion to ›[λX α]fi and β, regarding the result as the translation of

the noun phrase ›D Nfi: it is logically equivalent to the ‘official’ trans-

lation ›α(β)fi (by λ-conversion) and the fact that we already performed the
conversion will not interfere with or preclude any λ-reductions we might
want to perform on the translation of the sentence in which the NP
occurs. (We also need to know something about the entire translation
procedure: it must be compositional , in a sense to be explored in section
4.7.) This strategy of early reduction will help us keep our translations
as short and easily readable as possible.

Before we will take a brief look at other ways of reducing Ty1-formulae, it
should be mentioned that, strictly speaking, λ-reduction does not
necessarily lead to shorter formulae. For it may well happen that the
argument to be inserted for the λ-bound variable x is rather long and
that the λ binds more than one occurrence of x. In such a case, λ-
conversion is bound to lead to a longer formula than the original one. If
moreover the result of this conversion cannot be λ-reduced any further,
we have ‘reduced’ one formula to a more complex one. The reduction of
(23) to (23') is such a case:

(23) [λxt ((x = x) = (x = x))] (([λye y] = [λye y]))

(23') ((([λye y] = [λye y]) = ([λye y] = [λye y])) =

(([λye y] = [λye y]) = ([λye y] = [λye y])))

Fortunately, this kind of situation is not typical for the process of indirect

88 Zimmermann, Formal Semantics

interpretation: the translations of natural language expressions tend to
become less complex with every λ-conversion, one reason being that, for
the most part, every λ-operator binds exactly one variable, a remarkable
fact to which we will return soon.

Since Ty1 contains all of predicate logic as a ‘sub-language’, one would
expect their logical laws to be valid here, too. This is indeed the case. In
particular, any two formulae of predicate logic (with identity) are
logically equivalent in Ty1 iff each logically implies the other in the
sense of predicate logic. So all kinds of ordinary logical equivalences can
be applied to Ty1-formulae and hence to the translations of natural

language sentences. Thus ›¬¬ϕfi always reduces to (i.e. is logically equi-

valent with) ϕ itself, ›¬[¬ϕ ∨ ¬ψ]fi amounts to ›[ϕ & ψ]fi, ›[(∀ x)ϕ & (∀ x)ψ]fi

becomes ›(∀ x) [ϕ & ψ]fi and ›(∀ x) [P(x) → (∃ y) [Q(y) & (x = y)]]fi is the same

as ›(∀ x) [P(x) → Q(x)]fi, etc. We will freely use these kinds of equivalences
in the examples to be discussed below.

It would certainly be nice if we had some procedure for reducing a Ty1-
formula as much as possible, i.e. to the shortest formula it is equivalent
to. Unfortunately, such a procedure does not exist and never will. (This
does not mean that the shortest reduced form does not exist; in a sense,
it always does.) For if applied to any to any first-order formula ϕ it would
have to give us something like ‘x = x’ whenever ϕ is valid, thus being a
decision procedure for (the notion of validity in) first-order logic. Such a
thing is, however, impossible as was shown by Alonzo Church in 1936.
So whichever reductions we use, they may be very helpful for a better
understanding of long formulae and they may very often lead to the
shortest equivalent formulae possible – but they are always far away
from being perfect. A similar remark applies to all attempts to axiom-
atize all possible reductions. Although the fact that Ty1 contains first-
order logic does not contradict this possibility, the fact that it also
includes second-order logic does: such an axiomatization would amount
to an enumeration of all valid second-order formulae, which again can
be shown to be impossible.

4.5 A fragment

We will now apply some of the above ideas to the construction of a
simplified Montagovian algorithm for compositionally translating the
syntactic structures of a trivial fragment of English into formulae of Ty1.

89 Zimmermann, Formal Semantics

The algorithm consists of two parts, corresponding to the two parts of a
compositional interpretation: a lexical part providing the translations
of the lexical expressions and an operational part that tells us how to
translate complex expressions. It has already been mentioned that most
lexical expressions will be translated by Ty1-constants of the cor-
responding type. For the presentation of the translation algorithm, we
will thus rely on the type assignment (2) of part 3, extending it so as to
include some more categories: if not otherwise stated, the translation of
a lexical expression of a category K will be an element of Cona, where a
is the type corresponding to K; moreover we will assume that different
lexical expressions are translated by different constants. In order to
refer to these constants, we will use the kind of mnemonic notation
familiar from predicate logic formalization and the above discussion:
‘M’ (∈ Conet) translates man, ‘S’ might stand for the translation of

sell (∈ Cone(et)) or for the translation of student (∈ Conet) and context
will help determine which one. Sometimes we also refer to the
translation of a lexical expression by priming. We may thus say that
student' ∈ Conet, but the same is not true of every'. Indeed we have:

(24) every' := [λYet [λXet (∀ xe) [Y(x) → X(x)]]]
(25) some' := [λYet [λXet (∃ xe) [Y(x) & X(x)]]]

These two equations are instances of lexical decomposition, which
applies whenever the translation of a lexical item is itself a complex
expression. In (24) and (25) the two determiners in question get
completely analyzed in terms of logical material. This is not the typical
or classical case of decomposition, that gives the meaning of one
expression in terms of the meanings of other expressions, as in:

(26) girl' := [λxe [F(x) & P(x) & C(x)]]

(Note that we have conjoined more than one formula by ‘&’, because that
way the formula is more readable, and bracketing does not dis-
ambiguate in this case.) The three predicates in (26) are supposed to be
constants of type et: ‘F’ stand for ‘female’, ‘P’ for ‘person’, and ‘C’ for
‘child’ (in the non-relational sense). So the three constants may them-
selves be thought of translations of the lexical items female, person,
and child, respectively. (On the other hand, they may as well cor-
respond to some ‘pure’ concepts that are close to, but not identical with,
the true meanings of those three expressions.) Since female is an

90 Zimmermann, Formal Semantics

adjective, we have thus implicitly extended our type assignment to the
category Adj by letting it correspond to the same type as VP and N, i.e.
the type et of sets of individuals. This is in accord with ordinary logic
textbook analysis.

The operational part of the translation algorithm gives the translations
of complex expressions (or their structures) in terms of the syntactic
operations they have been built by. How this is done can be seen from a
simple example; the general framework will be discussed in section 4.7.
We assume we have a construction F (like the corresponding context-
free rule) that combines a referential (subject) noun phrases and VPs
into sentences. We then have the following translation rule:

(TF) If A is a referential noun phrase that translates as α (∈ Tye) and B

is a verb phrase that translates as β (∈ Tyet), then F (α,β) translates

as ›β(α)fi.

Instead of this clumsy formulation we will use the more suggestive
notation:

(27)
S

NPref VP

⇒ β(α)

α β

Here are some more rules in the same format:

(28)
S

NPquant VP

⇒ α(β)

α β

(29)
NPquant

Det N

⇒ α(β)

α β

(30)
VP

Vtrans NPref

⇒ α(β)

α β

We have already seen that all these constructions only involve functional

91 Zimmermann, Formal Semantics

application. On the other hand, combining a transitive verb with a
quantified object noun phrase requires some more effort. In an indirect
interpretation framework, the relevant rule is most easily found if we
consider sentences like (31) and their intended translations (31'):

(31) Everyone knows someone.
(31') (∀ x) (∃ y) K(x,y)

(We have deliberately ignored the implicit relativization of the two
quantified NPs to persons; it only obscures the point.) We have seen that
the notation ‘(Qx) ϕ’ can be thought of as a variant of ‘Q([λx ϕ])’, when-
ever Q is a quantifier (∈ Ty1(et)t), ϕ is a sentence (∈ Ty1t) and x ∈ Vare.
So (31') actually is:

(31")∀ ([λx ∃ ([λy K(x,y)])])

(Recall that ‘K(x,y)’ is the same as ‘K(y)(x)’.) Clearly, ‘∀ ’ is the trans-
lation of the subject which, by (28), is applied to the translation of the
predicate knows someone. So the latter can be translated by:

(32) [λx ∃ ([λy K(x,y)])]

or something equivalent to it. But there is no question how (32) can be
obtained from the translations ‘K’ of know and ‘∃ ’ someone. The only
important thing is to notice that this combination also works for other
quantifiers, whether relativized or not. Take every stranger, which
translates as:

(33) [λXet (∀ x) [S(x) → X(x)]]

Replacing the existential quantifier in (32) by this relativized universal
quantifier results in (34), which is equivalent to (34'), by two λ-con-
versions (one of them critical).

(34) [λx [λXet (∀ x) [S(x) → X(x)]] ([λy K(x,y)])]
(34') [λx (∀ y) [S(y) → K(x,y)]]

But one can easily verify that (34') gives the intended extension for the
VP know every stranger. There is thus hope for a generalization of (32):

92 Zimmermann, Formal Semantics

(35)
VP

Vtrans NPquant

⇒ [λx β(λy α(x,y))]

α β

According to (35), the result of combining a transitive verb denoting a
binary relation R with a quantified object denoting a set Q of sets of
individuals denotes the set {x∈ De | {y∈ De| xRy} ∈ Q}, i.e. XY (R,Q), as
it was defined in part 3.

We have just seen that adjectives like female can be translated as con-
stants of type et. How are they going to combine with other expressions?
We will only look at one particular construction, viz. the attributive use,
as in female person. Since the latter obviously denotes the intersection
of the extensions of female and person, all we have to do is a way of
defining that intersection in Ty1. But we have already seen how this is
done, in our discussion of restrictive relative clauses: intersection
amounts to a combination of conjunction and abstraction. So here is the
general rule for attributive adjectives:

(36)
N

Adj N
⇒ [λx [α(x) & β(x)]]

α β

Note that (36) combines two sets of type et into another such set. It was
remarked earlier that such combinations are outside the scope of Lam-
bek’s Calculus. So, in an obvious sense, the method of indirect inter-
pretation gives us more than the latter. We will have to return to this
point.

A similar rule could be used to combine nouns and restrictive relative
clauses, but we will not give it here. Clearly, it would have to presuppose
that we first construe the relative clause out of a sentence and interpret
it by abstraction.

A celebrated piece of logical analysis is Montague’s treatment of the
copula in indirect interpretation, which actually goes back to Quine.
Consider the following sentences:

93 Zimmermann, Formal Semantics

(37) Every cow is a mammal.
(38) Every cow is four-legged.

In order to translate the first sentence, we need a translation of the
indefinite article, a. For our present purposes, the following will do:

(39) a' := [λYet [λXet (∃ xe) [Y(x) & X(x)]]]

(Note that this is just the same as the translation of some given in (25)
above.) Now we must find a suitable extension for the copula is. (37)
obviously attributes the property of being a mammal to every cow; so the
extension of the VP is a mammal must be the same as that of the noun
mammal itself. Similarly, (38) attributes the property of being four-
legged to every cow; so the extension of the VP is four-legged must be
the same as that of the adjective four-legged. The copula is thus does
not seem to contribute to the meaning of the sentence. (We are
deliberately ignoring tense.) This would suggest a semantically void rule
of combining the latter with an adjective. We will not further discuss
this possibility here. But we observe that the same strategy does not work
in (37) where the copula is combined with the NP a mammal: according
to (39), the latter denotes a certain quantifier, and it is not at all obvious
how this can be combined with anything (i.e. the desired extension of is)
in order to produce the set denoted by mammal. This could be taken as
one indication that (39) is incorrect.

Quite surprisingly, there exists a natural possibility of combining (39)
with an equally natural extension of the copula. In order to motivate it,
we will first look at what seems to be yet another use of is, viz. in
identity statements:

(40) Barbara Vine is Ruth Rendell.

The reason why (40) could be of interest to is that (37) can be paraphrased
by:

(37') Every cow is identical to a mammal.

Note that (37') does not express that the quantifiers denoted by the two
NPs in it are identical. Rather, it seems to be a quantified identity
statement. In order to purse this idea, we will assume that the two
proper names occurring in (40) are referential noun phrases to be

94 Zimmermann, Formal Semantics

translated by the Ty1-constants ‘b’ and ‘r’ of type e. A plausible
translation of (40) then is:

(40') (b = r)

Since Barbara Vine is the (referential) subject of (40) that would have to
be combined with the extension of the predicate by functional applic-
ation, we expect the VP is Ruth Rendell to be translated by something
equivalent to:

(41) [λx (x = r)]

How can we get (41) from the translation ‘r’ of Ruth Rendell? The
answer is all too obvious: by combining it with (42):

(42) [λy [λx (x = y)]]

So (42) may be regarded as the translation of is. Note that (42) denotes
the relation of identity between individuals. So the assumption that is
translates as (42) can be characterized as an analysis of the copula as
identity. In order to actually obtain (41), we need a translation rule for
the relevant construction:

(43)
VP

Cop NPref

⇒ α(β)

α β

Cop is, of course, the category of is, and it corresponds to the type e(et)
of binary relations; this information can be read off the translation (42).
We now observe that (42) predicts the same combination as (30) and that
the same types are involved, because e(et) is also the type of transitive
verbs. So maybe the analogy carries over to the combinations with
quantified instead of referential noun phrases. So how about combining
the extension of is with a a quantifier by applying the operation XY?
Here is the hypothetical translation rule:

(44)
VP

Cop NPquant

⇒ [λx β(λy α(x,y))]

α β

95 Zimmermann, Formal Semantics

If we now apply (44) to is a mammal, we obtain:

(45) [λx [λXet (∃ xe) [M(x) & X(x)]] ([λy [λy [λx (x = y)]] (y) (x)])],

which λ-reduces to:

(45') [λx (∃ ye) [M(y) & (x = y)]]

But the first-order formula

(46) (∃ ye) [M(y) & (x = y)]

is logically equivalent to (46'), by usual laws of identity.

(46') M(x)

So (45') reduces to:

(46") [λx M(x)],

which is equivalent to ‘M’, due to η-conversion. So the idea of analyzing
the predicative use of the copula in (37) as identity turned out to be
sound. Needless to say that this does not mean that this is the only or the
best analysis possible.

How about (38), then? Can we somehow make use of the translation (42)
of is, or are we forced to assume that in this case the copula does not
carry any information (other than temporal information)? One possible
analysis of this predicative construction is to think of the adjective four-
legged as expressing something like a four-legged individual so that
combining the copula with it would again result in the desired
predication. We will not go into the details of this possibility but merely
state it in form of a (conceivable) translation rule the correctness of
which will be shown in an exercise:

(47)
VP

Cop Adj

⇒ [λx (∃ y) [α(x,y) & β(y)]]

α β

96 Zimmermann, Formal Semantics

We will now briefly turn to some other easily translatable constructions
most of which have already been mentioned. The first of these is dis-
junction, i.e. the inclusive reading of or. If it is used as a sentence
connective, it receives a straightforward treatment:

(48)
S

S S
⇒ [ϕ ∨ ψ]

ϕ ψ

(Recall that (48) is only a sloppy notation for a more precise formulation
like (TF) that would make clear that the construction to be translated is
one of or-coordination.) It appears that or can also occur among
expressions of categories other than S:

(49) Caroline loves Alain or Tom.
(50) Caroline loves every boy or some girl.
(51) Caroline hugs Alain or kisses Tom.
(52) Caroline hugs or kisses Tom.

One way of analyzing (49) - (52) is by conjunction reduction, i.e. by
assigning it a structure involving disjunctions of sentences as in (48).
An alternative treatment would regard all the above ors as constituent
coordinations. We have already seen how such coordinations could be
interpreted. Thus, e.g., the coordination of the two referential NPs
Alain and Tom produces a quantified noun phrase which can be
combined with a VP thus producing the corresponding disjunction. A
tentative translation rule would thus be:

(53)
NPquant

NPref NPref

⇒ [λXet [X(α) ∨ X(β)]]

α β

Similarly, (50) requires straightforward rule of quantifier disjunction:

(53')
NPquant

NPquant NPquant

⇒ [λXet [α(X) ∨ β(X)]]

α β

97 Zimmermann, Formal Semantics

However, this would still not cover all cases of NP-conjunction; for a
quantified noun phrase might also be coordinated with a referential one,
as in Alain or some boy. It would thus appear that we need two more
rules to cope with this difficulty. However, there is a more economic way
of dealing with these cases, viz. Montague Lifting of referential NPs to
quantified ones and then coordinating NPquants only. So we replace (53)
by:

(53")
NPquant

NPref

⇒ [λXet X(α)]

α

Yet another possibility would be to eliminate the category NPref

altogether and translate by (et)t-expressions of the form [λX X(α)]. This
is actually strategy adopted by Montague (a typical instance of
‘generalizing to the worst case’), and it has become more and more out
of fashion: nowadays semanticists prefer to assign the lowest (smallest)
types possible to any expressions and only start lifting and shifting when
syntactic constructions seem to force them to. In general, the modern
strategy leads to simpler and more canonical translations – provided
that type changes can be predicted (e.g. by something like Lambek’s
Calculus).

We will now leave the area of coordination; disjunctions of verb
constituents will be treated in an exercise, and coordination with and
immediately leads to problems in the semantics of plurals that we want
to avoid.

Finally, there are those constructions the translations of which involve
binding of hitherto free variable. We are going to briefly discuss two of
them. The first one, the relative clause, was already mentioned as a
motivation for having Abstraction. The idea was to translate relative
clauses as sentences with a free variable that gets bound by a λ-operator;
and the syntactic input tells us which variable is going to be bound. We
thus have something like:

(54)

 RelCl
x S

⇒ [λx ϕ]

x ϕ

98 Zimmermann, Formal Semantics

Note that this rule requires logical forms to contain variables. The same
assumption will have to be made for the other variable binding
construction, viz. quantifier raising (or quantifying in), in which a
quantified NP is combined with a sentence (containing a free variable);
the result is a again a sentence, with the NP taking scope over the rest.
In order to translate the construction, one should again recall that the
usual variable binding notation ‘(Qx) ϕ’ type-logically amounts to apply-
ing a (generalized) quantifier to a set obtained by Abstraction. Moreover,
which variable must be bound, is a matter of syntactic information. We
thus have:

(55)
S

NPquant x S

⇒ α([λx ϕ])

α x ϕ

Let us apply (55) to a simple example in order to see how it works:

(56) Every dog chases Roger.

If we take

(57)
S

NPquant

Det
every

N
dog

x S

NPref

x
VP

Vtrans

chases

NPref

Roger

to be a first approximation of the structure of (56), it is easily shown
(guess where) that the sentence will be translated into:

(58) (∀ x) [D(x) → C(x,r)],

which is also the translation of the in situ structure (57'):

(57')

99 Zimmermann, Formal Semantics

S

NPquant

Det
every

N
dog

VP

Vtrans

chases

NPref

Roger

Variable-binding rules make sense only if there are any variables to be
bound, i.e. if the translations of at least some expressions contain free
variables. This may be the case for certain indexed noun phrases,
traces, and other elements of syntactic structures. These free variables
will then be passed on to the translations of larger expression until they
finally get bound by rules like (54) or (55). This means that the rules
applying in the meantime must not change the status of these variables,
i.e. they must not bind them. Care must thus be taken in their
formulation, because otherwise some unexpected binding will take
place. In fact, some of the rules above could produce such effects,
because we had formulated them without thinking of free variables. The
translation (36) of the noun/adjective combination is an example. For if a

noun translated as a formula ›[λy R(x,y)]fi, where x is the very variable
used in (36), the result of applying the latter would no longer denote the
intersection of the extension of the noun with that of the adjective (which
we may assume to be translated by the constant A):

(59) [λx [A(x) & [λy R(x,y)] (x)]]

Since x does not get bound in the translation of the noun, λ-reduction
turns (59) into:

(59') [λx [A(x) & R(x,x)]]

which is not equivalent to the intended intersection; the latter could be
denoted by:

(59") [λy [A(y) & R(x,y)]],

and this formula still contains free x, as required: as long as the
operation does not bind anything, free variables are passed on. There are
several ways of solving this problem about inadvertent binding. One
could, e.g., argue (or even prove) that the translation of nouns never
contain free variables. While this may or may not be so, there are more

100 Zimmermann, Formal Semantics

systematic ways of attacking the problem. We may have required the
variable x occurring in (36) to have no free occurrences in either α or β;
and while there is nothing wrong with this requirement, we will not
adopt it, because it would force us to leave the general framework of
indirect interpretation to be discussed in the following section. A third,
and less radical, solution is to avoid it by a reformulation of (36). The
following version will do:

(36')
N

Adj N
⇒ [λXet [λYet [λx [X(x) & Y(x)]]]] (α) (β)

α β

The trick is just to get the constituent translations α and β out of the
scope of the λ-operator. The result clearly denotes the intersection of α’s
and β’s extensions. Similar changes may have to be made for some of
the other rules discussed above. In particular the XY-rule (35) would
have to become:

(35')
VP

Vtrans NPquant

⇒ [λQ(et)t [λRe (et) [λx Q(λy R(x,y))]]] (β) (α)

α β

4.6 Compositional translation

Although the examples discussed so far should already give an idea of
what compositional translation algorithms in general look like, we will
still take a closer look at the general theory of indirect interpretation.
Apart from their intrinsic interest, these considerations will help us to
motivate and better understand a certain approach to restricting
semantic operations to be discussed thereafter.

The translation procedure sketched in the previous section consisted of
two components, reflecting the division of natural language expressions

101 Zimmermann, Formal Semantics

into lexical and complex ones. We take it that this is so for any trans-
lation algorithm used in indirect interpretation. The translation of the
lexicon is a function assigning to every basic natural language structure
a logical expression. We have seen that the translation of a basic expres-
sion may or may not be basic itself; so the general notion of a translation
algorithm should not say anything about the complexity of lexical trans-
lations. On the other hand, we do have to say something about the
categories of the resulting expression. For the translations of the
expressions of one category should all be of the same logical language
category; otherwise they could not be combined by the same translation
rules. We will thus assume that the translation algorithm is based on a
category correspondence between the categories of the two languages,
i.e. a function assigning to every natural language category a category of
the logical language. Note that if the latter is Ty1 (which we will not
require), such a correspondence amounts to a type assignment.

The second component of the translation algorithm takes care of com-
plex expressions by reducing their translations to those of their parts.
More specifically, to each mode F of construing a complex structure
F (∆1,…,∆n) out of some given structures ∆1,…,∆n there corresponds a

translation rule combining the translations α1,…,αn of ∆1,…,∆n into a

(usually complex) expression ρ of the logical language. Now from the
examples discussed above it is clear that ρ itself is essentially a formula
of the logical language containing the constituent translations α1,…,αn.

Strictly speaking, however, something like ›β(α)fi, i.e. the ρ from the
translation rule (27), is not a formula of the logical language Ty1,

because our meta-variables α and β aren’t. But ›β(α)fi is a ‘schematic
formula’ or a (syntactic) polynomial of the language Ty1: it is built up
exactly like a formula, but the positions of some sub-expressions have
been filled by meta-variables. The same is true of all other schematic
translations ρ occurring in the translation rules discussed above. And
we will assume that they reflect the general form of translation rules.
We are now in a position to give the main definition of compositional
translation:

Definition: Given a (natural) language LN and a (logical) language LL
as well as a category correspondence between them, a translation
algorithm from LN to LL consists of two components:

- a lexical translation assigning to any basic expression of LN

102 Zimmermann, Formal Semantics

an expression of LL of the corresponding category;

- an operational translation assigning to every (n-place) syn-
tactic operation F of LN a syntactic polynomial ρ (in α1,…αn)

of LL with the following property: all occurrences of α1,…αn

in ρ replace expressions of categories corresponding to the
input categories of F.

(A polynomial in the meta-variables α1,…αn is simply a polynomial

containing no meta-variables other than α1,…αn.) The condition on the

resulting polynomial ρ looks pretty complicated, but it only blocks silly

translations like ›(α1 = α2)fi of a rule combining a quantified noun phrase
and a verb phrase: the two categories correspond to different types and
hence translations of NPs and VPs cannot flank the same identity sign.

It is tempting to think of the meta-variables occurring in syntactic poly-
nomials as notational variants of object-language variables. However,
there are important differences that become clear when one attempts to
describe the semantic effect of translation rules. In part 1 we saw that,
according to compositional interpretation, to every syntactic combination
there corresponds a semantic operation, i.e. a combination of meanings.
Given a compositionally interpreted logical language (like Ty1) and a
translation algorithm (like the one described in the previous section),
one may now wonder which semantic combinations the translation
procedure ascribes to the syntactic operations of the natural language.
Let us look at a simple example:

(27)
S

NPref VP

⇒ β(α)

α β

Our type assignment told us that the two categories involved, NPref and
VP, correspond to e and et, respectively. The resulting polynomial

›β(α)fi thus meets the standards of the above definition (if we ignore the
purely notational differences between ‘α1’ and ‘α’ and between ‘α2’ and

‘β’). Moreover, (27) tells us to combine the translation of a referential
subject and that of a VP by applying the Ty1-operation of Application, in
order to obtain the translation of the whole sentence. According to the
semantic rules of Ty1, this combination denotes the result of applying

103 Zimmermann, Formal Semantics

the extension of the functor (i.e. the translation of the predicate) to that of
the argument (translating the subject). If we now define the extensions
of the English expressions to be the extensions of their translation – and
this is, of course, the idea behind the whole approach – we see that the
construction translated in (27) is interpreted as functional application.
Using Schönfinkel’s trick we find that the very same operation is de-
noted by the Ty1-expression:

(60) [λXet [λxe X(x)]]

Note that in (60) the Ty1-variable X plays the role of the meta-variable β
in (27), and x∈ Vare corresponds to α. The λ-operators only indicated
that the whole formula is to be interpreted as a function (operation); this
corresponds to the occurrences of the meta-variables α and β in the
daughter nodes of the right tree in (27). So the part of the polynomial in
(27) could also have been played by the Ty1-formula (60). Similarly, one
could argue that the more complicated polynomials (61) and (62)
(occurring in (35') and (36')) could be replaced by (61') and (62'),
respectively:

(61) [λQ(et)t [λRe (et) [λx Q(λy R(x,y))]]] (β) (α)
(61') [λQ(et)t [λRe (et) [λQ(et)t [λRe (et) [λx Q(λy R(x,y))]]] (Q) (R)]]
(62) [λXet [λYet [λx [X(x) & Y(x)]]]] (α) (β)
(62') [λXet [λYet [λXet [λYet [λx [X(x) & Y(x)]]]] (X) (Y)]]

(61') and (62') are obtained form the corresponding polynomials (61) and

(62) in the same way as (60) was obtained from the polynomial ›β(α)fi, i.e.
by replacing the meta-variables by Ty1-variables (of the correct type) and
then abstracting from these variables. Applying η-conversion to (61') and
(62'), we see that they are equivalent to:

(61") [λQ(et)t [λRe (et) [λx Q(λy R(x,y))]]]
(62") [λXet [λYet [λx [X(x) & Y(x)]]]]

Clearly, in any model (61") denotes the operation XY and (62") denotes
intersection (of sets of individuals). So the operations denoted by these
Ty1-formulae turn out to be the semantic operations expressed by the
polynomials occurring in the translation rules.

Unfortunately, this trick of turning polynomials into Ty1-formulae does

104 Zimmermann, Formal Semantics

not work for variable-binding rules like relative-clause formation (54) or
quantifier raising (55). Let us just consider the former because it is
simpler. Its resulting polynomial is:

(63) [λx ϕ]

The way (63) is used in (55) makes it perfectly clear that it is a
polynomial in x and ϕ: both meta-variables occur as daughters in the
translation tree. (‘x’ is a meta-variable that refers to Ty1-variables!) If
we now want to replace the polynomial (63) by a corresponding Ty1-
formula, we’re in trouble; for the old trick of replacing meta-variables by
object variables won’t work anymore: once the meta-variable ‘ϕ’ gets
replaced by a Ty1-variable (of category t, in this case), the λ-operator
becomes vacuous: the formula

(64) [λye[λpt[λye p]]]

will always return a constant function of type et, no matter what it is
applied to. Let us check this with a concrete example. The translation of
the relative clause who is asleep (before applying the formation rule)
might be:

(65) A(x),

where x is the variable to be bound by the relative pronoun. Clearly, rule
(55) would turn this into:

(66) [λx A(x)],

which is equivalent to the constant ‘A’ itself, again by η-conversion. In
particular, then, the relative clause who is asleep denotes whatever the
model wants ‘A’ to denote. Now we watch what happens if we apply the
function defined in (64) to the translation of the variable x (i.e. x itself)
and that of the clause, (i.e. (65)):

(67) [λye[λpt[λye p]]] (x) (A(x))

If we apply one λ-conversion, the first argument simply gets swallowed,
because y has no free occurrences in the functor. Now for the second
one, i.e. (65). Under the assumption that ‘x’ and ‘y’ denote different Ty1-

105 Zimmermann, Formal Semantics

variables, λ-conversion is o.k. and we get:

(67') [λye A(x)]

(If ‘x’ and ‘y’ were the same variable, we would have had to rename its
bound occurrences in the functor, thus again obtaining (67') or an
alphabetic variant of it.) Since (67') contains a free variable, its extension
depends on the variable assignment g: either g(x) is in the set denoted by
‘A’ or it isn’t; in the first case (67') denotes the universe De, otherwise
its extension will be the empty set. This is clearly an unwelcome result,
because the extension of ‘A’ (and hence the intended extension of the
relative clause) may be any subset of De.

The reason why not all polynomials correspond to formulae has to do
with the fact that, in the presence of variable-binding operations,
compositionality cannot be based on meanings as extensions. We have
already seen this in part 1, where it was argued that the substitutional
interpretation of quantification is non-compositional, because it rests on
the assumption that meanings are extensions. In order to obtain a
compositional treatment of quantification, we used Tarski’s idea of
identifying meanings of predicate logic expressions with functions from
variable assignments to extensions. The same trick works in more
complicated languages like Ty1: if we define the (model-dependent)
meaning of a formula α∈ Tya as that function that maps every variable-

assignment g (based on the model’s ontology) to α’s extension “α‘F,g

under that assignment, we could (but won’t) show that the inter-
pretation of Ty1 given in section 4.2 is indeed compositional. The proof is
completely parallel to the corresponding one for predicate logic; the only
critical case is Abstraction. In fact, without the latter operation, one
would not need the complicated Tarskian meanings for Ty1-expressions,
but could do with extensions instead. More precisely, the other two
operations, Application and Identity, are extensional in the sense that
they can be reduced to certain operations on extensions: if, e.g., b1 is a
functor meaning (mapping variable assignments to functions of type
Dab) and b2 is a corresponding argument meaning (mapping variable
assignments to elements of Da), then the result of combining b1 and b2
by the semantic operation corresponding to Application is a meaning b3
whose value for a given variable assignment is completely determined by
the values of b1 and b2 on that assignment: b3(g) = b1(g) (b2(g)) =
FA (b1(g),b2(g)). In that sense, Application reduces to the combination

106 Zimmermann, Formal Semantics

FA of extensions. Similarly, the interpretation of Identity as an
operation on Tarskian meanings reduces to a combination Id on
extensions, as is clear from the semantics of Ty1.

The distinction between extensional and non-extensional operations is
very general and can be applied to arbitrary combinations of (Tarskian)
meanings. In particular, it can also be applied to those operations that
correspond to or are defined by syntactic polynomials, i.e. those that
combine any given meanings b1,…bn just in the way the interpretation

of a polynomial in α1,…αn combines whatever the meanings of α1,…αn
could be. It is not hard to see that variable-binding polynomials always
define extensional operations. (The converse is not quite true, but in
most cases it does hold.) In order to fully understand the scope of this
observation, one should recall that a variable-binding polynomial is one
that contains a λ-operator with a meta-variable in its scope. Thus, e.g.,
the resulting polynomial of the ‘Adj+N’ rule (36') is not variable-binding,
even though it does contain three λ-operators. On the other hand, both
relative clause formation (54) and quantifier raising (55) have been
translated by variable-binding polynomials, but they were the only rules
in the fragment with this property. Now, we have already observed that
the semantic operations defined by our non-variable-binding resulting
polynomials ρ could also have been defined by formulae ρ* containing
Ty1-variables in place of the meta-variables. Strictly speaking, however,
the latter do not define semantic operations at all, but rather denote
operations on extensions. On the other hand, it can be shown that any
non-variable-binding polynomial ρ defines an (extensional) operation
that reduces to the function denoted by the corresponding formula ρ*.
We will not prove this general proposition here, because its content
should already be clear from the examples discussed so far.

It should be pointed out that there are various ways of avoiding variable-
binding operations and thus guaranteeing that all polynomials can be
defined by formulae of the logical language. Given such a strategy, one
could thus avoid the use of syntactic polynomials in indirect translation
altogether. Although we will not discuss any of these strategies here, we
will give a rough idea how one could proceed. One way of doing it can be
illustrated by a reformulation of the compositional translation of relative
clauses. Earlier on we have motivated the use of Abstraction by showing
that it allows us to reduce this problem to the problem of translating
sentences containing free variables. However, we may be prepared to
give up this reduction and prefer the following kind of translation

107 Zimmermann, Formal Semantics

instead:

(68)
RelCl

Srel

NP quant

Det
every

N
woman

VP rel

Vtrans

loves

Rel
whom

⇒ [λye(∀ xe) [W(x) → L(x,y)]]

[λye(∀ xe) [W(x) → L(x,y)]]

[λXet (∀ xe) [W(x) → X(x)]]

[λY et [λXet (∀ xe) [Y(x) → X(x)]]] W

[λye L(y)]

L [λye y]

(The final recategorization only indicates the movement of the relative
pronoun, if necessary; it has no semantic effect.) The (categorial) idea is
to treat an expression containing a relative pronoun as an incomplete
expression with a slot (or gap) for a referential noun phrase. In
particular, the pronoun itself is a referential NP with a gap for a
referential NP, corresponding to type ee! Semantically, leaving a gap
amounts to not specifying the meaning of the expression to fill this gap,
i.e. to treat it as arbitrary. Thus, wherever the gap appears we find a
bound variable in the translation. Apart from passing on this bound
variable to all higher nodes, the semantic combinations are the same as
in the corresponding constructions without gaps.

The above example hopefully illustrates one general strategy of avoiding
variable-binding polynomials; we will not say more about it. Another,
somewhat related, but more radical strategy consists in eliminating all
variable-binding operations from the logical language. Note that this
has not been done in (68), for even the translation of the relative pronoun
contains a λ-operator. But it is possible to construe alternative languages
(so-called combinatory logics) that avoid all variable-binding. For these
languages, definability by polynomials amounts to definability by
formulae. In fact, such languages can be given a compositional
interpretation with extensions as meanings. Unfortunately, the
formulae of combinatory logics tend to be pretty complicated to read,
especially if the expressive power of such a language is as strong as that
of Ty1 (which is possible). Nevertheless, some semanticists (e.g. Anna
Szabolczi) have suggested to use such languages without variable-
binding for reasons having to do with the topic of the next section.

108 Zimmermann, Formal Semantics

We have referred to the kind of translation algorithm exemplified in the
previous section as compositional, because of obvious similarities with
compositional meaning assignment: in either case, something (i.e. a
meaning of a formula) is assigned to natural language expressions by
combining whatever their immediate parts get assigned in a fashion
corresponding to the construction of the expressions. And as we have
already indicated in section 4.1, compositional translation algorithms
not only provide meanings for the natural language expressions, but
they even do so in a compositional way: it can be proved that the
meaning assignment that consists in giving to each natural language
expression the meaning of its logical language translation is a
compositional meaning assignment, provided that the logical language
itself is interpreted in a compositional way.

One way of seeing what compositionality does to translations is to look at
counter-examples, i.e. rules (or whole algorithms) that do not meet this
requirement. Let us look at a simple example, viz. a non-solution to the
NP+S analysis problem of restrictive relative clauses. We first observe
that, according to our (standard) rules, the translations of quantified
noun phrases all reduce to Ty1-formulae of the form:

(69) δ(α),

where α is the (possibly complex) translation of a noun and δ translates
a determiner. Moreover, it is easily seen that restricting the noun by a
relative clause results in a translation that is equivalent to:

(70) δ([λxe [α(x) & β(x)]),

where β is the translation of the relative clause. (For simplicity we
assume that neither the translation of α nor that of β contains free x;
nothing but the shortness of the formulae depends on that.) Comparing
(69) and (70), may suggest the following translation rule:

(71)
NPquant

NPquant RelCl

⇒ δ([λx [α(x) & β(x)]])

δ(α) β

109 Zimmermann, Formal Semantics

Under the (sound) assumption that (69) is indeed the general form of
NPquant-translations, (71) is a well-defined translation rule. But it is not
compositional, in a very strong sense. First of all, it does not meet the
standards of compositional translation algorithms as they were defined
above, because the resulting formula contains more meta-variables than
the (assumed) syntactic operation takes arguments: the latter only com-
bines two expressions, but the former combines three logical formulae.
Maybe we could live with that. But secondly, and that’s the strong part,
assigning the meanings of their Ty1-translations to natural language
expressions would lead to a non-compositional meaning assignment:
this follows directly from the fact that there is no compositional way of
interpreting the NP+S analysis of relative clauses that yields the same
results as the N+S analysis and at the same time treats quantified NPs
as generalized quantifiers. But the above rule gives such an analysis.
More specifically, applying (71) to the example discussed in exercise 2
would give the correct result, but it would distinguish between
synonymous expressions, just because they happen to get different,
though equivalent translations. So changing the format of the trans-
lation rules may result in non-compositional interpretation. Moreover,
in the presence of rules like (71), we may no longer safely reduce trans-
lation to logically equivalent formulae: every president and some pre-
sident will get equivalent translations but neither must be replaced by
the other one, because (71) treats them differently. So if we want to con-
tinue using logical reductions, we better stick to the compositional
translation algorithms defined above.

4.7 Semantic Operations

If one logical language suffices as a universal medium suited for the
indirect interpretation of all natural languages, the whole approach
naturally suggests a restriction on all possible semantic operations, viz.
that they be polynomially definable in that logical language. Although
we will see that Ty1 a suitable universal medium, it is still instructive to
investigate this Definability Hypothesis for Ty1: the languages that have
actually been proposed for such a purpose all bear a certain resemblance
to it and a better understanding of definability in Ty1 certainly
contributes to a better understanding of definability in a more realistic
medium. In particular, the tools for relating Ty1-definability to the other
approaches to restricting semantic operations (Lambek’s Calculus and
logicality) have proved to be quite generally applicable. And it is these
tools that we will be primarily interested in. Our restricted perspective

110 Zimmermann, Formal Semantics

also motivates a further simplification that we will from now on make:
we will concentrate on extensional operations in the sense defined in the
previous section. It must be emphasized, though, that the methods
discussed in this section also carry over to variable-binding operations;
but everything would get more complicated and messy. Given what we
have observed about extensionality, the Definability Hypothesis can be
formulated as follows:

Definability Hypothesis (for Ty1)
Any possible extensional semantic operation G taking extensions of types
a1,…,an to extensions of type b can be defined by a Ty1-expression αG of

type an(… (a1 b)…): G (b1,…,bn) = “αG‘
F,g (bn)…(b1).

(For ease of presentation, we have identified extensional operations with
the operations that they reduce to.) This formulation of the hypothesis
contains a certain vagueness that we will have to eliminate. For it
depends on a model without specifying which one. One may suspect that
some model would do. Unfortunately, the hypothesis would trivialize
that way. For if G is any (extensional) semantic operation we may pick a
constant of the corresponding type and define the extension of the
constant to be the function corresponding to G, via Schönfinkel’s trick. So
this constant would be the desired Ty1 definition of G.

Something is obviously going wrong here. For a constant is no de-
finition, because it can be interpreted in any way we like; and the
constant itself reveals nothing about its intended interpretation. What
we would like to have, then, is some notion of a Ty1-definition that only
applies to expressions whose interpretation does not depend on the
particular model. Since a model’s contribution to the interpretation of an
expression consists in providing the extensions of the constants and free
variables occurring in it, the natural candidate for the notion of a Ty1-
definition is this:

Definition
A definition is a Ty1-formula that does not contain any constants or free
variables.

If we now replace ‘Ty1-expression’ in the Definability Hypothesis by
‘definition’, the model used for determining αG’s extension becomes
irrelevant. And that’s exactly how we will read the hypothesis.

111 Zimmermann, Formal Semantics

The Definability Hypothesis certainly works for our above fragment and
instead of looking into its empirical consequences, we will rather study
its formal content by relating it to the other two hypotheses discussed in
part 3, viz. derivability in Lambek’s Calculus and logicality. But we will
first have to turn Lambek derivability into a constraint on semantic
operations: so far we have only seen that it restricts the types of
extensions that can be combined by semantic operations. In order to be
more specific as to which of these operations are admissible, we will
interpret the proof trees used to establish Lambek derivability. The
interpretation will be indirect, by way of translating proofs into Ty1
definitions. The general strategy can already be seen by looking at the
simplest proofs, viz. those that merely instantiate one of the axiom
schemata of Lambek’s Calculus. Let us start with (L0):

(L0) a a

We have already seen that one operation that combines extensions of
type a with extensions of the same type is the identity operation (of type
aa) that can be defined by:

(72) [λxa x]

And (72) is the definition we will associate with any one-line proof
consisting of an instance of the axiom (L0). Similarly, all instances of
the axiom schema (L1) can be interpreted by functional application
which can be defined by one of the Ty1-formulae in (73):

(L1) (ab), a b ; a, (ab) b
(73) [λxa [λfab f(x)]]; [λfab [λxa f(x)]]

(The reason why the definitions in (73) present their arguments in the
reverse order from the corresponding axiom only reflects the fact that
they must define the Schönfinkel counterparts of the operations to be
associated with the Lambek derivations; and, as we have seen, Schön-
finkel turns everything around.) We now observe certain structural
similarities between the axioms of Lambek’s Calculus and the
definitions we have associated with them: types occurring on the left
hand-side of the arrows become variables of those types in the
(underlined) prefix of the corresponding definition; and the type to the

112 Zimmermann, Formal Semantics

right of the arrow is the category of the expression following the prefix.
This similarity is actually pretty natural, given the fact that the λ-terms
say how arbitrary objects of the types of the variables occurring in their
prefix can be combined into an object of the type following the prefix:
[λxa [λyb [λzc α]]] can be read as: ‘combine given x, y, and z of types a,

b, and c into α (of whatever type α’s category is).’ But note that for the
whole expression to be a definition, what follows the prefix must not
contain any constants or free variables other than the one bound by the
prefix λs.

Before we start worrying about longer proofs in Lambek’s Calculus, we
will introduce a shorthand-notation for our translations. Although in
the above cases this notation hardly saves any space, it will turn out to be
valuable when we translate the rules. In this new notation, the trans-
lations of (L0) and (L1) are given by:

(L0')
 a → a

xa x

(L1') (L1")

(ab), a → b

fab, xa f(x)

a , (ab) → b

xa, fab f(x)

In the firm hope that the notation is self-explanatory, we now turn to the
task of translating complex Lambek proofs into Ty1 definitions. The
general procedure can be seen by looking at the simplest example, viz.
the rule (L4). The premise of the rule is that we have already derived
something of the form:

(74) b, a1, …an → c

We may thus assume that this derivation corresponds to a definition. In
our notation:

(74')
b, a1, … an → c

yb , xa1, … xan γ
,

where γ is an expression of category c containing (at most) the prefix
variables as parameters. Applying (L4) then turns this proof into a proof

113 Zimmermann, Formal Semantics

of:

(75) a1, … an → bc

We now want to associate with this proof a combination of xa1,…,xan into
an expression of the type bc. Now whatever operation O is defined by
(74'), it must combine arbitrary n+1 arguments (of the correct types)
into something of type c; and what we want is an operation O'
combining arbitrary n arguments (of the same types without b) into
some f taking the n+1st argument (of type b) to something of type c. So
it is only natural to let O' be that function that assigns to any u1,…,un

the f taking any v of type b to whatever O would have taken v plus
u1,…,un: f(v) = O(v,u1,…,un). And this f is definable by Abstraction. We
thus get the following recursive translation rule:

(L4') If: then:
b, a1, … an → c

yb, xa1, … xan γ
 ,

a1, … an → bc

xa1, … xan [λyb γ]

Of course, we also need a similar rule for that variant of (L4) that takes
the rightmost type on the left side across the arrow. It is clear that this
rule is essentially of the same form, so that we will not have to state it
here.

Note that the definition associated with applying (the first variant of) (L4)
is the very same formula as the one associated with its premise. The
difference lies only in the status of the ‘λy’-binding: in the translation of
the premise it is part of the prefix and would thus correspond to the
translation of a constituent to be combined by the corresponding
syntactic rule. But after applying (L4) we get an operation with less
arguments, and the ‘λy’ is part of the outcome of that operation.

We now turn to the remaining two rules of Lambek’s Calculus. They
differ from what we have translated so far in that they involve
combinations of types into more than one type. As in the original
motivation for these rules, it is again unclear how we would want to
interpret such multiple combinations. Here is a suggestion. Whenever
we have a multiple combination like:

114 Zimmermann, Formal Semantics

(76) a1, …,an b1, …,bm ,

we will associate with it m combinations of extensions, each of them
combining u1,…,un (of types a1,…,an) into one of the bs. In doing so,
we can use our notation for these translations:

(76')
a1, … an → b1, … bm

xa1, … xan β1, … βn

So (76') encodes the definitions [λ xan … [λxa1 β1]…], [λ xan … [λxa1 β2]…],…

all the way up to [λ xan … [λ xa1 βn]…]. It is here where our shorthand
notation proves to be of value. Even though it looks a bit messy, the
translation of (L2) is pretty straightforward:

(L2') If:
a1, … an → b1, … bm

xa1, … xan β1, … βm

then:
c1, … ck , a1, … an, d1, … dl →

ya1, … yak , xa1, … xan, zd1, … zdl

c1, … ck , b1, … bm, d1, … dl

ya1, … yak , β1, … βm, zd1, … zdl

So the rule only introduces the prefix variables on the right hand-side.
Among the definitions associated with an application of (L4) will then be
the terms [Λ ya1], [Λ βm], and [Λ zdl], where Λ is the long λ-prefix from

‘λ zdl ’ to ‘λ ya1 ’.

Finally we must deal with the transitivity rule (L3). Before giving the
general procedure, let us look at an example. (22) of section 3.5 started
like this:

L1: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t

The rules introduced so far give us:

115 Zimmermann, Formal Semantics

L1:
e, e(et) → et
ye , Re(et) R(y)

_ _

L2:
e, e(et), (et)t → et, (et)t

ye, Re(et), P(et)t R(y), P
L1:

et, (et)t → et

Xet, Q(et)t Q(X)

In order to interpret the application of (L3), we must now find a Ty1-defi-
nition of the form [λP [λR [λy δ]]], where δ is of category et. Now, our
interpretation of (L2) tells us how to combine three arguments (indicated
by P, R, and y) into something of type et or (et)t; and (L1) combines
arbitrary objects of the latter types into an object of the desired type et. So
we can take the definition we get from (L1), i.e. [λQ [λX Q(X)]], and apply
it to the results of applying (L2) to our arbitrary arguments:

_ _

L3:
e, e(et), (et)t → et

ye, Re(et), P(et)t [λQ(et)t [λXet Q(X)]] (P) (R(y))

Note that the result in (L3) can be reduced by two λ-conversions, so that

the definition associated with this proof of ‘ e, e(et), (et)t → et ’ turns
out to be logically equivalent to:

(77) [λP(et)t [λRe(et) [λxe P(R(y))]]]

These reductions can always be performed whenever (L3) has been
applied, so that we might as well give the translation of (L3) in terms of
substitution rather than application of λ-expressions. However, we take
the latter option because it is slightly more straightforward. So here is
the general rule:

(L3') If: and:
a1, … an → b1, … bm

xa1, … xan β1, … βm

b1, … bm → c1, … ck

ya1, … yam γ1, … γk
 ,

then:
a1, … an →

xa1, … xan

116 Zimmermann, Formal Semantics

c1, … ck

[λyam … [λya1 γ1]…] (βm)…(β1), … [λyam … [λya1 γk]…] (βm)…(β1)

The interpretation of Lambek’s Calculus as a device for restricting
possible semantic operations is now complete. Let us try it out on one
example, viz. the derivation (23) of section 3.5:

(78)

L1:
e(et), e, → et

Re(et), ye R(y)
_ _

L2:
e, e(et), e → e, et

xe, Re(et), ye x, R(y)
L1:

e, e(et) → t

ze, Se(et) S(z)
_ _

L3:
e(et), e → t

Re(et), ye [λSe(et) [λze S(z)]] (R(y)) (x) (≈ R(x,y) !)
_ _

L4:
e, e(et) → et

xe, Re(et) [λye R(x,y)]
_ _

L2:
e, e(et), (et)t → et, (et)t

xe, Re(et), P(et)t [λye R(x,y)], P(et)t
L1:

et, (et)t → t

Xet, Q(et)t Q(X)
_ _

L3:

e, e(et), (et)t → t

xe, Re(et), P(et)t [λQ(et)t [λXet Q(X)]] (P) ([λye R(x,y)])

 (≈ P([λye R(x,y)]) !)
_ _

L4:
e(et), (et)t → et

Re(et), P(et)t [λxe P([λye R(x,y)])]

As expected, the function associated with this proof corresponds to the
operation XY combining the extensions of transitive verbs and their
quantified objects. In particular, then, the latter is Lambek definable
because it is denoted by a Ty1-definition that can be obtained by
translating a derivation in Lambek’s Calculus.

117 Zimmermann, Formal Semantics

The above procedure guarantees that every Lambek definable semantic
operation meets the Definability Hypothesis. Is the converse also true?
I.e. is every Ty1-definition equivalent to a translation of some Lambek
derivation? This is not to be expected. For we have already mentioned
(without proof) that the combination:

(79) et, et → et

cannot be derived in Lambek’s Calculus even though we do have, e.g.,
the definition:

(80) [λXet [λYet [λxe [X(x) & Y(x)]]]]

But maybe, then, Ty1-definability implies Lambek definability whenever
the type combination is admissible according to Lambek’s Calculus?
Again, the answer is negative. For although (81) is just an instance of
(L1) and translates into the definition (81'), the definition (81") cannot be
obtained from any Lambek derivation:

(81) e, ee → e
(81') [λfee [λxe f(x)]]

(81")[λfee [λxe f(f(x))]]

We will not prove this fact here. Intuitively, the reason why (81") is out is
because it contains a bound variable (‘f’) that occurs more than once in
the scope of its operator; however, the definitions to be obtained from
translating Lambek derivations always have exactly one occurrence of
a variable ‘x’ within the scope of ‘λx’. (So (80) is excluded for a similar
reason.) In particular, then, vacuous binding is not permitted, although
it may occur in Ty1-expressions as we defined them:

(82) [λfee [λxe f]]

These few examples indicate that Lambek definability – even though it is
clearly too strong a restriction because it rules out (79) – is not such a
bad hypothesis after all: clearly, there is something artificial about de-
finitions like (81") and (82), and it would be very surprising indeed if any
of them turned out to be the interpretation of a syntactic construction!

So is there a more liberal version of Lambek’s Calculus that includes
some of the combinations hitherto blocked without opening the door to

118 Zimmermann, Formal Semantics

every Ty1-definition? There are quite a few possible candidates indeed.
For, as we have remarked earlier on, Lambek’s Calculus can be seen as
a heavily restricted version of Gentzen’s calculus of propositional logic.
Now, if we add more and more of Gentzen’s original rules, the Calculus
becomes stronger and stronger until it finally reaches the power of
Intuitionistic Logic, a system containing many (but not all) truth-
functional tautologies. (The reason why we do not get all of them has to
do with the fact that types contain no other connectives than material
implications: the proofs of some tautologies require detours via formulae
involving negation; a classical tautology that is not intuitionistically
valid is Peirce’s Law, corresponding to the awkward type (((et)e)e).)
Like Lambek’s Calculus, Intuitionistic Logic can be given a natural
interpretation in terms of Ty1-definitions: it turns out that intuitionistic
definability is the same as definability by Ty1-formulae without identity.
And with some minor changes of Gentzen’s rules one even gets a full
correspondence between Ty1-definability and (interpreted) derivability.
Given such a correspondence, all kinds of weaker notions of definability
suggest themselves: between Lambek’s Calculus and (enriched)
intuitionism, there is a whole hierarchy of systems of type combinability.
Each such system comes with its own notion of definability, and they are
all waiting to be explored for the purpose of restricting the notion of a
possible semantic operation.

There are more direct ways of restricting definability than the ones just
sketched. One may, e.g., restrict the term ‘definition’ to a certain sub-
class of Ty1-formulae. A natural restriction of that kind may concern
the number of variables that a λ-operator is allowed to bind. In fact, if
this number is always 1, the resulting notion of definability will be a
variant of Lambek-definability. (It will coincide with the latter if,
moreover, identity is not allowed to occur in definitions.) But other
restrictions of definitions to ‘fragments’ of Ty1 are also conceivable: one
may, e.g., allow certain, but not all logical constants (or their para-
phrases) to enter the definitions of semantic operations. Finally, it has
also been suggested (by Mark Steedman) to replace Ty1 by some other
medium (of combinatory logic) and then find natural restrictions on
definability in that medium. Up to now, it seems that none of these
possibilities has been fully investigated; a lot of work remains to be done.

119 Zimmermann, Formal Semantics

We thus see that there is a tight connection between the definability
approach to semantic operations on the one hand and Lambek’s
Calculus and related systems of type combinability on the other. One
might now wonder whether there is a similar relation between
definability and logicality. There is, but we will only scratch the surface
of it. It can be shown that definability, though weaker than Lambek
definability, is a stronger notion than logicality: (*) whatever is denoted
by a Ty1-definition is at the same time logical, but there are logical
objects that cannot be defined in Ty1. The first half of (*) (which we are
not going to prove here) can be used as a logicality test: in order to show
that a given operation is logical (in the sense defined in part 3), it
suffices to define it in Ty1. Given this test, we can conclude that all
semantic operations discussed above are indeed logical. The second half
of (*) reveals that failure of definability does not necessarily imply non-
logicality. (A reason for this was already mentioned in part 3: in large
ontologies, certain types contain more logical objects than there are
natural numbers and, consequently, than there are Ty1-definitions!)
Does that also mean that non-definable objects are somehow inaccessible
and obscure? Not at all. If a definition fails in Ty1, we may still be able to
create a new logical language (possibly extending Ty1) in which the
objects of our desire become definable. This strategy may remind of the
‘definition by constants’ refuted a few pages ago. But creating a new
logical language and defining in it some object is no arbitrary naming
of that object. If the language meets any intuitively valid standards of
logic, only logical objects should be definable in it. Of course, this would
have to be argued for, but then we promised not to go into these matters
too deeply.

-

Exercises

10. Let B and S be constants of category et, and let R be a constant of
category e(et). Show that (15'), i.e.:

[λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)
([λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])])

120 Zimmermann, Formal Semantics

is a Ty1-expression of category t. [Hint: First draw a tree indicating
the structure of (15') and then use the syntactic rules of Ty1 to
recursively determine the categories of its sub-expressions.]

11. In this exercise, you will have to show that the two restrictions on the
Substitution Principle also apply to λ-Conversion:

(a) Find a model ((Da)a∈ T, F, g) and an expression ›[λx α] (β)fi such that

“[λx α] (β)‘F,g ≠ “α '‘F,g, where α ' is the result of replacing all
occurrences (bound or free) of x in α by β. Hint: You can adapt the
example used in connection with the Substitution Principle but you
would still have to present a concrete model.

(b) Find a model in which

[λxt [λyt (x = y)]] (y)

and

[λyt (y = y)]

have different extensions.

12. Assume that individual translates into the Ty1-expression:

 ›[λxe (x = x)]fi.

Now use the rules given in 4.5 to translate (38) and (38') into Ty1 and
show that they are equivalent to the same formula of predicate logic
without identity.

(38) Every cow is four-legged.
(38') Every cow is a four-legged individual.

You can make use of all reduction principles discussed in 4.4, (in-
cluding laws of predicate-logic), but you must make every reduction
(including renaming of bound variables) explicit.

121 Zimmermann, Formal Semantics

13. Give translation rules for VP and Vtrans disjunction:

VP
VP VP

⇒ ?
α β

;
Vtrans

Vtrans Vtrans

⇒ ?
α β

Show the correctness of your translations by applying them to (51)
and (52):

(51) Caroline hugs Alain or kisses Tom.
(52) Caroline hugs or kisses Tom.

14. Translate (57) and (57') and show that each is equivalent to (58):

(57)
S

NPquant

Det
every

N
dog

x S

NPref

x
VP

Vtrans

chases

NPref

Roger

(57')
S

NPquant

Det
every

N
dog

VP

Vtrans

chases

NPref

Roger

(58) (∀ x) [D(x) → C(x,r)]

15. Interpret the Lambek proof (!) from exercise 6 (part 3) by associating a
Ty1-definition with it:

122 Zimmermann, Formal Semantics

(!)

L1: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e, e(et) e, et ; L1: e, et t
_ _
L3: e, e, e(et) t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e, e(et) et
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t
_ _
L3: e, e(et), (et)t t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: e(et), (et)t et

123 Zimmermann, Formal Semantics

5. Intensionality

5.1Intensional Constructions

If all syntactic operations were extensional, the contribution that an ex-
pression α makes to the extension of a larger expression γ in which it
occurs would just be its extension. In particular, if α happens to be co-
extensional with (have the same extension as) some β of the same
category, then β could make the same contribution as α and could there-
fore play α’s role in determining the extension of γ. This is a direct con-
sequence of the principle of compositionality and the hypothesis that all
operations are extensional: if, e.g., γ is F (F '(α,δ),δ')) and F and F ' hap-
pen to be extensional constructions corresponding to the combinations G
and G' of extensions, then the extension of γ would be: G (G'(a,d),d')),
where a, d, and d' are the extensions of α, δ, and δ', respectively; but if
β’s extension is a, then the extension of F (F '(β,δ),δ')) is also
G (G'(a,d),d')). In fact, it suffices to assume that the operations used to
construe γ are all extensional; a generalization of this kind of reasoning
then shows that any α occurring in γ could be replaced by coextensional
β without thereby changing γ’s extension. We can even go one step
further: let us call an occurrence of α in γ transparent if it is not within
the ‘scope’ of any non-extensional operation, i.e. if γ has the form:

F1

… F2

…
.
.
.

Fn

… α …

…

…

where F1,…,Fn are extensional and the occurrence of α in question has

been marked. We can then replace this occurrence of α by any coex-
tensional β, thus obtaining a coextensional γ':

124 Zimmermann, Formal Semantics

Transparent Substitution Principle
The result of replacing transparent occurrences of α in arbitrary γ by (an
occurrence of) some β of α’s category and with the same extension as α
is coextensional to γ.

Instead of proving this rather obvious principle, we apply it to a simple
case:

(1) The sun is shining and we are happy.

If (1) happens to be true, then its extension is the truth-value 1. Given
the meaning of and, we know that in this case (2) and (3) must also be
true:

(2) The sun is shining.
(3) We are happy.

Since (2) and (3) are coextensional, the Transparent Substitution
Principle would give us:

(4) We are happy and we are happy.

Now, although (4) may sound odd and redundant, it would certainly be
true under the circumstances described and so its extension would be 1,
as predicted by the principle. Similarly, we would get a correct pre-
diction if, say, (2) were false: its extension would then be the truth-value
0, so that we could replace (2) by any other false sentence:

(5) 2 + 2 = 7 and we are happy.

Again the result sounds odd (incoherent), but it is clearly a false
sentence just like (1), under the assumed circumstances. So the
Principle of Extensional Substitution does make correct predictions, as
long as we stick to extensional operations.

We have already seen that variable-binding operations are not ex-
tensional. On the other hand, there might be a way around variable
binding, so that it appears that the Transparent Substitution Principle
could be universally applicable. However, there exists a large class of so-
called intensional constructions that we have so far carefully avoided
and to which the above principle does not apply; and intensional
operations do not seem to involve variable-binding in any obvious sense.
Here is a case in point:

125 Zimmermann, Formal Semantics

(6) Tom knows that the sun is shining.
(7) The sun is shining.
(8) There are exactly eight people in this room.
(9) Tom knows that there are exactly eight people in this room.

Let us assume (6) and (8) are true; then so must be (7), for what is known
must be the case. So the truth-value 1 is the common extension of (7) and
(8). Thus, if the Transparent Substitution Principle applied, the result
(9) of replacing (7) in (6) by (8), would have to have the same extension as
(6) itself, i.e. the truth-value 1. However, Tom might well be aware of the
weather without thereby being informed about the number of persons
occupying this room.

The failure (or, rather, non-applicability) of the Transparent Sub-
stitution Principle must have to do with the fact that (6) includes a that-
clause: either that-clause formation or that-clause embedding is an
intensional construction, i.e. a non-extensional operation not involving
variable binding in any obvious sense. Since it is of no importance which
of the two operations is the intensional one, we will, for definiteness,
assume that it is that-clause formation. Here is another example of in-
tensionality:

(10) A unicorn appears to be approaching.

Under the (not entirely unreasonable) assumption that there are no
unicorns, the extension of the noun unicorn would be the empty set and
hence identical to the extension of married Catholic priest. Now, for all
we know, the ‘Det + N’ construction is extensional; so the noun phrase
a unicorn must be coextensional with a married Catholic priest. But
replacing the former’s occurrence in (10) by the latter does not
necessarily result in an extensionally equivalent sentence:

(11) A married Catholic priest appears to be approaching.

One could imagine all sorts of weird but realistic situations in which one
of the two sentences would be true without the other one also being true.
In view of the Transparent Substitution Principle, then, one of the con-
structions used to build (10) must be intensional. Given the fact that
appear appears to be a raising verb, it is not unlikely that the intension-
ality has to do with lowering a quantified noun phrase. In fact, an
explicit paraphrase of the raising construction reveals that it is closely
related to that-clause embedding:

126 Zimmermann, Formal Semantics

(12) It appears that a unicorn is approaching.

Many, but not all intensional constructions can be systematically related
that-clause embeddings in a similar way. Here is one that defies any
such obvious paraphrasing:

(13) Alain is a good swimmer.
(14) All swimmers are pianists and all pianists are swimmers.

Let us, for the sake of the argument, imagine that both (13) and (14) were
true. The truth of (14) implies that the extension of the noun swimmer,
i.e. the set of swimmers, coincides with that of the noun pianist, the set
of pianists. If the occurrence of swimmer in (13) were transparent, we
would be able to conclude that replacing it by pianist would result in a
true sentence:

(15) Alain is a good pianist.

But (15) could well be false even if (14) was true. (In fact, (14) is quite
compatible with the assumption that all good swimmers are second-rate
pianists or worse, as long as they are pianists at all.) This time the
intensionality effect must be due to the ‘Adj + N’ construction. It can
neither be interpreted as intersection (as it was in the fragment in 4.6)
nor as any other combination of extensions: otherwise we would be able
to infer (15) from (13) and (14).

The fact that modifier constructions like the one just discussed cannot be
directly related to that-clause embeddings has sometimes been used to
show that they are not intensional after all (but instead reveal a com-
plicated argument structure of nouns, verbs, or whatever is modified).
Nevertheless, a classical analysis treats sentences like (13) and (15) as
involving an intensional combination of adjective and noun. And even
though this relation cannot be directly reduced to that-clause form-
ation, the technique developed for analyzing the latter naturally carries
over to modifier constructions. It is this general technique that we will
now look at.

5.2 Information and Intension

We have seen that, even if we ignore variable-binding operations, we
cannot do with extensions alone as the semantic values in a com-
positional interpretation: certain intensional operations like that-

127 Zimmermann, Formal Semantics

clause formation require different entities. Let us call them intensions.
It thus seems that instead of a:

Naive Principle of Compositionality
The extension of a complex expression is uniquely determined by the
extensions of its (immediate) parts and their mode of combination.

we need something more sophisticated like:

Frege’s Original Principle
The extension of a complex expression is uniquely determined by the
extensions or the intensions of its (immediate) parts and their mode of
combination.

(We will, for the rest of our discussion, simply ignore variable-binding
operations.) As long as we do not know what intensions are, this
modification of the Naive Principle of Compositionality is, of course, not
very helpful. What we need in addition is a definition of the notion of
intension. From the preceding section we know that we may concentrate
on that-clauses as the model case of an intensional construction. We
will therefore only be concerned with intensions of sentences. In order
to get a first idea about what they could be, let us briefly reconsider the
substitution argument (6) - (9) concerning Tom’s knowledge. What is it
that distinguishes (7) from (8) and thereby precludes the substitution of
the former by the latter? To see this, we may compare the example to a
case in which a similar argument does go through:

(16) Alain knows that a little bird with short wings and a long beak
made that noise.

(17) A little bird with short wings and a long beak made that noise.
(18) The noise was made by a little bird with a long beak and short

wings.
(19) Alain knows that the noise was made by a little bird with a long

beak and short wings.

It is hard if not impossible to imagine that (16) - (18) are true without (19)
also being the case. (In fact, (17) and (18) are not even needed as explicit
premises: (17)’s truth follows immediately from (16); and (18) must be
true if (17) is.) It thus seems safe to replace (17) by (18): unlike (7) and (8),
(17) and (18) must be intensionally equivalent, i.e. they must have the
same intension. An obvious difference between the two pairs of sen-
tences is that the latter two sentences are about the same subject matter,
whereas (7) concerns the weather and (8) the population of a certain

128 Zimmermann, Formal Semantics

room. (17) and (18), on the other hand, not only agree on their subject
matter, viz. the source of a certain noise; they also say the very same
thing about it, only in (slightly) different words: whether we used (17) or
(18) to locate this source does not make any difference; the two sentences
contain the same information. We are thus led to the following hypo-
thesis:

Frege’s Criterion
Two sentences are intensionally equivalent iff they contain the same
information.

If, as we will assume, the criterion is correct, we may even identify the
intension of a sentence with the information it contains. So what is the
information contained in a sentence? Indeed, what is information in
general? Though it may be of some intrinsic interest, Frege’s Criterion
still does not tell us what precisely intensions are. Instead we are faced
with a new problem, viz. that of defining the notion of information. How-
ever, the criterion does change our perspective: in order to look for in-
tensions in intensional contexts, we may look at extensionally construed
sentences and the information they contain. Here is a list of examples
that will set us on the right track:

(20) Exactly four coins were tossed.
(21) At least one of the four coins tossed was heads.
(22) At least one of the four coins tossed was tails.
(23) Exactly two of the four coins tossed were heads.
(24) Exactly two of the four coins tossed were tails.

In order to see what the information contained in each sentence is, it
helps to realize that, in a certain sense, some of the above sentences
differ in the amount of information they contain, i.e. in their inform-
ativeness. Thus, e.g., (20) is obviously less informative than any other of
the sentences, (21) is more informative, but less so than (23), which is
itself as informative as (24), etc. So information is something that can be
compared or even measured. There are, in fact, two different ways of
comparing information, a quantitative and a qualitative one. The dif-
ference can be seen by looking at (21) and (22). In a (quantitative) sense,
the amount of information contained in each of them is the same: (21)
reveals as much (or little) about a given situation as (22) does. But
surely, the two sentences reveal different things, so that it does not make
much (qualitative) sense to say that one is more informative than the
other. Similarly, (23) is quantitatively more informative than (22), but
there seems to be no straightforward way of comparing their inform-

129 Zimmermann, Formal Semantics

ation qualitatively. On the other hand, (21) is more informative than (20),
in both a qualitative and a quantitative sense; similarly, (23) is as
informative as (24), in either sense.

There is a natural (and presumably familiar) way of modelling the
notion of quantitative informativeness by counting (‘favourable’) cases:
(20) is less informative than (21), because there are more cases in which
four coins are tossed than there are cases in which one out of four tossed
coins is heads; and since there are as many cases in which at least one
coin is heads as there are cases in which at least one is tails, (21) is as
informative as (22), again in the quantitative sense. So the cardinality
|Σϕ| of the set Σϕ of all cases covered by a sentence ϕ is a measure for ϕ’s

quantitative informativeness: the larger |Σϕ| is, the less informative is ϕ.

What are cases? A natural guess is that a case is something like a
situation described by the sentence in question. If so, it is clear that
these would have to be hypothetical, rather than real, situations: the fact
that (20) is less informative than (22) does not depend on how many
tossings of four coins with one or more tails have actually been
performed. But what, then, are hypothetical situations? They would,
e.g., have to be specific enough to allow for a distinction between dif-
ferent situations with, say, exactly two coins being tails; if we did not
take this difference into account, (24) would be true in as many
situations, and consequently as informative as:

(25) Exactly one of the four coins tossed was tails.

But for any choice of four coins, there are only four ways of satisfying
(25), whereas (24) could come out six different ways. So Σ(24) should be

larger than Σ(25), which means that every hypothetical situation should
be specific as to which coin has been tossed with which result. This kind
of specificity is needed for the analysis of these particular examples. It is
not hard to imagine that, in the analysis of other examples, other kinds
of specificity of arbitrarily fine degrees would be needed. Hypothetical
situations, then, should be as specific as possible – just like real
situations, but unlike descriptions of (real or hypothetical) situations
that always have to leave out some details. The hypothetical and
maximally specific character of situations immediately leads to a
problem for the determination of quantitative informativeness: there
may be infinitely many hypothetical situations, in which case counting
them can be difficult. But fortunately we are not concerned with the

130 Zimmermann, Formal Semantics

quantitative notion of informativeness here, because it is obviously the
qualitative one that we are after.

The above account of quantitative informativeness in terms of numbers
of favourable cases naturally leads to a characterization of the quali-
tative notion of informativeness. To see this, we merely have to look at
(21) and (22) again. The reason why they appear to be equally informative
in the quantitative sense is there are as many favourable cases for each
of them: it seems reasonable to assume that |Σ(21) | = |Σ(22) |. But, clearly,
the two sentences differ in qualitative informativeness, because they do
not describe exactly the same cases: because Σ(21) ≠ Σ(22). In general,

then, two sentences ϕ and ψ differ in qualitative informativeness if Σϕ ≠

Σψ. If, on the other hand, ϕ and ψ are true in exactly the same
situations, it is hard to imagine that could contain different information.
We are thus led to:

Carnap’s Idea
The information contained in a sentence is the set of hypothetical
situations (specific states of affairs, possible worlds, indices…) that it
correctly describes.

(The parenthetical list offers some traditional terminological alter-
natives.) According to this idea, the intension of a sentence can thus be
identified with a set of situations. Since this set comprises whatever the
sentence says, whatever information it contains, it will also be called the
proposition expressed by the sentence. A more dramatic way of putting
the above idea is thus: propositions are sets of possible worlds. We will
now see how to make use of this idea.

5.3 Two-sorted type theory

The sentence

(26) Bill loves Coco.

correctly describes all situations i in which Bill loves Coco. Its intension
is thus the set:

(26') {i Bill loves Coco in i},

131 Zimmermann, Formal Semantics

where ‘i’ is used as a variable ranging over (hypothetical and real)
situations or indices. If we are going to use this proposition in de-
termining the extensions of complex expressions like

(27) Nobody doubts that Bill loves Coco.

we should try and construe the intension (26') in some systematic, may-
be even compositional way. There are several ways of doing so and we
will only look at one of them, viz. the technique of indirect interpretation.
We will thus see how a sentence like (26) can be (compositionally) trans-
lated into a logical formula denoting the proposition the sentence ex-
presses. Now, the notation used in (26') is already pretty close to the
formula we will eventually arrive at and we will get there by employing
essentially the techniques discussed in part 4: the intension of (26) will
be denoted by a formula starting with ‘[λi…’ – like the set abstraction
‘{i…’ used in (26'); the referential NPs will be translated as constants
of type e; and they will be combined with the translation of the verb by
successive functional application. However, before we can go into the
details of this procedure, we must decide what to do with the quali-
fication ‘in i’ occurring in (26'). It is obvious that we cannot just forget
about it; for without it, the set defined in (26') would either be empty or
consist of all situations whatsoever, depending on whether or not Bill
does indeed love Coco. But (26') suggests that whether the latter relation
obtains is itself contingent upon the particular situation: maybe he loves
her here and now, but maybe no longer so in two years or if, in some
hopefully unreal situation, he turns into a frog. In other words, the set
of pairs (a,b) such that a loves b varies from one situation to another.
We have conceived of this set as the extension of the verb loves, and we
will continue to do so; but we will, from now on, no longer ignore the fact
that this extension depends on various circumstances. In terms of our
indirect interpretation this means that loves should no longer be
translated by a constant of type e(et) but rather by something more
complex like the formula:

(28) Li

that is supposed to denote the set of pairs (a,b) such that a loves b in
the situation i (or, more accurately, in the situation denoted by the
variable i), i.e. the extension of loves in that situation.

Now, what kind of formula is (28)? Since it is supposed to denote a set of
ordered pairs, it should come out as being of type e(et), but what is its
internal structure? Well, the loving relation is that which depends on

132 Zimmermann, Formal Semantics

the situation (denoted by ‘i’). So, mathematically speaking, love is a
function from situations to sets of ordered pairs of individuals. (Surely,
this shows that the mathematical perspective on life misses some of its
excitement.) The ‘L’ in (28) may thus be understood as a constant of type
s(e(et)), where the ‘s’ stands for the type of situations, which we will
assume to be an additional basic type s, on top of e and t. Consequent-
ly, ‘i’ is a variable of type s, and (28) is but a notational variant of:

(28') L(i),

i.e. the result of combining the expressions ‘L’ of category s(e(et)) and
‘i’ of type s by functional application; clearly, this result is of category
e(et), as required. If we now take (28) or (28') to be the translation of
loves and continue to assume that proper names like Bill and Coco
translate into constants of type e, we can use our old compositional
rules of indirect interpretation, i.e. rules (27) and (30) of part 4, to obtain
the following compositional translation of (26):

(29)
S

NPref

Bill

VP

Vtrans

loves

NPref

Coco

⇒ Li (b,c)

b Li (c)

Li c

Being of type t, the resulting formula does not refer to the intension of
(26), i.e. the set (26'), but rather denotes a truth-value – which one
depends on i (or, again, what ‘i’ refers to). But clearly the desired st-
expression can be obtained from (29) by abstracting from the variable i:

(30) [λi Li(b,c)]

(30) obviously denotes the set of situations in which Bill loves Coco and
resembles the meta-linguistic definition (26') of that proposition. Note
that the relation between the translation of (26), as it appears in (29), and
the formula (30) denoting the corresponding intension is analogous to
the one between ‘Li’ and ‘L’: in either case, the first formula denotes the
extension in some fixed situation (denoted by ‘i’), whereas the second
formula denotes that function f assigning to each situation the extension
in that situation. Since, in the case of (30), this function is the intension
of the sentence, we may generalize this notion to the other case and say
that the constant ‘L’ denotes the intension of the transitive verb love,

133 Zimmermann, Formal Semantics

whereas the complex expression (28') denotes its extension (in the
situation denoted by i). We will, indeed, generalize the distinction to
arbitrary natural language expressions ∆ by defining the intension of ∆
to be that function f that takes every situation to ∆’s extension in that
situation; and if ∆ translates into the logical formula α denoting α’s
extension in the situation indicated by the type-s-variable i, then

›[λi α]fi will denote α’s intension. Applying this general observation to
the translation (28') of love, we find that its intension is denoted by the
formula

(31) [λi L(i)],

which happens to be logically equivalent to the constant ‘L’, by the law of
η-conversion. It thus suffices to take as the translation of a natural
language expression a formula denoting its extension and indicating, by
the presence of a variable i of type s, its situational dependence. In in-
tensional constructions this variable will then be bound by a λ-operator,
thereby obtaining a formula denoting the intension, as required by the
construction. We will now give the precise definitions of this procedure.

Since we have a new basic type, we also have a new set of types
altogether. We call them two-sorted types and they are defined by
adding to the original definition of an extensional type the additional
phrase structure rule ‘S → s’. Clearly, every intensional type is a two-
sorted type, and those two-sorted types – like s, s(e(et)), and st – that
are not extensional will be called intensional types. Similarly, we let a
two-sorted ontology to be a family of sets Da, for any two-sorted type a,
and define it just like in section 3.2, with the additional clause

Ds = S,

where S is an arbitrary, non-empty set. The situations thus play a role
analogous to that of individuals. In particular, situations are not be
further analyzed into their components, parts, or whatever and, unlike
truth-values, what they are and how many of them there are, depends
on the ontology. (The situations thus form a second sort of non-logical,
basic objects.) These assumptions are mainly made for simplicity.

Now for the language Ty2 of two-sorted type theory. Its basic
expressions are the variables Vara and constants Cona of arbitrary
two-sorted types a; about them we make the same assumptions as in

134 Zimmermann, Formal Semantics

Ty1. The syntactic operations of Ty2 are the same as those of Ty1, i.e.,
Abstraction, Application, and Identity; needless to say that now they
extend to arbitrary two-sorted types. Moreover, the notions of a two-
sorted variable assignment and that of a tow-sorted interpretation will
be defined in the obvious way, i.e. as functions from all two-sorted
variables and constants to denotations of the appropriate types. And
finally, the syntactic operations are interpreted exactly as in Ty1. Using
these definitions, it is clear that, e.g.,

(32) [λjs (is = j)]

is a Ty2-formula of category st and that it denotes (the characteristic
function of) the singleton set {g(i)} in any two-sorted model M.

Given the basic syntactic and semantic definitions of two-sorted type
theory, it is not hard to see that all important logical laws and
equivalences discussed in part 4 carry over from Ty1 to Ty2. In
particular, the Principles of λ-Conversion, η-Conversion, Substitution,
and Alphabetic Variants as well as the Strong Normalization Theorem
all hold in two-sorted type theory; and whatever is valid in predicate
logic (of whatever order) or in one-sorted type theory remains valid in
Ty2. We will not prove any of these assertions here but simply trust that
the difference between one-sorted and two-sorted type theory is not
dramatic enough to cause any significant deviance in logical behaviour.

We are now in a position to sketch a modification of the translation
algorithm presented in part 4. Apart from the addition of some
intensional construction, the main difference between the old and the
new translations consists in the sensitivity of extensions to situations.
We have already seen how this can be done in the case of such lexical
expressions as the transitive verb love. And this procedure will work for
almost any lexical expression: unless otherwise stated, we assume that
the translation of a lexical expression δ is a Ty2-formula of the form

(33) c(i),

whenever δ’s category corresponds to a (two-sorted) type a and ›cfi is a
constant of type sa. As before, i is a variable of type s, but we actually
have to say which one; for we want to make sure that the index-variable
introduced by a lexical expression is the same as the one bound by the λ-
prefix in the translation of an intensional construction. The easiest way

135 Zimmermann, Formal Semantics

to guarantee this is to once and for all fix one variable of type s and
agree that it is going to be the only one that will ever occur in the trans-
lation of an expression. This is essentially what we will do, although we
will sometimes rename the variable for better readability. So let us
assume that the meta-variable ‘i’ denotes the variable xs0, i.e. the 0th
variable of type s. (33) then gives the general form of the translation of a
lexical expression as consisting of a constant (denoting the intension of
that expression) applied and this variable xs0.

There are certain exceptions to the scheme (33) of lexical translation
most of which have already been discussed in part 4. In particular,
words that can be lexically decomposed will be translated by formulae
more complex than (33). Of course, we now have to add all situational
dependencies, so that the translation (34) of girl (briefly discussed in
section 4.5) becomes the slightly more complicated (34'):

(34) [λxe [F(x) & P(x) & C(x)]]

(34') [λxe [Fi(x) & Pi(x) & Ci(x)]]

(We have again made use of the notational convention of writing an
argument as a subscript.) The difference between the constants in (34)
and their primed counterparts in (34') is, of course, their type: the
former are ordinary (first-order) predicates of type et, and the latter,
being of category s(et), denote functions from situations to
(characteristic functions of) sets of individuals; such functions that
make the extension of a predicate depend on a situation will from now
on be called properties (of individuals).

Bearing the difference between (34) and (34') in mind, it is fairly easy to
translate a given extensional lexical decomposition into a two-sorted
one. In the case of the translations of determiners, no change will be
necessary, because their extensions never depend on the situation:
every always denotes the subset-relation, no is disjointness, etc. So the
very same Ty1-formulae that we have used to translate determiners can
also be used as their Ty2-translations.

Proper names are a similar exception to the scheme (33). We have
already seen in (29) that, in order to receive the desired translation of
Bill loves Coco, Bill and Coco should be translated by constants of type
e – rather than by constants of type se, as the scheme (33) would
suggest: whichever situation we are talking about, the name Bill
always refers to the same person, Bill. (This is not to say that Bill may

136 Zimmermann, Formal Semantics

not be used to refer to another person; however, this would constitute a
different usage of the name. We will return to this in an exercise.) So,
just like determiners, proper names maintain their old Ty1-trans-
lations.

What proper names and determiners have in common is the situational
independence of their extensions: they are (referentially) rigid. Other
examples of rigid expressions include the connectives or and and (if
they are interpreted as lexical items always denoting the same truth-
tables) and possibly so-called natural kind terms as tiger or birch.
However, the whole issue of which lexical expressions are rigid is
rather complex and we will not go into this debate here. It should only be
mentioned that a rather popular way of modelling referential rigidity
consists in translating the expression in question according to the
scheme (33) and then assume a meaning postulate to the effect that ‘c’
is interpreted as a constant function:

(35) (∀ is) (∀ js) (c(i) = c(j))

(Note that (35) contains more than one world variable; this does not
matter, because it is not itself the translation of a natural language
expression.) Clearly, (35) implies that the extension of the lexical item
translated by (33) does not depend on any particular situation. In that
sense (35) guarantees rigidity. We will, however, usually get the same
effect by immediately translating the rigid expression into a constant of
the same category as the entire formula (33), i.e. the category of ‘c’
minus the initial s. That way we avoid a meaning postulate – at the cost
of admitting a certain number of exceptions to (33) as a general scheme
of translating lexical items.

Now that we know how lexical expressions are translated, we can go on
to the translation of syntactic rules. Here matters are even simpler. As
the example (29) already suggested, there is no need to change our
original translation rules from part 4. All we have to do is to add some
intensional constructions, translating them by abstraction from the
situation. Here is one way of adding that-clauses:

(36)
S
S

⇒ [λi ϕ]

ϕ

137 Zimmermann, Formal Semantics

The S in (36) is a that-clause. The idea is that, whereas the sentence
itself denotes a truth-value, the that-clause denotes the intension of this
sentence. Since that-clauses usually appear in intensional construc-
tions, the effect of this rule is that the that-clause contributes a pro-
position to the extension of any larger expression – just like Frege’s
Original Principle would have it. Clearly, the ‘i’ is the 0th variable of

type s and the type corresponding to S is st.

5.4 Propositional attitudes

In order to be able to apply (36), we need a that-clause embedding con-
struction. In the present context, the most straightforward one is that
combining (propositional) attitude verbs like believe, know, or doubt
with a that-clause. What these verbs have in common (and what makes
them attitude verbs in our terminology) is that they need a subject and a
that-clause to complete a sentence. The most obvious categorization of
these verbs is to regard them as expressing binary relations between
individuals (denoted by their referential subjects) and propositions. We
thus assume that the type corresponding to the category Vprop of attitude
verbs is (st)(et). We then add the following rule:

(37)
VP

Vprop S

⇒ α(β)

α β

Let us apply these new rules to an example mentioned above:

(38)
S

NPquant

nobody

VP

Vprop

doubts

S

S

NPref

Bill

VP

Vtrans

loves

NPref

Coco

138 Zimmermann, Formal Semantics

The translation of the embedded sentence has already been given. It is
obtained by translating loves according to scheme (33), treating proper
names as rigid exceptions and combining the constituent translations by
the old rules (27) and (30) of part 4. The result is:

(39) Li(b,c)

Now (36) gives us the translation of the that-clause, i.e. the formula (30)
denoting the intension of the sentence Bill loves Coco; we repeat it solely
for the readers’ convenience:

(30) [λi Li(b,c)]

Before we can apply (37), we must find a translation for the verb doubt.
Since it is of category Vprop, the translation should be of type (st)(et).
The remaining question is whether it should be subsumed under the
scheme (33). If not, we must either (i) give some decomposition for it or
(ii) argue that it is rigid. While (i) may be possible, we will not attempt it
here; one suggestion will be discussed in an exercise. On the other
hand, (ii) is certainly impossible: who doubts what, i.e. the extension of
the verb doubt does depend on the situation. We therefore conclude that
(33) applies yielding (40) as a translation of doubt:

(40) D(i),

where ‘D’ is a constant of category s((st)(et)) and i is as usual. Now
rule (36) can apply to combine (30) and (40) into:

(41) Di([λi Li(b,c)])

(Note that we have again switched to the subscript notation.) As one can
easily check, this formula is of category et, as is appropriate for the
translation of a VP. It should be noted that the two occurrences of the
variable ‘i’ in argument position are quite independent of each other in
the sense that the first one (as a subscript to ‘D’) is free in (41), whereas
the second one (the subscript to ‘L’) is bound by a λ-operator and can
therefore be renamed without changing the content (but certainly the
readability) of the formula:

(41') Di([λj Lj(b,c)])

Now, although this resulting formula contains more than one type-s-

139 Zimmermann, Formal Semantics

variable, this does not matter because it is not the ‘official’ translation of
any expression, i.e. not the result of applying the algorithm sketched
above, but merely a formula that happens to be equivalent to such a
translation. And these equivalent formulae do sometimes contain more
than one variable of type s, as this very example shows!

In order to finish the example, we must still give a translation for the
quantified subject. Here is an ad hoc suggestion:

(42) nobody' := [λXet ¬ (∃ xe) [Pi(x) & X(x)]],

where ‘P’ is a constant of category s(et) denoting the property of
personhood. Using (42), we can now combine the subject and predicate of
(38) by the familiar rule (28) from part 4. The following tree illustrates
the whole translation process; logical reductions have been made as
early as possible:

(42)
¬ (∃ xe) [Pi (x) & Di (x, [λi Li (b,c)])]

[λXet ¬ (∃ xe) [Pi (x) & X(x)]] Di ([λi Li (b,c)])

Di [λi Li (b,c)]

Li (b,c)

b Li (c)

Li c

Mixing object-language and meta-talk, we can say that the topmost
formula correctly describes (is true of) all situations i in which there is
no individual that is both a person and stands in the relation of doubt to
the proposition that is true of all situations in which Bill loves Coco or,
for short, to the proposition that Bill loves Coco. To say that the sentence
is true or denotes the truth-value 1 then amounts to saying that the
momentary, actual situation is one that it accurately describes. In this
sense, free occurrences of i can be understood as referring to the
situation that the sentence is about. Under normal circumstances and
as long as nothing else has been said this will simply be the situation of
utterance.

140 Zimmermann, Formal Semantics

Does the translation (42) give a correct account of the meaning of the
attitude sentence (38)? This is a tricky question and we will not give a
definite answer to it. But we will point out at least some of the problems
that have been raised against the so-called possible worlds approach to
propositional attitudes and intensional constructions in general. The
most celebrated argument has to do with the Substitution Principle. We
know that we may replace one formula by an extensionally equivalent
one without changing the extension of the host expression – provided
that this substitution does not change any variable’s status of freedom or
bondage. Let us first see why the proviso saves us from the kind of
fallacy that motivated the introduction of intensions. We may, e.g.,
assume that the following sentences are all true:

(43) Alain is a boy.
(44) Alain is asleep.
(45) Tom thinks that Alain is a boy.

Our translation rules yield the following three formulae:

(43') Bi(a)
(44') Ai(a)

(45') Ti(t, [λi Bi(a)])

(For reasons that will become clear in a second we have not renamed
bound variables.) Now consider the result of substituting (43) in (45) by
(44) together with our translation of it:

(46) Tom thinks that Alain is asleep.
(46') Ti(t, [λi Ai(a)])

Now, doesn’t our algorithm predict that we can conclude (46) from (43) -
(45)? After all, we do get the former’s translation by substitution of (43')
by (44') and we have assumed the latter to be extensionally equivalent,
both denoting the truth-value 1. It’s the variable condition, of course:
(43') contains a free occurrence of i which is bound by a λ-operator in
(45'). The fact that Alain is both a boy and asleep in the situation
referred to by ‘i’ does not guarantee that he is asleep in exactly those
(real and hypothetical) situations in which he is a boy. However, the
latter would have to be the case for the substitution to be correct: in order
to get (46') as a valid inference from (45') via the Substitution Principle,
one would have to replace ‘[λi Bi(a)]’ by ‘[λi Ai(a)]’.

141 Zimmermann, Formal Semantics

The above example clearly shows the merits of renaming bound
occurrences of the variable ‘i’; for had we rewritten the translation (45')
as (45"), we would never have been tempted to apply the Substitution
Principle:

(45") Ti(t, [λj Bj(a)])

Another conclusion to be drawn from this example is that there is only
one kind of failure of the Substitution Principle, viz. the confusion of
bound and free occurrences of variables: under the present view and
contrary to our informal introduction of the phenomenon, intensionality
is a special case of variable binding. In this sense the possible worlds
approach involves a reductionist theory of intensional constructions.
Intensionalists see a fundamental error in this denial of a special status
of intensionality.

There are stronger points to be made against the above treatment of
propositional attitudes. The fact that substitution works whenever two
expressions extensionally coincide in all possible situations leads to
highly implausible results. In the above case the assumption that Alain
is asleep whenever he is a boy (and vice versa) may be rejected on
material grounds, but in the following example there is no escape:

(47) Tom is asleep.
(48) Every individual that is [identical to] Tom is asleep.
(49) Alain thinks that Tom is asleep.

We want to understand individual as expressing a ‘vacuous’ property;
following exercise 12 of part 4, we therefore suggest the translation rule:

(50) individual' := [λxe (x = x)],

Our rules then give us the following translations:

(47') Ai(t)

(48') (∀ xe) [(x = t) → Ai(x)]

(49') Ti(a, [λj Aj(t)])

(This time we did rename the bound occurrences of ‘i’.) Let us now
assume that (47) - (48) are true and therefore extensionally equivalent.
In fact, according to our translation, the truth of (47) immediately
implies the truth of (48) and vice versa: the two formulae (47') and (48')
are logically equivalent. How about substituting (48) for (47)? The result

142 Zimmermann, Formal Semantics

would be:

(51) Alain thinks that every individual that is [identical to] Tom is
asleep.

(51') Ti(a, [λj (∀ xe) [(x = t) → Aj(x)]])

Given the truth of (49), would (51) also have to be true? Maybe not. Maybe
Tom’s being asleep amounts to every-individual-who-is-Tom’s being
asleep without Alain realizing it? Given a bad case of underdeveloped
logical skills, one might actually doubt the validity of such a conclusion.
However, our formalization forces us to accept it: since (47') and (48')
will get the same truth-value no matter what the extension of ‘i’ may
be, the functions taking every possible extension of this variable to the
corresponding extension of the formulae will also coincide. So the logical
equivalence of (47') and (48') immediately implies the logical equivalence
of the following two formulae, i.e. the translations of the that-clauses:

(52) [λj Aj(t)]

(53) [λj (∀ xe) [(x = t) → Aj(x)]]

It is clear that this kind of reasoning does not depend on any specific
features of this example: whenever two sentences are logically equi-
valent, they have the same intensions and are thus inter-substitutable,
even in intensional contexts. This fact has been seen as the major defect
of the above kind of treatment of propositional attitudes.

How disastrous is the substitutivity of logical equivalents? In the attempt
to answer this question, advocates of possible worlds semantics have
sometimes tried to explain away the phenomenon of logical ignorance by
arguing that, strictly speaking, a sentence like (49) does imply (51),
because the very fact that Alain believes Tom to be asleep shows that he
believes everyone who is Tom to be asleep – even though he himself may
not be aware of the fact that the sentences (47) and (48) express the same
proposition. We will not go into the details of this argumentation, let
alone evaluate it.

Here is another, somewhat more exotic argument against identifying
the objects of propositional attitudes with sets of situations. To follow it,
the reader is asked to pick an arbitrary proposition p together with his
or her favourite propositional attitude A and imagine a (possible)
situation sp in which p is the only proposition that anybody (or any-
thing) bears A to. Now, p might have been the proposition expressed by

143 Zimmermann, Formal Semantics

(51) and A may be the relation that holds between a person x and a
proposition q in a situation s iff, in s, x utters a sentence expressing q;
the situation sp would then have to contain one or more individuals
uttering (51), or (49), or something co-intensional with it without any-
body else uttering anything else. Or p could be a set consisting of just
one situation s and A could be the relation that always holds among Tom
and all singleton sets but among nothing else; then sp could be any
situation whatsoever. The point is that, no matter how p and A are
determined, there seems to be no intuitive objection against imagining
such situations sp. However, given the identification of propositions and
sets of worlds, one can show that, at least for some choices of p and A,
no such sp exist. The reason has to do with the relative cardinalities of
the set of possible situations and its power set, the set of propositions;
and the proof, which we will now sketch, is a variant of Cantor’s
diagonal argument.

Let us, for the sake of this argument, fix an attitude A and imagine that,
for arbitrary propositions p we had found a (fixed) situation sp such
that the only proposition that is Aed in sp is p. We first observe that, (!)
for any propositions p and q, sp = sq implies that p = q. Next we con-

sider the ‘diagonal’ proposition d of all situations sp such that sp ∉ p:

(54) d := {s  for some proposition p, s = sp and s ∉ p}

Since d is itself a proposition (that we might have determined in an-
other, more straightforward way), there is a situation sd in which only
d is Aed. We now wonder whether d contains sd as an element. If so,

sd would have to satisfy the condition on arbitrary s in (54) and thus s ∉
p for some p such that sd = sp. However, by (!), this p must be d

itself, so that s ∈ p. The assumption that sd is in d therefore leads to a

contradiction. Does that mean that sd ∉ d? In that case we would have

found a proposition p (= d) such that sd = sp and sd ∉ p. So sd meets
the defining condition in (54) and is therefore in d – again a contra-
diction. So our initial assumption about the existence of arbitrary sp
must be wrong. We have thus proved that the following (schematic) Ty2-
formula is a contradiction:

(u) (∀ pst) (∃ i) (∀ qst) [αi(β,q) ↔ (p = q)],

whenever α and β are expressions of categories s((st)(et)) and e (and

144 Zimmermann, Formal Semantics

no variable confusions arise). It has been argued that there is no in-
tuitive reason to reject the possibility of situations sp in which an
arbitrary proposition p is the only thing to be believed, claimed, denoted,
etc. Since the framework forces us to deny this universal possibility,
something must be wrong with it. As a careful analysis would show, the
above argument mainly rests on the assumption that there are more
propositions than situations. Hence it is this assumption, which in turn
follows from the identification of propositions with (arbitrary) sets of
situations, that should be given up – or so the story goes. Again, we will
not try to evaluate this argument against the very spirit of possible
worlds semantics but merely point to its existence.

Before we can get to a third objection, we better look into some inter-
actions of our treatment of propositional attitudes with certain other
rules of grammar. More specifically, it is very instructive to consider
that-clauses containing one or more quantified noun phrases:

(55) Bill says that Coco loves a baby.

The most straightforward analysis of (55) is certainly:

(56)

S

NPref

Bill

VP

Vprop

says

S

S

NPref

Coco

VP

Vtrans

loves

NPquant

Det
a

N
baby

⇒ Si (b,[λj (∃ xe) [B j (x) & L j(c,x)]])

b [λye S i (y,[λj (∃ xe) [Bj (x) & Lj(c,x)]])]

Si [λi (∃ xe) [B i (x) & Li(c,x)]]

(∃ xe) [Bi (x) & Li(c,x)]

c [λye (∃ xe) [B i (x) & L i(y,x)]]

Li [λXet (∃ xe) [B i (x) & X(x)]]

[λYet λXet (∃ xe) [Y(x) & X(x)]] Bi

As one would expect, according to this reading, the sentence expresses

145 Zimmermann, Formal Semantics

that the proposition said by Bill consists of all situations in which there
is a baby that Coco loves. What does it mean for a person to say a pro-
position, in our technical sense of the term? A first guess is provided by
the following meaning rule:

(57) The relation of saying (i.e. the extension of the verb say) holds
among an individual x and a proposition p in a situation s iff x
utters a sentence (of some language known to x in s) whose in-
tension is p.

Following this rule, Bill would have had to utter something like a
sentence under (58) in order for (56) to be true:

(58) (e) Coco loves a baby.
(f) Coco aime un bébé.
(g) Coco liebt ein Baby.
(l) Amat infantem Coco.

Moreover, it seems that (57) is too strict in view of the following alter-
native utterances of Bill’s that would certainly also verify (55):

(58') (e) Coco loves a fat baby.
(f) Coco aime un gros bébé.
(g) Coco liebt ein dickes Baby.
(l) Amat infantem crassum Coco.

The difference between (58) and (58') is one of (qualitative) informative-
ness. This observation suggests the following revision of (57):

(57') The relation of saying holds among x and p in s iff x utters a
sentence whose intension is a (not necessarily proper) subset of p.

One feature of this analysis of (55) is of particular interest to us here: if
we compare different situations in the proposition that Bill is said to bear
the saying relation to, it turns out that they all contain babies that are
loved by Coco, but that in different situations Coco may, of course, love
different babies. (Recall that situations are possible situations.) In part-
icular, according to analysis (56), (55) does not say that Bill made some
specific claim like:

(59) Coco loves Zoë.

(This time the translations are left to the reader.) In this sense, what
Bill says according to (56) is unspecific with respect to the baby loved by
Coco. On the other hand, it seems clear that Bill’s utterance of (59)
would also make (55) true, provided that the name Zoë refers to a baby.

146 Zimmermann, Formal Semantics

This fact is brought out by an alternative analysis of (55) to which we will
now turn.

An exercise in part 4 strongly suggested that sentences with only one
quantified NP do not show any scope ambiguities: the quantifying in rule
(55) of part 4 does not produce any semantically distinct readings.
However, this is only true as long as intensionality is not involved. For
although our sentence (55) does not contain any quantified noun phrase
other than a baby, raising the latter does make a difference:

(60)
S

NPquant

Det
a

N
baby

x S

NPref

Bill

VP

Vprop

says

S

S

NPref

Coco

VP

V trans

loves

NPref

x

⇒ (∃ xe) [Bi (x) & Ki (b,[λj Lj(c,x)])]

[λXet (∃ xe) [Bi (x) & X(x)]]

[λYet λXet (∃ xe) [Y(x) & X(x)]] Bi

x Si (b,[λj Lj(c,x)])

b [λye Si (y,[λj Lj(c,x)])]

Si [λi Li(c,x)]

Li(c,x)

c Li(x)

Li x

According to this second reading, (55) is true of a situation s if there is a
baby x (i.e. an individual that is a baby in s) such that, in s, Bill knows
the proposition px consisting of all situations in which Coco loves x. So,

147 Zimmermann, Formal Semantics

contrary to what Bill says according to (56), px is a belief about a
specific baby. It is this specificity that distinguishes the reading (60)
from that in (56). (It should be noted that specificity does not imply
uniqueness: due to the usual interpretation of the existential quantifier,
there might be more than one baby x satisfying the relevant condition.)
In order to grasp the difference between the two readings, one need only
imagine situations s in which one is true and the other is not, i.e.
situations accurately described by (56) but not by (60), or vice versa. For
instance, if Bill (a native speaker of American English) utters (59) in s,
where Zoë does refer to a baby, he thereby stands in the relation of
saying to the proposition pZoë that contains all situations s' in which
Coco loves Zoë, the referent of the proper name Zoë. In particular, then,
there is some individual x (= Zoë) such that, in s, Bill stands in the say-
ing relation to px. Hence, on the analysis (60), (55) is true. But is it also
true under analysis (56)? For that to be the case, Bill would have to utter
a sentence whose intension contains only situations in which Coco loves
a baby, i.e. only such s' in which there exists an individual x who is a
baby in s' and such that in s' Coco stands in the relation of love to x.
Now, if we imagine that (59) is all that Bill says in s, (56) would only be
true if the proposition pZoë expressed by (59) contains only situations in
which Coco loves a baby. But this is not the case: for (56) is also true of
(possible) situations in which the only person that Coco loves is Zoë, who
has meanwhile grown into a respectable young lady. Hence pZoë is not
a subset of p, i.e. the set of situations in which Coco loves some
(unspecified) baby. It is therefore possible for (60) to be true without (56)
being true. And, as an exercise will show, the converse also holds: the
two readings ascribed to (55) are logically independent.

It is worthwhile to summarize the main aspects of the above analysis of
sentences like (55), in which a quantified noun phrase occurs in the
complement of a propositional attitude verb. The first claim is that such
sentences are systematically ambiguous between a specific and a non-
specific reading of the noun phrase in question. (Thus, if there is more
than one NPquant in the that-clause, more ambiguities arise; likewise,
we get more ambiguities by iterated embeddings of that-clauses. We
will, however, ignore such complications here.) This ambiguity claim is
by no means trivial. For although it is undoubtedly true that (55) may be
used to truthfully describe both Bill’s utterances about specific babies
loved by Coco and mere existence claims, this fact in itself does not imply
that each use of (55) must be either specific or unspecific rather than,
say, indeterminate. The idea that such sentences are indeed ambiguous

148 Zimmermann, Formal Semantics

between a so-called de re (= specific) and a de dicto reading has a long
tradition but we will not try to justify or discredit it here.

The second ingredient of the above analysis is the reduction of the de
re/de dicto ambiguity to a (quantifier) scope ambiguity: the specific
reading is that in which the quantifier has wide scope over the attitude
verb, whereas in the non-specific reading the quantifier is within the
scope of the verb. Schematically, as along as one quantifier and one
attitude is involved, the two readings have following form:

(61) (dd) Ai(x,[λi (Qiy) Pi(y)])

(dr) (Qjy) Ai(x,[λi Pi(y)])

(The reason why we have not renamed bound occurrences of the variable
i will become clear in a second.) Even on this general level, two import-
ant differences between the two readings are apparent. The first is that
the (61dd) reports that the relation expressed by the attitude verb (‘Ai’)

holds between the subject (‘x’) and one proposition (‘[λi (Qiy) Pi(y)]’),
whereas (61dr) says that the subject bears the relation to a certain
quantity of propositions. Thus, in its de dicto sense, (62) reports one
utterance of Bill’s, whereas in its de re sense it can be used to report as
many utterances as there are babies:

(62) Bill says that Coco loves every baby.
(dd) Si(b,[λi (∀ y) [Bi(y) → Li(c,y)]])

(dr) (∀ y) [Bi(y) → Si(b,[λi Li(c,y)])]

(It must be added that, according to our meaning rule (57'), even on the
specific, de re reading, (62) may be used to report a single utterance; in
that case the proposition expressed by that utterance would have to
imply that Coco loves y, for every baby y.) The other difference between
(61dd) and (61dr) concerns the status of the variable i as an argument
to the quantifier. In (61dd) it is bound by the λ-operator introduced by
the that-clause and thus relativizes the extension of the quantified NP to
whatever situations are relevant to the attitude expressed by ‘A’; but in
(61dr) it is free and thus refers to whatever situation the translated
sentence is about. The difference can best be seen from its effect in
various examples. If we imagine that the unspecific reading (56) of (55)
is used to (truthfully) describe a situation in which Bill uttered exactly
one (English) sentence, then the intension of this sentence would have to
be a subset of the proposition expressed by:

149 Zimmermann, Formal Semantics

(63) Coco loves a baby.

In particular, what Bill said would have to imply that there are babies:
(63) can only be true of situations in which there exists at least one baby.
But if (55) is used in its specific, de re sense (60) to report a particular
utterance, then the sentence uttered by Bill may have been (59) which,
unlike (63), does not imply the existence of any babies; in fact, Bill may
have uttered (59) without even being aware of the fact that Zoë is a baby.
On the other hand, the sentence (63) itself implies the existence of babies:
the proposition said by Bill is about a certain individual y that is de-
scribed as a baby. However, this is only true of the de re reading; the de
dicto reading (55) may even be true in completely babyless worlds.
Analogous remarks apply to the two readings of (62). In order for (62dd)
to be true, Bill would not have to say anything about (or even know) any
specific baby, whereas according to (62dr), the proposition(s) said by
him would have to be about each baby y, whether or not Bill says (or even
knows) that y is a baby.

One reason to carefully distinguish two aspects of the de re/de dicto
ambiguity is that it has been argued that these are really two different
phenomena that may but need not co-occur and should therefore be
given an independent characterization. We cannot discuss this suggest-
ion here but merely note that, according to the analysis presented above,
the quantifier scope of the noun phrase and the evaluation of its ex-
tension (whether in the situation described or in the situations relevant
to the attitude) cannot be separated: ‘multiple reference [= wide scope]
often necessitates transparency [= evaluation with respect to the
situation described]’, as Montague once put it. One strong point in
favour of this correlation lies in an interesting application of seemingly
unrelated examples involving certain transitive verbs. Before we show
how this works, we have to keep our promise and briefly turn to a
further argument against the identification of propositions and sets of
worlds or situations.

It is a characteristic feature of de re readings that they report a subject
to bear a certain attitude to one or more propositions about the object
quantified over. Thus, on the de re reading of (64), Tom is said to believe
something about some creature that is characterized as a monster:

(64) Tom believes that a monster is hiding under the bed.

The sentence is thus understood in a relational sense that may also be

150 Zimmermann, Formal Semantics

expressed by:

(65) Tom believes of a monster that it is hiding under the bed.

(Note that (65) lacks a de dicto reading.) It appears that (65) establishes
the relation of belief to hold among three objects the first two of which
are individuals (viz. Tom and Nessie, say), whereas the third is the
property of hiding under the bed:

(65') (∃ y) [Mi(y) & B*i(t,y,[λj λz Uj(z)])],

where ‘M’ (∈ Cons(et)) translates monster, ‘B*’ (∈ Cons((st)(e(et))))

translates relational believe, and ‘U’ (∈ Cons(et)) symbolizes the
property of hiding under the bed. With ‘B’ (Cons((st)(et))) as the trans-
lation of believe, the de re reading ascribed to (64) is:

(64') (∃ y) [Mi(y) & Bi(t,[λj Uj(y)])]

What does it mean for someone to believe something of a monster (or of
anything)? Whatever the exact conditions are, belief about something
should at least imply acquaintance with that thing. We may thus
assume the following general principle:

(66) (∀ i) (∀ x) (∀ y) (∀ Ps(et)) [B*i(x,y,P) → Ai(x,y)],

where ‘A’ symbolizes the relation of being acquainted. Now the problem
is that, if we understand the de re readings (like (64')) in a relational
sense (as in (65')), they would imply that their subjects are acquainted
with everybody. For if u ∈ Vare, (64') is obviously equivalent to:

(67) (∃ y) [Mi(y) & Bi(t,[λj [Uj(y) & (u = u)]])],

which in turn expands to:

(67') (∃ y) [Mi(y) & Bi(t,[λj [λk λv [Uk(y) & (u = v)]] (j) (u)])],

by two backwards applications of λ-conversion. The relational reform-
ulation of this is:

(67*) (∃ y) [Mi(y) & B*i(t,u,[λk λv [Uk(y) & (u = v)]])],

to which we may apply the principle (66) yielding:

151 Zimmermann, Formal Semantics

(68) Ai(t,u)

Since u was arbitrary, we have it that (64') implies:

(69) (∀ u) Ai(t,u),

a highly undesirable result. One may wonder who or what is responsible
for it. Again, we will not enter this discussion here, but only mention
that it is hard to argue against either the relational reduction of de re
belief or the acquaintance principle (66). But if both are right, the absurd
consequence must have to do with the general framework, and
particularly with the fact that, according to the possible worlds frame-
work, any proposition p is about any individual x whatsoever, in the
sense that there is a property P such that p is the set of situations in
which x has this property: P can be defined as the function taking any
situation s to {u∈ De u = x and s∈ p}. This fact was used in the initial
step of the above argument (to get from (64) to (67')).

We have sketched three arguments against the identification of pro-
positions (i.,e. intensions of sentences) and sets of situations or worlds,
or indices), and they are certainly not the only ones. Moreover they are
closely related to each other and can be seen as consequences of the one
big problem of possible worlds semantics, viz. the fact that, being sets of
urelements, propositions are essentially unstructured entities; in
particular they do not reflect enough of the structure of the sentences or
that-clauses that can be used to express them. This lack of fine-
grainedness is at the heart of all three arguments and a solution to any
them has to face it. However, despite of some promising attempts within
and outside possible worlds semantics, the problem of fine-grainedness
still waits for a convincing and general solution.

5.5 Referential opacity in transitive verbs

It was already mentioned that that-clause embeddings, though certain-
ly not the only intensional constructions, are very central in that many
other intensional phenomena can be reduced to them. In the present
section, we will study one such phenomenon-plus-reduction in some de-
tail. Here is the phenomenon:

(70) Coco hugs an abandoned baby.

152 Zimmermann, Formal Semantics

(71) Coco seeks an abandoned baby.

There is an important semantic difference between (70) and (71): where-
as (70) implies the existence of at least one abandoned baby – how else
could Coco hug her? – (71) may even be true without there being any
babies at all: Coco just has some ideal in her mind and hopes that reality
fits it. Now the reason why (70) does have an existential entailment is
brought out by its ordinary first-order analysis (70') which we can
construe compositionally, in the usual manner:

(70') (∃ x) [Ai(x) & Bi(x) & Hi(c,x)]

(For simplicity we assume that abandoned is an intersecting adjective.)
Applying the same kind of formalization technique to (71) yields (71'),
which has the same entailment:

(71') (∃ x) [Ai(x) & Bi(x) & Si(c,x)]

Now, it seems that (71) does have a reading like (71'), i.e. one according
to which Coco is looking for some specific individual that happens to be a
baby; we will return to this matter in due course. For the time being,
however, we are concerned with the far more serious problem that a
very prominent reading of (71) does not imply the existence of any babies
whatsoever and that, consequently, (71') cannot be the only correct
translation of (71).

Before attacking the interpretation of (71), we will first make sure that
we are actually dealing with an intensional context. Let us therefore
imagine that the only babies that have been abandoned happen to have
no teeth and that all toothless babies have been abandoned. Given our
interpretation of the indefinite article, we conclude that (72) and (72') are
coextensional and can therefore be replaced for each other in any ex-
tensional context:

(72) an abandoned baby
(72') a toothless baby

(a and an are, of course, superficial variants of the same word.) Per-
forming the substitution (70) and (71) then shows that, unlike the one of
hug, the object position of seek is not extensional:

(73) Coco hugs a toothless baby.
(73') Coco seeks a toothless baby.

153 Zimmermann, Formal Semantics

For given our assumptions, the truth of (70) guarantees that there will
be some toothless baby that Coco hugs. But her search may still be
directed towards those unfortunate babies that have been abandoned
without being at the same time a hunt for babies without teeth: Coco may
simply be ignorant about the coincidence of the two features. (However
note that, if (71) is understood as a report about Coco’s search of a
particular baby, substitution does work.)

In order to motivate an alternative treatment of (71) that avoids the un-
welcome existential implication, the following rough paraphrase proves
to be helpful:

(74) Coco tries to find an abandoned baby.

There are various observations to be made about (74) and its relation to
(71). The first is that, however incomplete a paraphrase it may be, it is
probably close enough to give an idea why one should not expect (71) to
behave exactly like (70). That is, even though (74) might, for instance, in-
dicate a more active search than (71) does, the reason why (74) does not
imply the existence of babies is likely to be the same as for (71). Secondly,
(74) seems to be prone to the same kind of ambiguity as was indicated in
connection with (71): both sentences may be understood as describing
Coco’s search for a particular individual that happens to be an
abandoned baby – in which case both do of course imply the existence of
such babies. Finally, (74) comes pretty close to a reduction of (71) to a pro-
positional attitude report: although try does not take a that-clause, it is
understood that the subject of its infinitival complement is ‘controlled’ by
the matrix subject. We could thus decompose try into a logical variant
of a propositional attitude T∈ Cons((st)(et)):

(75) try' := [λPs(et) λxe Ti(x, [λi Pi(x)])]

An approximate paraphrase for the propositional attitude ‘Ti’ may be
try to bring about. According to (75), a sentence like (76) would get
translated as (76'), if we assume the straightforward translation rule
(77):

(76) Bill tries to sleep.
(76') Ti(b, [λj Sj(b)])

154 Zimmermann, Formal Semantics

(77)
VP

Vinf VP
⇒ α([λi β])

α β

(We assume try to be of the category Vinf of infinitive embedding verbs;
note that (77) is intensional because the variable i gets bound.) And this
is what we get for (74):

(78)
S

NP ref

Coco

VP

Vinf

tries

VP

V tran

find

NP

Det
a

N

Adj

abandoned

N
baby

 ⇒

Ti(c, [λj (∃ ye) [A j(y) & Bj(y) & Fj(c,y)]])

c [λxe Ti(x, [λj (∃ ye) [A j(y) & Bj(y) & Fj(x,y)]])]

[λPs(et) λxe Ti(x, [λ i Pi(x)])] [λxe (∃ ye) [A i(y) & Bi(y) & Fi(x,y)]]

Fi [λXet (∃ ye) [A i(y) & Bi(y) & X(y)]]

[λYet λXet (∃ xe) [Y(x) & X(x)]] [λye [Ai(y) & Bi(y)]]

A i Bi

155 Zimmermann, Formal Semantics

The constants and their types are as usual; in particular, the transitive
verb find translates as ‘Fi’, where F∈ Cone(et). The analysis (78)
makes it perfectly clear that we cannot replace an abandoned baby by a
toothless baby without thereby possibly changing the truth-value of (74),
even though the two noun phrases may extensionally coincide. For we
would have:

(79) Coco tries to find a toothless baby.
(79') Ti(c, [λj (∃ ye) [Tj(y) & Bj(y) & Fj(x,y)]])

And (79') does not necessarily have the same truth-value as (78) (i.e. the
top formula in the translation tree). Even if, in the situation described, a
baby is toothless iff she has been abandoned, there are certainly many
possible situations in which the two sets do not coincide; consequently,
the ‘λi’-terms in (78) and (79') denote different sets of situations and
Coco may try to bring about one but not the other. So the reason for the
non-equivalence of (74) and (79) has to do with the fact that the sub-
stitution affects a position within a that-clause, so that extensional
equivalence does not suffice. Thus, if (71) and (73') are (rough) para-
phrases of (74) and (79), respectively, we may say that their non-equi-
valence is due to a hidden that-clause in which the objects of seek
appear. This would also explain that these sentences seem to have
additional readings, according to which they would be equivalent (given
the coextensionality of the objects): as one can easily verify, the de re
readings of their paraphrases (74) and (79) are:

(74) (dr) (∃ x) [Ai(x) & Bi(x) & Ti(c, [λj Fi(c,x)])

(79) (dr) (∃ x) [Ti(x) & Bi(x) & Ti(c, [λj Fi(c,x)])

It is obvious from these two formulae that the de re readings of (74) and
(79) must have the same truth-values if only the two relative clauses are
coextensional. We may thus speculate that the use of (71) and (73') as
descriptions of acts of looking for specific babies is also due to
quantifying in. Such an explanation would, of course, not be possible if
we analyzed seek as a binary relation among individuals: as we have
seen before, raising a quantified object of such a relation has no
semantic effect if the subject is referential.

We have seen that the simple idea of paraphrasing seek as try to find
has quite far-reaching consequences: it may be used to explain both the
unusual logical behaviour of (certain readings of) sentences containing

156 Zimmermann, Formal Semantics

this verb and a characteristic de re/de dicto ambiguity in these
sentences. The idea of employing the seek-as-try-to-find paraphrase in
this way is due to Quine. We will now see how we can incorporate it into
a type-theoretic framework.

It may be tempting to suggest the following simplistic lexical decom-
position as a way to capture Quine’s idea:

(80) seek' = [λye λxe Ti(x, [λi Fi(x,y)])]

However, this decomposition simply does not do the job we want it to do:
it still gives us a binary relation among individuals. More specifically,
an exercise will show that (80) would only allow us to analyze the de re
readings of sentences containing seek. But Quine’s paraphrase was
supposed to give us the de dicto readings, at least as long as no
quantifying in is involved. Schematically, Quine’s idea is to analyze
sentences of the form (81) as (82):

(81) X seeks N.
(82) X tries to find N.

The important point is that, in the interesting cases anyway, N is a
quantified noun phrase translating into an expression Q of category
(et)t. (80) misses precisely this point; for it only provides a schema for
referential objects, and we will see that the latter are of little interest to
this analysis. Under the (simplifying but harmless) assumption that the
subject X is referential, we get the following (de dicto) translation of the
schema (82):

(82') Ti(x, [λj (Qjy) Fj(x,y)]),

where ‘x’ translates ‘X’ and ‘Q’ translates ‘N’. Now we are almost
there. For if (82') is a correct translation of (82) and hence of (81), we may
indeed decompose seek in precisely the way indicated in that trans-
lation:

(83) seek' = [λQs((et)t) λxe Ti(x, [λi (Qiy) Fi(x,y)])]

(83) is Montague’s version of Quine’s analysis of seek. Its most puzzling
feature is the complicated type ascribed to seek: (s((et)t))(et)! Clearly,
there is no problem to combine this translation with a quantified object to
obtain the desired paraphrase:

157 Zimmermann, Formal Semantics

(84)
VP

Vtran
op NPquant

⇒ α([λi β])

α β

Vtran
op is the category of (referentially) opaque transitive verbs, i.e. those

verbs that show the same kind of odd behaviour as seek. Are there any
other verbs in Vtran

op ? Here is at least one fairly certain case, already dis-
cussed by the medieval logician Buridan:

(85) Ernie owes Bert a horse-sized cookie.

Under the convenient assumption that owe combines with its indirect
object to form a complex transitive verb, this complex verb behaves pretty
much like seek. From the truth of (85) we cannot, e.g., deduce the
existence of horse-sized cookies: maybe Ernie was so certain that he
would win that he did not care what he bet. And, as in the case of seek,
there is a paraphrase relating the complex verb to a propositional
attitude:

(85') Ernie is obliged to give Bert a horse-sized cookie.

We leave the details of the analogy between seek and owe to an exercise
and meanwhile turn to the de re readings of sentences with seek. As
was already mentioned, we could obtain these de re readings by treat-
ing seek as an e(et)-relation, as in the decomposition (80). However,
this would mean that we would have to analyze seek as being am-
biguous between an opaque and a transparent reading. As our analysis
of the opaque reading rests on a reduction to a that-clause embedding, it
would certainly be preferable to obtain the transparent reading in the
same way as the de re readings of sentences containing overt that-
clauses: we would then have a simple explanation for the ambiguity. So
let us see whether we can analyze (71) by raising the object:

158 Zimmermann, Formal Semantics

(86)

S

NP

Det
a

N

Adj

abandoned

N
baby

Var
y

S

NPref

Coco

VP

Vtran
op

seeks

NPref

Var
y

In order to translate this tree, we need a rule for the combination of an
opaque transitive verb with a referential object. One way of attacking this
problem is to recategorize the referential noun phrase as a quantifier,
i.e. to apply Montague Lifting to it:

(87)
VP

Vtran
op NPquant

NPref

⇒

α(λi [λXet X(β)])

α [λXet X(β)]

β

Bearing (87) in mind, we may then give a more direct or ‘one-step’ treat-
ment of the combination ‘ Vtran

op + NPref’, i.e. one that leads to the same
result without Montague Lifting:

(87')
VP

Vtran
op NPref

⇒
α(λi [λX X(β)])

α β

With (87'), (86) translates as:

159 Zimmermann, Formal Semantics

(88)
[λXet (∃ ye) [A i(y) & Bi(y) & X(y)]] (λy Ti(c, [λj Fj(c,y)])

[λXet (∃ y e) [A i(y) & Bi(y) & X(y)]]

[λY et λXet (∃ xe) [Y(x) & X(x)]] [λye [A i(y) & Bi(y)]]

A i Bi

y Ti(c, [λj Fj(c,y)])

c [λxe Ti(x, [λj Fj(x,y)])]

[λQs((et)t) λxe Ti(x, [λi (Qiy) F i(x,y)])] y

Two λ-conversions now turn the resulting formula into:

(88) (∃ y) [Ai(y) & Bi(y) & Ti(c, [λj Fj(c,y)]),

which is an alphabetic variant of the de re reading (74dr) of the try-to-
find paraphrase. So Quine’s explanation of the ambiguity of (71) in
terms of an ambiguity in the paraphrase carries over to Montague’s
decomposition of seek.

Some features of this analysis of referentially opaque verbs should be
pointed out to prevent serious misunderstandings that can unfortunate-
ly be found in a large part of the literature. The first point is that the
main idea does not depend on the fact that seek is a transitive verb
whose (direct) object position behaves in an unfamiliar way. Verbs with
odd subject (or indirect object) behaviour could be analyzed along the
same lines. Indeed, as we have seen, the subject position of a raising
verb like appear is intensional and it is not hard to see that the relation
between (10) and (12) is very similar to that between a seek-sentence and
its try-to-find paraphrase:

(10) A unicorn appears to be approaching.
(12) It appears that a unicorn is approaching.

We will not go into the details of such an analysis of raising but it should
be clear that the the above treatment of seek can in principle be adapted
to these cases, as Montague himself had already observed. (Whether it
should be adapted is, of course, a different matter.) Let us instead turn to
another important feature of the above analysis of referential opacity.

160 Zimmermann, Formal Semantics

It should first be pointed out that the complex type assignment is essen-
tial to Montague’s formulation of Quine’s analysis of referential opacity:
seek gets assigned the type (s((et)t))(et) of relations between in-
dividuals and NPquant-extensions, because it is, in effect, analyzed as a
complex but defective verb phrase consisting of an attitude verb (try)
and a that-clause with one NPquant missing (‘that SUBJ finds ____’);
the gap is then filled by the object of seek. But only if we know the in-
tension of the whole quantified NP, the proposition of the defective that-
clause can be determined; the complexity of the type assigned to seek is
thus due to the fact that the VP’s extension depends on how the object of
find is quantified over; moreover, we need the intension, rather than
the extension, of the object, because the quantification takes place within
a that-clause and thus yields different results for different situations.

There are two reasons why we have emphasized the importance of the
complexity of the type assignment. The first, somewhat banal one is that
it has often been misconstrued in the literature. More importantly,
though, to understand the reason for this complexity is to understand
the full generality of the analysis. For although we have as yet only

applied it to indefinite noun phrases of the form ›a + Nfi, there is no
reason why we shouldn’t try it on, say:

(89) Coco seeks every abandoned baby.
(90) Coco seeks no abandoned baby.

Our analysis yields the following readings:

(89) (dr) (∀ y) [[Ai(y) & Bi(y)] → Ti(c, [λj Fj(c,y)])]

(89) (dd) Ti(c, [λj (∀ y) [[Ai(y) & Bi(y)] → Fj(c,y)]])

(90) (dr) ¬(∃ y) [Ai(y) & Bi(y) & Ti(c, [λj Fj(c,y)])]

(90) (dd) Ti(c, [λj ¬(∃ y) [Ai(y) & Bi(y) & Fj(c,y)]])

Now, whereas (89dr) seems to be quite a straightforward reading,
(89dd) is apparently much harder to get, if one gets it at all: there may
be room for some dialect variation here; in any case, the de re reading
is certainly the first that comes to mind. This fact is the more remark-
able if we compare the situation not only with the indefinite case (where
the de dicto reading might be said to be preferred due for plausibility
reasons) but also to the paraphrase (89'), where the de dicto reading is
much easier to obtain:

(89') Coco tries to find every abandoned baby.

161 Zimmermann, Formal Semantics

It seems that (89') may indeed express that Coco attempts to achieve the
goal of finding all babies, which is precisely what the de dicto analysis
predicts. It is not clear how to explain these data from the perspective of
the above analysis.

Let us now turn to (90). If the sentence is acceptable at all, the de re
reading seems to be o.k. again: (90) may indeed be used to convey that
there is no abandoned baby that Coco tries to find. How about the de
dicto reading, then? Can (90) have the reading (90dd)? Obvioulsy not.
For this formula expresses that Coco tries to bring about a situation in
which she does not find any abandoned baby; in other words, according
to (90dd) Coco avoids finding abandoned babies. Such a reading is
clearly impossible. On the other hand, (90dr) is not the only reading of
(90). We also have:

(90!) ¬Ti(c, [λj(∃ y) [Bj(y) & Ej(y) & Fj(c,y)]])

Formally, the only difference between (90!) and (90dd) lies in the scope of
the negation. Still, the two formulae describe radically different situ-
ations. For (90!) is the negation of the de dicto reading of:

(71) Coco seeks an abandoned baby.

It thus appears that the scope of the negation inherent in the word no is
independent of the scope of the rest of the NPquant it determines. Clearly,
this journey of the negation is not accounted for by the above analysis.

In order to avoid the impression that Quine’s paraphrase only works for

indefinite NPs of the form ›a + Nfi, let us at least apply it to one case
where it does predict the correct results:

(91) Coco seeks Bill.

First note that this sentence is not ambiguous, although it contains
seek. And the above account would only predict one reading:
quantifying in is not applicable, because the object is a referential NP.
On the other hand, (91) certainly reports a search of one particular
individual and has thus a de re flavour. But there is nothing to worry
about. For the predicted de dicto reading is:

(91) [λQs((et)t) λxe Ti(x, [λi (Qiy) Fi(x,y)])] ([λi λX X(b)]) (c),

162 Zimmermann, Formal Semantics

which λ-reduces to:

(91') Ti(c, [λi Fi(c,b)])],

which accurately describes the search for one individual.

We have remarked earlier that Quine’s paraphrase is not meant to be
perfect: there may be subtle differences between the meanings of seek
and try to find. Still, such differences are not vital to the above account
of referential opacity. For one thing, one may argue that the constants
‘T’ and ‘F’ occurring in the translation (83) of seek need not be the same
constants used in the translations of try and find, respectively: we may
instead regard them as denoting building blocks of lexicalized concepts
that are not necessarily themselves lexicalized. (Indeed, such building
blocks may be regarded as corresponding to primitive mental concepts;
but they may as well be thought of as abstract theoretical entities intro-
duced for economic reasons.) If this is so , then the same concepts may
play a role in the decomposition of try and find without actually de-
noting the intensions of these words. In that case seek could not be
paraphrased as try to find; but the following implication may hold:

(92) (∀ i) (∀ x) (∀ Q) [try'i(x, [λj λz (Q jy) find'(z,y)]) → seek'i(x, Q)],

validating the schematic inference from:

(92') x tries to find N

to:

(92") x seeks N

where N is an arbitrary quantified NP and no quantifying in is involved.
Now, whether (92) is correct or not and whether it should or should not
be accepted as a meaning postulate (or a consequence thereof), it is per-
fectly clear that its acceptance is quite independent of the decomposition
(83) of seek into ‘T’ and ‘F’. This means that we could keep the spirit of
Quine’s analysis of referential opacity without committing ourselves to
the validity of the ‘seek = try to find’ paraphrase: the odd behaviour of
seek can be explained on the basis of its analyzability into two concepts
similar, but not identical to those expressed by try and find.

For a large part of its inferential behaviour, the decomposition of seek is
even completely irrelevant. The fact that raising its object makes a dif-

163 Zimmermann, Formal Semantics

ference with respect to, say, existential implications, is already brought
out by its complex type (plus the relevant semantic combinations). To see
this, imagine we translated seek into the expression ‘Si’, where S is a
constant of type s(s((et)t))(et). We could then still capture the decom-
position (83) by means of a postulate like (92), but with a material equi-
valence (‘↔’) replacing the implication ‘→’. (This is essentially the way
Montague proceeded.) Obviously, the semantic effect would be the same.
In particular, all unwelcome inferences would still be blocked. But fail-
ure of a certain inference means that there is a model M in which the
premise is true but the purported conclusion is not. Clearly, this model
satisfies our postulate. But had we decided to dispense with the postulate
or replace it by the weaker (92), the inference would still be blocked,
because there would still exist a model that makes the premise true but
the conclusion false, viz. M. Following these lines, one may even argue
(as Montague did), that the treatment of opaque verbs as unanalyzed,
abstract relations possesses the advantage of greater generality over
Quine’s original reduction by paraphrase: it will even work on verbs for
which there is no suitable paraphrase at hand. However, apart from the
quite remarkable fact that all known cases of referential opacity can (at
least approximately) be paraphrased in a Quinean manner, the abstract
analysis has the clear disadvantage of letting the denotation of seek
appear rather obscure.

Let us conclude this discussion with a brief remark on referential
transparency, i.e. the opposite of opacity. We have marked the dis-
tinction between opaque and transparent verbs by means of different
types. Strictly speaking, this is not necessary. For just as in the case of
noun phrases, a strategy of generalizing to the worst case may be
applied to find a unique type for all transitive verbs. In fact the following
decomposition of the transparent verb find into a constant of type
s(e(et)) reveals the idea behind this strategy:

(93) [λQs((et)t) λxe (Qiy) Fi(x,y)]

It is easy to check that this type shift has the same effect as the original
type distinction: applying (93) to a quantified NP results in the NP’s
quantifying over the object position, just as the usual combination XY of
binary relations (among individuals) and quantifiers would have it. And
if we wish to take subject-opacity (as in appear) into account, we even
get more complicated types and decompositions, as an exercise will
show.

164 Zimmermann, Formal Semantics

5.6 Models and possible worlds

In our discussion of intensional phenomena we have frequently referred
to and made use of obvious properties of situations without making sure
that these properties are entailed by or only consistent with our model-
theoretic framework. Thus in our discussion of:

(55) Bill says that Coco loves a baby.

we showed that the de re reading does not imply the de dicto reading by
pointing out that the former is true in certain situations s (in which Bill
utters one sentence about some particular baby), while the latter would
be false in the same situation. Now, this argument would certainly be
sound if we were dealing with real situations. The problem is, we aren’t.
For one thing the situations may not be real at all, but merely possible.
Moreover, strictly speaking, we are not dealing with situations at all but
with the basic ingredients of arbitrary ontologies on which the arbitrary
models of two-sorted type theory are based. So what guarantees that each
such model contains a situation in which, say, Bill utters a certain
sentence? In fact what does it mean for an abstract set-theoretic object
like a Ty2-model to contain a situation in which Bill says something?
The latter question is relatively easy to answer: for our purposes it suf-
fices that the individual serving as the interpretation of (the translation
of) the proper name Bill be in the extension of, say, says that Coco loves
Zoë. Now the answer to the first question is also immediate: nothing
guarantees that an arbitrarily chosen model will contain any such
situation. Now, as long as we are only interested in defeating conceiv-
able entailments, it suffices to show that at least one model contains the
kinds of situation envisaged. But the example already shows that, in our
informal discussion, we have usually assumed the Ty2-models to be
richer than they need be according to the definitions. There is nothing
wrong with such naturalness assumptions: if we find that one of our
tacit assumptions about situations is not met by all Ty2-models, we can
simply restrict our class of intended models (as long as the assumptions
are at all compatible with our notion of a model). But one should be
aware of the fact that the notion of a model as such is rather poor, to poor
indeed for most semantic purposes.

Restricting the class of intended models to arrive at a more feasible
notion of a situation can be compared with the introduction of meaning
postulates for modelling sense relations in the lexicon. Thus, e.g., if we
want the inference from:

165 Zimmermann, Formal Semantics

(94) Benjamin is an elephant.

to:

(95) Benjamin is an animal.

to come out as valid, we may postulate the extension of (the translation
of) elephant to always (i.e. in every situation of every model) be a subset
of the extension of (the translation of) animal. Similarly, for the sake of
the above-mentioned argument involving (55), we may postulate that any
intended model M should satisfy:

(96) (∃ i) (∀ q(st)) [Si(x, q) ↔ (∀ j) [p(j) → q(j)]],

where ‘b’ translates Bill, ‘Si’ translates say, and p denotes the in-
tension of Coco loves Zoë (in M). (96) says that there is at least one
situation in which every proposition that Bill says is a superset of the set
of situations in which Coco loves Zoë. We could then use (96) in a more
rigorous version of the argument sketched above. Indeed, since the in-
formal argument does not depend on the particular choice of the subject
Bill nor the sentence he is supposed to have uttered, we may think of
(96) as a special case of the more general principle:

(97) (∀ xe) (∀ pst) (∃ i) (∀ qst) [Si(x, q) ↔ (∀ j) [p(j) → q(j)]]

However, this principle is too general to be sound. For it implies an
instance of the contradictory scheme (u) discussed in section 5.4. To see
this, we first define the attitude of ‘saying no more than’:

(98) S* := [λi λpst λxe (∀ qst) [Si(x, q) ↔ (∀ j) [p(j) → q(j)]]

and check that the following Ty2-formulae are logically equivalent:

(99) S*i(x,p)

(100) (∀ q) [S*i(x,q) ↔ (p = q)]

(100) implies (99) because the equation to the right of ‘↔’ becomes equi-
valent when we insert p for q; the other direction of the implication can
be obtained by observing that (99) and the truth of ‘S*i(x,q)’ imply that
(the propositions denoted by) p and q have the same supersets and are
thus identical. We leave the details to the reader. Since (97) practically
contains an occurrence of (99), we can now apply this equivalence to

166 Zimmermann, Formal Semantics

reformulate (97) as an instance of that evil scheme (u):

(101) (∀ xe) (∀ pst) (∃ i) (∀ q) [S*i(x,q) ↔ (p = q)]

One thing this little argument shows is that the notion of an intended
model may be more problematic and harder to come by than one might
at first imagine. At any rate, the notion of a possible situation is certain-
ly more complex than the simple conceptual relations traditionally
captured by meaning postulates.

We will soon see that the above argument may also be used to shed some
light on the important distinction between a model on the one hand and
an index, a situation, or a possible world on the other. To begin with, the
two notions certainly have a lot in common. For just as the extension of
an expression depends on the particular model, so does it depend on the
particular situation within the model. In fact, it is tempting to think of
the possible situations to which the type s variables refer as models de-
termining the extensions of various expressions. So why do we not take
the elements of the ontological layers Ds to be models and interpret

formulae ‘α(i)’ by evaluating α in the model denoted by i: “α‘g(i)? Of
course, we should not proceed quite like that. For if α itself contains i as
a free variable, then either (a) the model g(i) would have to assign g(i)
to i, or else (b) different (free) occurrences of ‘i’ would refer to different
models. Now whereas (b) would obscure logical form, (a) is clearly
incompatible with the set-theoretic notion of a function. However, there
is a way out: if we let the variables of type s refer to Ty1-models, we may
restrict their occurrences to expressions that can be interpreted within
the latter. More specifically, let a simple Ty2-formula be one in which
the i∈ Vars only occur in λ-prefixes or in sub-formulae of the form

‘α(i)’, where α is either a lexical expression (constant or variable) of
some type sa and a does not contain s, or else α has the form ‘[λj β]’,
where j∈ Vars. In the first case, the α could be interpreted as a Ty1-
expression of type a to be evaluated in the Ty1-model denoted by i. Thus
the following two Ty2-formulae are simple:

(102) [λi λj (i = j)]
(103) (∀ i) [Ps(et)(i) (x) → ¬[λi λye (y = xe)](j) (x)]

Here is are two Ty2-formulae that are not simple:

(104) Rs(st)(i)

167 Zimmermann, Formal Semantics

(105) Se(st)(xe)(i)

But maybe we do not need such formulae in indirect interpretation;
indeed, a brief check of the Ty2-formulae discussed so far reveals that
they all meet the simplicity restriction. Now, one can show that simple
formulae can be interpreted in the way indicated, by letting the type s
variables range over Ty1-models. (We omit the details.) It thus seems
that replacing worlds by models would amount to essentially the same
treatment of intensionality as the one given above.

Or wouldn’t it? Whereas syntactically the case is clear, the interpre-
tation via models differs from that via indices in various subtle but im-
portant respects. For instance, no two distinct models can agree on the
extensions of all constants and variables: if the Ty1-models M =
((Da)a∈ T, F, g) and M' = ((D'a)a∈ T, F', g') satisfy F(c) = F'(c) and g(x) =
g'(x) for arbitrary c and x, we can immediately conclude that F = F' and
g = g', by the extensionality of functions; and the two ontologies must co-
incide because De = dom(g(xet)) = dom(g'(xet)) = D'e etc. On the other
hand, two worlds in which all lexical expressions happen to have the
same extensions may still be distinct – even if they coexist within the
same model. To illustrate the point, let E = De be the set of all philo-
sophers (dead or alive) and let S = Ds be the set of natural numbers. We
can (somewhat arbitrarily) define a designated element da from each
type a by putting: de = Descartes, ds = 0, dt = 1, and dab(u) = db, when-

ever a is a type and u∈ D a . We then let M d be the model
((Da)a∈ T, Fd, gd), where Fd(c) = gd(x) = da, for arbitrary types a,

x∈ Vara, and c∈ Cona. Now any two worlds n and m ∈ S are lexically

indistinguishable in the following sense: if α is a variable or constant of

some category sa and a does not contain s, then “α (i)‘Fd,gd[i/n] =

“α(i)‘F,g[i/m], i.e. the two have the same extension. So Md has in-
finitely many indices each of which corresponds to the same Ty1-model.
Intuitively, the differences among these indices can be understood in
terms of expressive power: Ty1 cannot distinguish between any two of
these worlds, but maybe other languages can. Indeed, Ty2 is one of them
because, e.g., the equation

(106) (fss(i) = i)

is true in world 0 but false in every other world:

168 Zimmermann, Formal Semantics

“ (f(i) = i) ‘Fd,gd[i/n] = 1
iff “ f‘Fd,gd[i/n](“ i ‘Fd,gd[i/n]) = “ i ‘Fd,gd[i/n]

iff dss(n) = n
iff 0 = n,

because dss(n) = ds = 0. (106) is a simple example of a formula ex-
pressing a purely modal fact, i.e. a formula whose truth in one world
only depends on the relation that this world bears to others. Now, this
example only shows that such purely modal facts can be expressed in
Ty2. But are there any natural examples that also establish the need for
their expressiblity? There is no simple and clear-cut answer to this
question, which is one reason why we will leave the issue open; the other
one is that these considerations would lead us far away from natural
language semantics and into the metaphysics. But we do note that the
replacement of worlds by models is not entirely unproblematic.

How about replacing models by worlds, then? There may be several ways
of doing so but the most popular of them employs modal realism, i.e.
the assumption that there are possible worlds apart from our reality.
Given a realistic attitude towards possible worlds, one can replace the
central notions of model-theoretic semantics by corresponding modal
concepts: instead of models we would thus have different possible worlds
on which the extensions depend, logical implication would become
strict implication, i.e. subsethood among the propositions expressed,
logical constants would literally have the same extension in every world,
etc. And, most importantly, there is only one interpretation, i.e. only one
function assigning meanings or intensions to non-logical constants.
Thus, e.g., a word like sheep (or the constant corresponding to it) can be
assigned that unique function from possible worlds to sets of individuals
that yields the set of sheep in any world w to which it is applied. And
this absoluteness of intension is common to all expressions that do not
contain any free variables. And this brings us back to (u). For the inter-
pretation of

(107) [λi λp S*i(b,p)]

does not contain a free variable and should thus denote one fixed pro-
perty of propositions, viz. the property of implying everything that Bill
said. In view of the special case (101) of (u), then, we know that the
following formula must be true:

169 Zimmermann, Formal Semantics

(108) (∃ pst) (∀ q) ¬ (∃ i) [S*i(b,q) ↔ (p = q)]

(108) is equivalent to the negation of (101): the rejection of (u) still goes
through if we assume Ds to be the fixed set of all possible worlds, as we
would do as modal realists. Now (108) is not just true in some artificial
model, but true simpliciter, so that there must be some set of possible
worlds p satisfying:

(109) ¬ (∃ i) S*i(b,p)

which is a direct consequence of (108). (For simplicity we are using the
Ty2-variable ‘p’as a meta-variable for propositions.) According to (109),
it is impossible for Bill to utter a sentence which expresses p without
saying more than that. Now which set could p be? It seems that what-
ever we may pick, it is at least conceivable that we have a possible
situation (or even world) in which Bill utters one weird sentence of some
weird language that expresses just this proposition. But what could this
strange, unspeakable p be? A check of the definition of the diagonal
proposition used to reject (u) in section 5.4 reveals that the following
English sentence comes pretty close to expressing it:

(110) Whatever Bill say is false.

which shows that, under the present account of propositional attitudes,
there is a close connection between the liar paradox and the diagonal
argument that was used to refute (u). Now the difference between the
model-theoretic and the realistic approach becomes important because
the former does not make any commitment as to which proposition is
expressed by (110) or, indeed, which propositions satisfy (109): this
depends on the model. Whether this is actually an advantage of the
model-theoretic approach or only a sign of its vagueness will, however,
be left open here.

5.7 Remarks on Montague’s IL

The type-theoretic approach to intension sketched in the present part
was originally formulated by by Montague in the late sixties and has
since then been a standard tool in the logical analysis of natural
language. It must, however, be pointed out that Montague and most of
those who followed him did not use Ty2 as a medium of indirect inter-
pretation but rather a somewhat more complex language usually

170 Zimmermann, Formal Semantics

referred to as Intensional Logic or IL. The present section gives a
short sketch of IL from a Ty2 point of view. In particular, it will be
shown how to express IL-formulae in Ty2 and thus be able to read the
relevant literature.

The notions of a type and an ontology are almost identical to the corres-
ponding concepts in Ty2. The only difference is that, whereas s behaves
completely analogous to e in Ty2, occurrences of s in IL-types are re-
stricted to functional domains. This reflects the fact that we only need
indices to let extensions (of arbitrary types) depend on them. The
definition of an IL-type, then, replaces the clause ‘S → s’ by the rule
‘S → (s+ S)’. And the corresponding clause in the definition of an
ontology is just the special case of the scheme for Dab when a happens
to be s:

(111)D(sb) = Db
S ,

where S is the set of indices.

The lexical expressions are as in Ty2 except, of course, that there are no
constants or variables of non-IL types (like s, ss, es, (es)t, etc.). How-
ever this similarity is deceiving. For although IL-variables get inter-
preted by assignments that map them on extensions of the same type,
the notion of a model (as the interpretation of constants) is quite different
from that in Ty2: the interpretation F of an IL-model assigns intensions
rather than extensions to constants c ∈ Cona:

(112) F(c) ∈ D(sa) (= Da
S)

An IL-constant of type a is thus interpreted like a Ty2-constant of type
sa. In fact, in translating IL-formulae into Ty2 we better assign to a
constant c∈ Cona a constant c+∈ Consa. But it should be kept in mind
that, syntactically speaking, an IL-constant of type a is an expression of
category a, not sa. We will soon see how it still gets its intended inter-
pretation.

To build complex IL-expressions one can use Application, Abstraction,
and Identity as in Ty2 but, of course, restricted to IL-expressions. In
particular, the following Ty2-formulae are not IL-expressions because
s is not an IL-type and, consequently, i and j (∈ Vars) are not IL-
variables:

171 Zimmermann, Formal Semantics

(113) (a) cse(i)
(b) [λi x]
(c) (i = j)

However, there is no doubt that we need expressions like (113a) and
(113b) in our translations. In order to capture them, IL has various
notational devices. To begin with, functional application to the variable
i∈ Vars is expressed by a cup operator ‘˘’ preceding the functor: if α is

an IL-formula of some category sb (where b is an IL-type), then ›˘αfi is
of category b and we will soon see that it gets interpreted in the
indicated way. Similarly, abstraction from i gets expressed by the cap

operator ‘ˆ’: ›ˆα fi is of category sb whenever α is an IL-formula of
category b. Since we have seen that, in principle, we do not need any
variables of type s other than i, the two operators actually suffice to
express anything we have done so far. Thus the fact that IL does not
allow for formulae like (113c) when i and j are distinct variables of type
s, is irrelevant for our purposes, or so it seems.

We can now give a precise definition of the

Syntax of IL:
For any IL-type a the set ILa of IL-expressions of category a is defined
by the following recursion:

(Lex) (Vara ∪ Cona) ⊆ ILa;

(Id) if α∈ ILa and β∈ ILa, then ›(α = β)fi ∈ ILt;

(App) if α∈ ILab and β∈ ILa, then ›α(β)fi ∈ ILb;

(Abs) if a is an IL-type, x∈ Vara, and α∈ Tyb,

then ›[λx α]fi ∈ ILab;

(Cup) if α∈ ILsb, then ›˘αfi ∈ ILb;

(Cap) if α∈ Tyb, then ›ˆαfi ∈ ILsb.

Instead of directly defining models for IL, we will interpret the formula
indirectly, by translating them into Ty2. (This is not the way it is usually
done in the literature, but the results are equivalent, and our procedure
is simpler, in various respects.) We thus assign to any IL-expression α a
Ty2-expression α* of the same category. To begin with, we have to
translate the lexical expressions, which is easy in the case of variables:
any IL-variable x gets translated by itself: x* = x. With the constants, a
little bit of care must be taken. For, as we have pointed out, an IL-con-

172 Zimmermann, Formal Semantics

stant c of some category a is meant to correspond to a Ty2-constant c+ of
category sa. But if we simply translate c by c+, we won’t get what we
want, because the two are of different categories. On the other hand, we
can think of the ordinary IL-interpretation of c as assigning the
intension, whereas its translation should express its extension, i.e.
whatever we get when we apply the intension to the actual world. We
can thus let c* be the Ty2-expression c+(i). Given what we have said so
far, the rest of the procedure is straightforward:

Translation of IL into Ty2:
The following recursion assigns every IL-expression α a Ty2-expression
α* of the same category:

(Lex) if α is a variable, then α* = α;
if α is a constant, then α* = α+(i);

(Id) if α∈ ILa and β∈ ILa, then ›(α = β)fi* = ›(α* = β*)fi;

(App) if α∈ ILab and β∈ ILa, then ›α(β)fi* = ›α*(β*)fi;

(Abs) if a is an IL-type, x∈ Vara, and α∈ Tyb,

then ›[λx α]fi* = ›[λx α*]fi (= ›[λx* α*]fi) ;

(Cup) if α∈ ILsb, then ›[˘α]fi* = ›α* (i)fi;

(Cap) if α∈ Tyb, then ›[ˆα]fi* = ›[λi α*]fi.

This indirect interpretation of IL has first been given by Daniel Gallin
(in his 1972 dissertation); but the whole construction of IL makes it clear
that Montague must have been aware of its possibility. With Gallin’s
translation procedure in mind, it is now easy to understand arbitrary
IL-formulae like Montague’s version of the unspecific reading of John
possibly believes that some unicorn neighs :

(114) ◊ B(j,[ˆ ∃ x [U(x) & N(x)]]),

which translates into:

(114*) (∃ i) B+
i(j

+
i, [λi ∃ x [Ui(x) & Ni(x)]])

As one can guess from this example, the diamond operator is just a
shorthand notation for the existential quantifier over i: ‘◊ϕ’ translates
as ‘(∃ i) ϕ*’; ◊ is IL-expressible by the reduction techniques discussed in

part 4. Similarly, the box operator ‘’ expresses universal quanti-
fication over indices (denoted by i). The two expressions are occasionally

173 Zimmermann, Formal Semantics

claimed to express certain (metaphysical) senses of the English words
possibly and necessarily, respectively.

A closer look at (114*) shows that it contains the constant j+∈ Consa as
corresponding to the proper name John, where we would expect (and
have hitherto used) a constant of type e. The reason for this does not lie
in some aspect of the meaning of John covered by the IL-formula (114).
Rather, the world-dependant constant c+ appears because there are no
world-independent constants in IL. This is clearly a nuisance because,
as we have seen, the extension of a proper name should not change with
the situations described in an intensional construction. In order to
capture this fact in an IL-translation one would thus have to assume a
particular meaning postulate for the translations c of proper names:

(115) (∃ x) (c = x)

This so-called rigidity postulate says that the intension of c must be a
constant function from indices to individuals. This becomes clear when
we look at the Ty2-version of (115):

(115*) (∃ x) (∀ i) (c+(i) = x)

No such postulate was necessary in our above Ty2-treatment of proper
names, because we treated them as exceptions to the usual constant-
applied to index scheme (33) of lexical translation.

We have seen that Montague’s IL can be thought of as (a notational
variant of) a certain sub-language of Ty2. However, this does not mean
that it also shares all the nice and important formal features that we
know Ty1 and Ty2 to have. In particular, contrary to Ty2, IL does not
obey the laws of λ-conversion. To see why this is so, it suffices to present
a counter-example:

(116) [λxe [ˆ P(x)]] (c)

We take P and x to be constants of category et and e, respectively.
Applying λ-conversion would yield:

(117) [̂ P(c)]

which is not equivalent to (116), as becomes clear from comparing the
respective translations:

174 Zimmermann, Formal Semantics

(116*) [λxe [λi P+
i(x)]] (c+

i)
(117*) P+

i(c
+
i)

The transition from (116*) to (117*) clearly violates the variable-condition
on λ-conversion; the correct result, after renaming, would be:

(118) [λj P+
j(c

+
i)]

which is not the translation of any IL-formula.

In spite of the failure of ordinary λ-conversion it is possible to formulate
a restricted version of this law that is valid throughout IL, but would
block in cases like (116). (Unfortunately, this version of λ-conversion does
not possess the diamond property.) The idea is to express the variable-
condition on the invisible i in terms of syntactic features of IL-ex-
pressions. However, we will not do so here, for it would lead us too far
away; and if in doubt about the applicability of λ-conversion in some
particular case, one should always look at the corresponding Ty2-
formulae anyway.

In view of these difficulties one may wonder why IL has ever been
proposed as a medium of indirect interpretation. A likely answer lies in
its restricted expressibility: the very fact that one can perform indirect
interpretation within a highly restricted sub-language of two-sorted type
theory may have its deep reason in some conceptual feature of natural
language. The use of IL would thus be seen as expressing the hypothesis
that human language does not exceed a certain logical complexity. Alas,
such a view is mistaken. For virtually anything that can be expressed in
Ty2 can also be expressed in IL, albeit in a more roundabout way.
Instead of going into the proof of this fact, we quote one example of a
formula that looks as if it essentially employs nested variable-binding of
the sort not available in IL:

(119) [λi [λj (i = j)]]

(Note that (119) is of category s(st), which is also an IL-type, and that it
does not contain any free variables.) In order to get an IL-version of
(119), we first reformulate the equation by means of Leibniz’s Law,
which brings us closer to IL, where identity among worlds cannot be
expressed directly:

175 Zimmermann, Formal Semantics

(120) [λi [λj ([λpst pi] = [λpst pj])]]

Now we observe that, due to λ-conversion, the subformula (121) of (120) is
equivalent to (121'):

(121) [λj ([λpst pi] = [λpst pj])]

(121') [λX(st)t [λj (X = [λpst pj])]] ([λpst pi])

No variable confusion arises, because i is free within (121). Since the
two above formulae are logically equivalent, we can replace (121) by (121')
in (120) and obtain:

(122) [λi [λX(st)t [λj (X = [λpst pj])]] ([λpst pi])]

Now we can rename bound variables:

(123*) [λi [λX(st)t [λi (X = [λpst pi])]] ([λpst pi])]

and it is not difficult to see that the result is the *-translation of:

(123) [ˆ [λX(st)t [ˆ (X = [λpst ˘p])]] ([λpst ˘p])]

-

Exercises

16. The purpose of this exercise is to tighten intuitions about the rigidity
of proper names. The following table partially describes hypothetical
situations in which two individuals (to whom we neutrally refer as
‘a’ and ‘b’) carry various names and differ with respect to their
wealth:

s1 s2 s3 s4

a: name rich?
John yes

name rich?
John yes

name rich?
John no

name rich?
John no

b: name rich?
Frank yes

name rich?
Frank no

name rich?
Frank yes

name rich?
Frank no

176 Zimmermann, Formal Semantics

s5 s6 s7 s8

a: name rich?
Frank yes

name rich?
Frank no

name rich?
Frank yes

name rich?
Frank no

b: name rich?
John yes

name rich?
John yes

name rich?
John no

name rich?
John no

We now reveal the real identity of a and b: a is Mick Jagger (i.e. the
person we normally refer to as Mick Jagger), whereas b is Frank
Sinatra (the famous singer). Now determine the following three sets of
situations among s1 - s8:

S0: the set of situations in which Mick Jagger is rich;
S1: the set of situations in which Frank Sinatra is rich;
S0: the set of situations in which a person whose name (in those

situations) is Frank is rich.

17. Let B and K be Ty2-constants of category s((st)(et)) standing for the
attitudes of belief and knowledge, respectively. Try to give an ap-
proximate decomposition of the verb doubt in terms of these two con-
stants.

18. Describe a situation of which the de dicto reading of

(55) Bill says that Coco loves a baby.

is true but the de re reading is not.

19. Show that the two readings ascribed to (62):

(62) Bill says that Coco loves every baby.
(dd) Si(b,[λi (∀ y) [Bi(y) → Li(c,y)]])

(dr) (∀ y) [Bi(y) → Si(b,[λi Li(c,y)])]

are indeed of the general forms (61):

(61) (dd) Ai(x,[λi (Qiy) Pi(y)])

(dr) (Qjy) Ai(x,[λi Pi(y)]);

177 Zimmermann, Formal Semantics

i.e. replace ‘x’ by ‘b’ and ‘A’, ‘P’, and ‘Q’ by Ty2-expressions α, β, and
γ (of the appropriate types) such that the results will be logically
equivalent to the formulae in (62).

20. Apply the decomposition (80) to (]) and show that the result is logically
equivalent to the de re analysis of (]]).

(80) seek' = [λy λx Ti(x, [λi Fi(x,y)])]
(]) Alain seeks a dinosaur.
(]]) Alain tries to find a dinosaur.

21. Give the translations of the two readings (de re and de dicto) of:

(85) Ernie owes Bert a horse-size cookie.

as based on the paraphrase:

(85') Ernie is obliged to give Bert a horse-size cookie.

22. The sentence

Julius worships a Greek goddess.

obviously does not imply the existence of goddesses. Does that mean
that worship is referentially opaque? If so, find a suitable para-
phrase. If not, find a suitable inference distinguishing worship from
seek.

23. Give a lexical decomposition of to be as generalized to the case of a
binary relation among NPquant-intensions; as in part 4, to be should
be taken as expressing identity among individuals.

24. Which of the following two schematic IL-formulae is valid?

(a) ([˘ [ˆα]] = α)
(b) ([ˆ [˘β]] = β)

Note that, for (b) to be well-formed, β must be of some category sb.

178 Zimmermann, Formal Semantics

Solutions exercises

1. Show that, under the assumption that predicate logic formulae denote truth-values,

the substitutional interpretation (!) of quantification is non-compositional. Hint:

Assume that the extension of a given predicate P is neither empty nor identical to

the universe of discourse D and consider the formulae (∃ x) P(x) and (∃ x)

¬P(x).

Solution:

Let P be a predicate as described in the hint, i.e. Ø ≠ “P‘ ≠ D. Both

“P(x)‘ and “¬P(x)‘ must be truth-values and one of them, “ϕ‘, must be
0, by the interpretation of ¬. Moreover, by the (standard) interpretation (!)

of existential quantification, we find that “(∃ x)P(x)‘ = “(∃ x) ¬P(x)‘ = 1

= “(∃ x)ϕ‘. But if we replace ϕ by any contradiction, the result is 0: “(∃ x)

[P(x) ∧ ¬ P(x)]‘ = 0, because “[P(x) ∧ ¬ P(x)] [x/a]‘ = “[P(a) ∧ ¬ P(a)]‘

= 0, no matter which name a we pick. On the other hand, “ϕ‘ = 0 =

“[P(x) ∧ ¬ P(x)]‘, i.e. the two parts have the same meaning (= truth-
value!). We have thus found a counter-example to compositionality.

-

2. Show that there is no compositional treatment of relative clauses that meets (A1) -

(A3). Hint: Assume that the extension of the noun president is a singleton {b} and

that its intersection with that of the relative clause is wise is empty. Then consider

the NPs every president, some president, every president who is wise and some

president who is wise.

Solution:

“every president‘

= {X ⊆ D “president‘ ⊆ X}
= {X ⊆ D {b} ⊆ X}
= {X ⊆ D b ∈ X}.

“some president‘

= {X ⊆ D “president‘ ∩ X ≠ Ø}
= {X ⊆ D {b} ∩ X ≠ Ø}
= {X ⊆ D b ∈ X}.

179 Zimmermann, Formal Semantics

Hence:

(*) “every president‘ = “some president‘.

But:

“every president who is wise‘

= {X ⊆ D “president who is wise‘ ⊆ X}

= {X ⊆ D “president‘ ∩ “who is wise‘ ⊆ X}
= {X ⊆ D Ø ⊆ X}
= ℘ (D).

“some president who is wise‘

= {X ⊆ D “president who is wise‘ ∩ X ≠ Ø}

= {X ⊆ D “president‘ ∩ “who is wise‘ ∩ X ≠ Ø}
= {X ⊆ D Ø ∩ X ≠ Ø}
= Ø.

Thus:

(**) “every president who is wise‘ ≠ “some president who is wise‘.

But, according to (A1), we should be able to get the former by combining

“every president‘ with “who is wise‘ and the latter by combining

“some president‘ with “who is wise‘, which is impossible because of
(*).

-

3. Show that, at least for classical propositional logic, the definition of negation given

on p. 10f. is correct: any formula ϕ negates a formula ψ if and only if ϕ is logically

equivalent to ¬ψ, i.e. if “ ϕ‘g = “¬ψ‘g for any truth-value assignment g. You may

assume that self-contradictions always get the truth-value 0 and that the valid

formulae are the tautologies. Hint: One direction is simple. The other one is to

show that “ ϕ‘g = “¬ψ‘g for any g; it is best to distinguish the cases “ ϕ‘g = 1 and “ ϕ‘g

= 0 and use one of the two properties of negation in each case.

Solution:
The simple direction first: If ϕ is logically equivalent to ¬ψ, then ϕ

and ψ together imply the self-contradiction [ϕ∧ψ], because “ϕ∧ψ ‘g = “ϕ‘g ×

180 Zimmermann, Formal Semantics

“ψ‘g = “¬ψ‘g × “ψ‘g = 0, for any assignment g. Moreover, if a formula χ is
true under all assignments that make ψ true and under all assignments
that make ϕ true (and thus ψ false), χ is true under any assignment
whatsoever and hence valid.

Now for the other direction: We assume that ϕ negates ψ (in the sense of p.

10f.) and must show that “ϕ‘g = “¬ψ‘g, for any truth-value assignment g.

But if “ϕ‘g = 1, “ψ‘g cannot be 1, because otherwise g would make a self-

contradiction true. Hence “ψ‘g = 0, i.e. “¬ψ‘g = 1 = “ϕ‘g. For the other
case, we first observe that both ϕ and ψ imply [ϕ∨ψ], by the usual truth-
table for disjunction (∨). So [ϕ∨ψ] must be valid, because ϕ negates ψ. Now

assume that “ϕ‘g = 0. From the validity of [ϕ∨ψ] we conclude: 1 = “ϕ∨ψ ‘g =

max(“ϕ‘g,“ψ‘g) = max(0,“ψ‘g), and so “ψ‘g = 1 = “ϕ‘g.

-

4. Given any universe D (≠ Ø), what should be the generalized quantifier “ nothing‘

⊆ ℘ (D)? Which function fnothing ∈ D(et)t does it correspond to?

Solution:

“›nothing VPfi‘ should come out as true if the VP’s extension does
not contain any ‘counter-examples’, i.e. if it is empty; otherwise the
sentence should be false. So:

“nothing‘
= {X ⊆ De| ¬∃ x∈ De: x∈ X}

= {X ⊆ De| X = Ø}
= {Ø}

{Ø} is characterized by that function fnothing that maps χØ
e into 1 and

everything else onto 0; using the fact that χØ
e is the function that maps

every x ∈ De onto 0, we obtain the following characterization of fnothing:

181 Zimmermann, Formal Semantics

fnothing(χ) = 0, if χ(x) = 1, for some x∈ De;

1, if χ(x) = 0, for all x∈ De.

-

5. The following clause relates any binary truth-functional connective K to a

corresponding function fK of type (t(tt)):

fK (v)(u) = K(u,v), whenever u and v are truth-values.

Thus every K corresponds to a binary relation among truth-values. Specify the

relations thus corresponding to ∧ (conjunction), ∨ (disjunction),and → (material

implication).

Solution:
For K = ∧ we get:

f∧ (0) = 0 0
1 0

 = χØ;

f∧ (1) = 0 0
1 1

 = χ{1}.

So f∧ corresponds to the binary relation:

{(u,v)| u is in the set characterized by f∧ (v)}
= {(1,1)},

because 1 ∈ {1} (= the set characterized by f∧ (1)) but no other pair (u,v)
satisfies the condition. – If K is disjunction, we have:

f∨ (0) = 0 0
1 1

 = χ{1};

f∨ (1) = 0 1
1 1

 = χ{0,1}.

So f∨ corresponds to:

{(1,0), (0,1), (1,1)}.

182 Zimmermann, Formal Semantics

Finally, K can be material implication:

f→(0) = 0 1
1 0

 = χ{0} (= ¬!);

f→(1) = 0 1
1 1

 = χ{0,1}.

So f→ corresponds to:

{(0,0), (0,1), (1,1)}.

-

6. Here is yet another derivation of (20) in Lambek’s Calculus:

(!)
L1: e, e(et) et

L2: e, e, e(et) e, et ; L1: e, et t

L3: e, e, e(et) t

L4: e, e(et) et

L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t

L3: e, e(et), (et)t t

L4: e(et), (et)t et

Apply the method of indexing according to object/subject positions to determine

whether (!) corresponds to XY.

Solution:
Indexing the es turns (!) into:

183 Zimmermann, Formal Semantics

L1: eo, eo(est) est
_ _ _ _ _ _ _ _ _ _ _ _ _
L2: es, eo, eo(est) es, est ; L1: es, est t
_ _
L3: es, eo, eo(est) t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: eo, eo(est) est
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: eo, eo(est), (est)t est, (est)t ; L1: est, (est)t t
_ _
_ _ _ _ _ _ _ _ _ _
L3: eo, eo(est), (est)t t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L4: eo(est), (est)t eot

So the outcome is as in (22) and thus not XY.

-

7. The type shift:

(↑) e(et) n(nt) ,

where n is the type (et)t of quantified NPs is usually attributed to Montague. Show

that one can derive (↑) in Lambek’s Calculus. Try to find a derivation that makes

the leftmost n correspond to the object position. Hint: Assume the derivation (22)

for

e(et), n et

and then take the second n into account.

Solution:
We do the indexing as we go along deriving (↑). Since we already

have (22), we may start our derivation with it:

184 Zimmermann, Formal Semantics

(22): eo(est), (est)t eot
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L2: (eot)t , eo(est), (est)t (eot)t , eot ; L1: (eot)t, eot t
_ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _
L3: (eot)t , eo(est), (est)t t
_ _
L4: (eot)t , eo(est) ((est)t)t
_ _
L4: eo(est) ((eot)t) ((est)t)t))

-

8. Show that La = Da whenever a does not contain any e. Hint: Proceed inductively

starting with a = t; for complex types bc you may then assume that Lb = Db and

that Lc = Dc.

Solution:
Starting the induction is trivial, because πt is always idt, and so Lt =

Dt. So we assume that a = (bc) and that we already know that (*) Lb =

Db and Lc = Dc. In order to show that Lbc = Dbc, we pick some f∈ Dbc
and set out to show that it satisfies:

(1) πbc(f) = f,

for any permutation π. So we fix π and pick an arbitrary u∈ Db for which
we must prove that the two functions in (1) agree, i.e. that:

(2) πbc(f)(u) = f(u).

Note that our inductive hypothesis (*) tells us that u ∈ La and that f(u)

∈ Lb, so that we conclude:

(3) πb(u) = u,

(4) πc(f(u)) = f(u),

by the definition of La and Lb. Now (2) follows because:

πbc(f)(u) = f(u)

iff (u, f(u)) ∈ πbc(f), by notational convention,

185 Zimmermann, Formal Semantics

iff (πb(u),πc(f(u))) ∈ f, by (31)(c),

iff (u,f(u)) ∈ f, by (3) and (4),
iff f(u) = f(u), by notational convention,

which certainly is the case.

-

9. Show that the characteristic functions of Ø and Da are in Let.

Solution:
Given a permutation π and some u ∈ De, we must show that:

(i) πet(χØ
e)(u) = χØ

e (u);

(ii) πet(χDe
e)(u) = χDe

e (u).

But this is easy:

πet(χØ
e)(u) = χØ

e (u)

iff (u, χØ
e (u)) ∈ πet(χØ

e), by notational convention,

iff (πe(u), πt(χØ
e (u))) ∈ χØ

e , by (31)(c),

iff (πe(u), πt(0)) ∈ χØ
e , by definition of χØ

e ,

iff (πe(u), 0) ∈ χØ
e , by (31)(b),

iff χØ
e (πe(u)) = 0, by notational convention,

which is the case because χØ
e (v) = 0 for any v ∈ De. Similarly, we

have:

πet(χDe
e)(u) = χDe

e (u)

iff (u, χDe
e (u)) ∈ πet(χDe

e), by notational convention,

iff (πe(u), πt(χDe
e (u))) ∈ χDe

e , by (31)(c),

iff (πe(u), πt(1)) ∈ χDe
e , by definition of χDe

e ,

iff (πe(u), 1 ∈ χDe
e , by (31)(b),

iff χDe
e (πe(u)) = 1, by notational convention,

which is again trivially true.

186 Zimmermann, Formal Semantics

10. Let B and S be constants of category et, and let R be a constant of category e(et).

Show that (15'), i.e.:

[λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)

([λxe [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B) ([λye R(y)(x)])])

is a Ty1-expression of category t. [Hint: First draw a tree indicating the structure

of (15') and then use the syntactic rules of Ty1 to recursively determine the

categories of its sub-expressions.]

Solution:
The syntactic analysis is represented by way of a Montague Tree that

gives the resulting expression, its category and the relevant syntactic
operation for each node. The latter has been omitted since it is always
obvious. Moreover, abbreviations from predicate logic have not been un-
done. The tree thus treats conjunction as a combination of two ex-
pressions of category t into another expression of that category and com-

bines ϕ of categorry t and a variable x directly into ›(∀ x) ϕfi of category t,
etc.

187 Zimmermann, Formal Semantics

[λYet [λXet (∀ xe) [Y(x) → X(x)]]] (S)
(et)t

[λYet [λXet (∀ xe) [Y(x) → X(x)]]]
(et) ((et)t)

Y
et

[λXet (∀ xe) [Y(x) → X(x)]]
(et)t

X
et

(∀ xe) [Y(x) → X(x)]
t

x
e

[Y(x) → X(x)]
t

Y(x)
t

Y
et

x
e

X(x)
t

X
et

x
e

(S)
et

([λxe
[λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B)

([λye R(y)(x)])])
et

x
e

[λY et [λXet (∃ xe) [Y(x) & X(x)]]] (B)
([λye R(y)(x)])])

t

[λYet [λXet (∃ xe) [Y(x) & X(x)]]] (B)
(et)t

[λYet [λXet (∃ xe) [Y(x) & X(x)]]]
(et) ((et)t)

Y
et

[λXet (∃ xe) [Y(x) & X(x)]]
(et)t

X
et

(∃ xe) [Y(x) & X(x)]
t

x
e

[Y(x) & X(x)]
t

Y(x)
t

Y
et

x
e

X(x)
t

X
et

x
e

B
et

[λye R(y)(x)]
et

y
e

R(y)(x)
t

R(y)
et

R
e (et)

y
e

x
e

188 Zimmermann, Formal Semantics

11. In this exercise, you will have to show that the two restrictions on the Substitution

Principle also apply to λ-Conversion:

(a) Find a model ((Da)a∈ T, F, g) and an expression ›[λx α] (β)fi such that

“[λx α] (β)‘ F,g ≠ “ α '‘ F,g, where α' is the result of replacing all occurrences

(bound or free) of x in α by β. Hint: You can adapt the example used in

connection with the Substitution Principle but you would still have to present a

concrete model.

(b) Find a model in which

[λxt [λyt (x = y)]] (y)

and

[λyt (y = y)]

have different extensions.

Solution:

(a): α may be the expression:

[λxe [Qet(fee(x)) & (∀ x) P(f(x))]]

of category et, β can be the variable y ∈ Vare. So α' is:

[Qet(fee(y)) & (∀ x) P(f(y))]]

We only give the relevant parts of the model; the rest is arbitrary. The
domain D of individuals should contain at least a and b (where a ≠ b)
and the values of the assignment g for the free variables in the above
formulae are:

g(y) = a;
g(P) = g(Q) = χ{a}, i.e. the characteristic function of the

singleton {a};
g(f) = ide, i.e. the identity function on De.

Informally, α(β) says that g(y)’s value under ide is in Q’s extension and
(ii) P’s extension is the universe. Since (ii) is false, so must be the whole
formula. Using our official semantic rules, the reasoning runs as follows:

189 Zimmermann, Formal Semantics

“α(β)‘F,g

= “[λxe [Qet(fee(x)) & (∀ x) P(f(x))]](y)‘F,g

= “[λxe [Qet(fee(x)) & (∀ x) P(f(x))]] ‘F,g (“y‘F,g)

= “[Qet(fee(x)) & (∀ x) P(f(x))]‘F,g[x/“y‘F,g]

= “[Qet(fee(x)) & (∀ x) P(f(x))]‘F,g[x/g(y)]

= “[Qet(fee(x)) & (∀ x) P(f(x))]‘F,g[x/a]

= “Qet(fee(x))‘F,g[x/a] × “(∀ x) P(f(x))‘F,g[x/a]

We show that the right factor is 0:

“(∀ x) P(f(x))‘F,g[x/a] = 1

iff “P(f(x))‘F,g[x/a][x/u], for all u∈ De,

iff “P(f(x))‘F,g[x/u], for all u∈ De,

because:
g[x/a][x/u]

= (g[x/a] \ {(x,g[x/a](x))}) ∪ {(x,u)}
= (g[x/a] \ {(x,a)}) ∪ {(x,u)}
= ((g \ {(x,g(x))}) ∪ {(x,a)} \ {(x,a)}) ∪ {(x,u)})
= (g \ {(x,g(x))}) ∪ {(x,u)}
= g[x/u]

But, clearly, “P(f(x))‘F,g[x/b] = 0, because:

“P(f(x))‘F,g[x/b]

= “P‘F,g[x/b] (“f‘F,g[x/b] (“x‘F,g[x/b]))
= g[x/b] (P) (g[x/b] (f) (g[x/b] (x)))
= g(P) (g(f) (b))
= χ{a} (ide (b))

= χ{a} (b),

which is 0, because b is distinct from a. Thus “(∀ x) P(f(x))‘F,g[x/a]

is 0 and hence so is “α(β)‘F,g.

It remains to be shown that “α '‘F,g = 1, i.e. that “Qet(fee(y))‘F,g =

“(∀ x) P(f(y))]]‘F,g = 1. The left conjunct is straightforward:

190 Zimmermann, Formal Semantics

“Q(f(y))‘F,g

= “Q‘F,g (“f‘F,g (“y‘F,g))
= g(Q) (g(f) (g(y)))
= χ{a} (ide (a))

= χ{a} (a)
= 1.

In order to prove that “(∀ x) P(f(y))]]‘F,g = 1, we pick arbitrary u∈ De

and show that “P(f(y))]]‘F,g[x/u] = 1. The idea is, of course, that the
truth-value does not depend on the modification of the variable
assignment:

“P(f(y))]]‘F,g[x/u]

= “P‘F,g[x/u] (“f‘F,g[x/u] (“y‘F,g[x/u]))
= g[x/u] (P) (g[x/u] (f) (g[x/u] (y)))
= g(P) (g(f) (g(y)))
= χ{a} (ide (a))
= 1.

(b): Any model would do:

“[λxt [λyt (x = y)]] (y)‘F,g

= “[λxt [λyt (x = y)]]‘F,g (“y‘F,g)

= “[λyt (x = y)]‘F,g[x/“y‘F,g],

which characterizes the singleton set {g(y)}. On the other hand,
“[λyt(y = y)]‘F,g is the characteristic function of Dt, which contains
two elements.

191 Zimmermann, Formal Semantics

12. Assume that individual translates into the Ty1-expression:

 ›[λxe (x = x)]fi.

Now use the rules given in 4.5 to translate the (38) and (38') into Ty1 and show

that they are equivalent to the same formula of predicate logic without identity.

(38) Every cow is four-legged.

(38') Every cow is a four-legged individual.

You can make use of all reduction principles discussed in 4.4, (including laws

of predicate-logic), but you must make every reduction (including renaming of

bound variables) explicit.

Solution:
every' = [λYet [λXet (∀ xe) [Y(x) → X(x)]]]
, by (24)

cow' = C
(∈ Conet)

[[every]Det [cow]N]NPquant
'

= [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (C)
, by (29)

≈ [λXet (∀ xe) [C(x) → X(x)]]]
, by λ-conversion

four-legged' = F
(∈ Conet)

is' = [λye [λxe (x = y)]]
, by (42)

[[is]Cop [four-legged]Adj]VP'

= [λxe (∃ ye) [[λye [λxe (x = y)]] (x) (y) & F(y)]
, by (47)

≈ [λxe (∃ ye) [[λze (z = x)] (y) & F(y)]

, by critical λ-conversion
≈ [λxe (∃ ye) [(y = x) & F(y)]

, by λ-conversion
≈ [λxe F(x)]

192 Zimmermann, Formal Semantics

, by a law of identity
≈ F

, by η-conversion

(38) [[every cow]NPquant
 [is four-legged]VP]'

≈ [λXet (∀ xe) [C(x) → X(x)]]] (F)
, by (28)

≈ (∀ xe) [C(x) → F(x)]]
, by λ-conversion

[[four-legged]Adj [individual]N]N'

= [λXet [λYet [λxe [X(x) & Y(x)]]]] (F) ([λx (x = x)])
, by (36')

≈ [λxe [F(x) & (x = x)]]

, by three λ-conversions
≈ [λxe F(x)]

, by a law of identity and propositional logic
≈ F

, by η-conversion

a' = [λYet [λXet (∃ xe) [Y(x) & X(x)]]]
, by (39)

[[a]Det [four-legged individual]N]NPquant
'

≈ [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (F)
, by (47)

≈ [λXet (∃ xe) [F(x) & X(x)]]
, by λ-conversion

[[is]Cop [a four-legged individual]NPquant
]VP'

= [λxe[λXet (∃ xe) [F(x) & X(x)]] ([λye [λye [λxe(x = y)]] (y) (x)
])]

, by (44)
≈ [λxe (∃ ze) [F(z) & [λye [λye [λxe(x = y)]] (y) (x)](z)]]

, by critical λ-conversion
≈ [λxe(∃ ze) [F(z) & [λye (x = y)](z)]]

, by two λ-conversions

193 Zimmermann, Formal Semantics

≈ [λxe(∃ ze) [F(z) & (x = z)]]

, by one λ-conversion
≈ [λxe F(x)]

, by predicate logic with identity
≈ F

, by η-conversion

(38') [[every cow]NPquant
 [is a four-legged individual]VP]'

≈ [λXet (∀ xe) [C(x) → X(x)]]] (F)
, by (28)

≈ (∀ xe) [C(x) → F(x)]]
, by λ-conversion

194 Zimmermann, Formal Semantics

13. Give translation rules for VP and Vtrans disjunction:

VP
VP VP

⇒ ?
α β

;
Vtrans

Vtrans Vtrans

⇒ ?
α β

Show the correctness of your translations by applying them to (51) and (52):

(51) Caroline hugs Alain or kisses Tom.

(52) Caroline hugs or kisses Tom.

Solution:
(*)

VP
VP VP

⇒ [λXet [λYet [λxe [X(x) ∨ Y(x)]]]] (α) (β)

α β

Alain' = a
(∈ Cone)

hugs' = H
(∈ Cone(et))

[[hugs]Vtrans
 [Alain]NPref

]VP' = H(a)

, by (30)

Tom' = t
(∈ Cone)

kisses' = K
(∈ Cone(et))

[[kisses]Vtrans
 [Tom]NPref

]VP' = K(t)

, by (30)

[[hugs Alain]VP or [kisses Tom]VP]VP'

= [λXet [λYet [λxe [X(x) ∨ Y(x)]]]] (H (a)) (K (t))
, by (*)

≈ [λxe [H(x,a) ∨ K(x,t)]],

195 Zimmermann, Formal Semantics

by two λ-conversions and one notational convention

C a r o l i n e ' = c
(∈ Cone)

(51) [[Caroline]NPref
 [hugs Alain or kisses Tom]VP]S'

≈ [λxe [H(x,a) ∨ K(x,t)]] (c)
, by (27)

≈ [H(c,a) ∨ K(c,t)]],
by λ-conversion

(#)

Vtrans

Vtrans Vtrans

⇒ [λRe(et) [λSe(et) [[λye [λxe [R(x,y) ∨ S(x,y)]]]]] (α) (β)

α β

[[hugs]Vtrans
 or [kisses] Vtrans

] Vtrans
'

= [λRe(et) [λSe(et) [[λye [λxe [R(x,y) ∨ S(x,y)]]]]] (H) (K)
, by (#)

≈ [λye [λxe [H(x,y) ∨ K(x,y)]] ,by two λ -
conversions

[[hugs or kisses] Vtrans
 [Tom]NPref

] Vtrans
'

≈ [λye [λxe [H(x,y) ∨ K(x,y)]] (t)
,by (30)

≈ [λxe [H(x,t) ∨ K(x,t)]]
,by (30)

(52) [[Caroline]NPref
 [hugs or kisses Tom]VP]S'

≈ [λxe [H(x,t) ∨ K(x,t)]] (c)
, by (27)

≈ [H(c,t) ∨ K(c,t)]],
by λ-conversion

196 Zimmermann, Formal Semantics

14. Translate (57) and (57') and show that each is equivalent to (58):

(57)

S

NPquant

Det
every

N
dog

x S

NPref

x
VP

Vtrans

chases

NPref

Roger

(57')

S

NP quant

Det
every

N
dog

VP

Vtrans

chases

NP ref

Roger

(58) (∀ x) [D(x) → C(x,r)]

Solution:
e v e r y ' = [λ Y e t [λ X e t (∀ x e) [Y(x) → X(x)]]]
, by (24)

dog' = D
(∈ Conet)

[[every]Det [dog]N]NPquant
'

= [λYet [λXet (∀ xe) [Y(x) → X(x)]]] (D)
, by (29)

≈ [λXet (∀ xe) [D(x) → X(x)]]]
, by λ-conversion

x' = x
(∈ Vare)

chases' = C
(∈ Cone(et))

197 Zimmermann, Formal Semantics

Roger' = r
(∈ Cone)

[[chases]Vtrans
 [Roger]NPref

]VP' = C(r)

, by (30)

[[x]NPref
 [chases Roger]VP]S'

= C(r)(x)
, by (27)

= C(x,r)
, by notational convention

(57):
[[every dog]NPquant

 x [x chases Roger]S]'

≈ [λXet (∀ xe) [D(x) → X(x)]]] ([λx C(x,r)])
, by (55)

≈ (∀ xe) [D(x) → [λx C(x,r)](x)]]
, by λ-conversion

≈ (∀ xe) [D(x) → C(x,r)]]
, by λ-conversion

= (58)

(57'):
[[every dog]NPquant

 [chases Roger]VP]'

≈ [λXet (∀ xe) [D(x) → X(x)]]] (C(r))
, by (28)

≈ (∀ xe) [D(x) → C(r)(x)]]]
, by λ-conversion

≈ (∀ x e) [D (x) → C (x , r)]]
, by notational convention

= (58)

-

198 Zimmermann, Formal Semantics

15. Interpret the Lambek proof (!) from exercise 6 (part 3) by associating a Ty1-
definition with it:
(!) L1: e, e(et) et

L2: e, e, e(et) e, et ; L1: e, et t

L3: e, e, e(et) t

L4: e, e(et) et

L2: e, e(et), (et)t et, (et)t ; L1: et, (et)t t

L3: e, e(et), (et)t t

L4: e(et), (et)t et

Solution:

L1:
e, e(et) → et
ye Re(et) R(y)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L2:
e, e, e(et) → e, et
xe, ye Re(et) x, R(y) L1:

e, et → t
ze Xet X(z)

_ _

L3:
e, e, e(et) → t

xe, ye Re(et) [λXet [λze X(z)]] (R(y)) (x) (≈ R(y)(x) !)
_ _
_ _ _ _

L4:
e, e(et) → et

ye,Re(et) [λxe R(y)(x)] (≈ R !)
_ _

L2:
e, e(et), (et)t → et, (et)t

ye, Re(et), P(et)t R, P
L1:

et, (et)t → t

Xet, Q(et)t Q(X)
_ _
_ _ _ _ _

L3:
e, e(et), (et)t → t

ye, Re(et), P(et)t [λQ(et)t [λXet Q(X)]] (P) (R)(y)) (≈ P(R(y)))
_ _
_ _ _ _ _ _ _ _ _ _ _

L4:
e(et), (et)t → et

Re(et), P(et)t [λyet P(R(y))]

So the Ty1-definition corresponding to (!) is:
[λP(et)t [λRe(et) [λye P(R(y))]]] .

199 Zimmermann, Formal Semantics

16. The purpose of this exercise is to tighten intuitions about the rigidity of proper

names. The following table partially describes hypothetical situations in which two

individuals (to whom we neutrally refer as ‘a’ and ‘b’) carry various names and

differ with respect to their wealth:

s1 s2 s3 s4

a: name rich?
John yes

name rich?
John yes

name rich?
John no

name rich?
John no

b: name rich?
Frank yes

name rich?
Frank no

name rich?
Frank yes

name rich?
Frank no

s5 s6 s7 s8

a: name rich?
Frank yes

name rich?
Frank no

name rich?
Frank yes

name rich?
Frank no

b: name rich?
John yes

name rich?
John yes

name rich?
John no

name rich?
John no

We now reveal the real identity of a and b: a is Mick Jagger (i.e. the person we

normally refer to as Mick Jagger), whereas b is Frank Sinatra (the famous

singer). Now determine the following three sets of situations among s1 - s8:

S0: the set of situations in which Mick Jagger is rich;

S1: the set of situations in which Frank Sinatra is rich;

S0: the set of situations in which a person whose name (in those situations) is

Frank is rich.

Solution:
S1 = {s1, s2, s5, s6}; S2 = {s1, s3, s5, s7}; S1 = {s1, s3, s5, s6}.

-

17. Let B and K be Ty2-constants of category s((st)(et)) standing for the attitudes of
belief and knowledge, respectively. Try to give an approximate decomposition of
the verb doubt in terms of these two constants.

Solution:
If you have doubts, you are not a believer. If you know the contrary to

be the case, you are no longer in doubt. So the following decomposition of
doubt may be quite close:

λpst λx [¬B(x,p) & ¬K(x, [λj ¬p(j)])]

200 Zimmermann, Formal Semantics

18. Describe a situation of which the de dicto reading of

(55) Bill says that Coco loves a baby.

if true but the de re reading is not.

Solution:
Imagine a situation s0 in which Bill uttered:

(58') (e) Coco loves a fat baby.

and nothing else. The intension p0 of (58') is the set of all situations in
which Coco there is some baby that is fat and to which Coco stands in the
relation of love. This p0 is clearly a subset of the set p of all situations in
which Coco loves some baby, i.e. the intension of Bill loves a baby. So
according to our criterion (57'), Bill stands in the relation of saying to p in
s0 and consequently (55) is true in s0 on its de dicto reading:

(55) (dd) Si (b,[λj (∃ xe) [Bj (x) & Lj (c,x)]])

In order to show that (55) is not true if taken de re, we must ensure that
s0 does not satisfy:

(55) (dr) (∃ xe) [Bi (x) & Ki (b,[λj Lj (c,x)])]

Using our criterion (57') again, this means that Bill must not utter a
sentence in s0 whose intension is a subset of some set qb consisting of all
situations in which Coco loves some individual b that happens to be a
baby in s0. Since (58') is the only sentence uttered by Bill in s0, it only re-
mains to be shown that its intension p0 is not a subset of any such qb, i.e.

that for every baby b in s0 there is some situation sb∈ p0 such that sb∉ qb.
However, this is certainly the case: for a given b we can easily imagine
some sb in which Coco loves some fat baby c but hates b. (In particular,
c would have to be distinct from b!) This sb will then be in p0 (because c
is a fat baby loved by Coco in sb) without being in qb (because Coco does
not love b in sb). QED.

-

201 Zimmermann, Formal Semantics

19. Show that the two readings ascribed to (62):

(62) Bill says that Coco loves every baby.
(dd) Si(b,[λi (∀ y) [Bi(y) → Li(c,y)]])

(dr) (∀ y) [Bi(y) → Si(b,[λi Li(c,y)])]

are indeed of the general forms (61):

(61) (dd) Ai(x,[λi (Qiy) Pi(y)])
(dr) (Qjy) Ai(x,[λi Pi(y)]);

i.e. replace ‘A’, ‘P’, and ‘Q’ by Ty2-expressions α, β, and γ (of the appropriate

types) such that the results will be logically equivalent to the formulae in (62).

Solution:
If we put:

α = ‘S’;
β = ‘[λi λy Li(x,y)]’;

and: γ = ‘[λi λX (∀ y) [Bi(y) → X(y)]]’ (= every baby') ,

substitution gives us:

(61') (dd) Si(b, [λi [λi λX (∀ y) [Bi(y) → X(y)]] (i)

([λy [λi λy Li(x,y)] (i) (y)])])

(dr) [λi λX (∀ y) [Bi(y) → X(y)]]

([λy Si(b, [λi [λi λy Li(x,y)] (i) (y)])])

The desired equivalences are then easy to verify using λ-reduction.

-

20. Apply the decomposition (80) to (]) and show that the result is logically

equivalent to the de re analysis of (]]).

(80) seek' = [λy λx Ti(x, [λi Fi(x,y)])]

(]) Alain seeks a dinosaur.
(]]) Alain tries to find a dinosaur.

Solution:
 a dinosaur' = [λYet [λXet (∃ xe) [Y(x) & X(x)]]] (Di)

≈ [λXet (∃ xe) [Di(x) & X(x)]]]

, by λ-conversion

202 Zimmermann, Formal Semantics

seeks a dinosaur'
≈ [λxe a dinosaur' ([λye seek'(x,y)])]

≈ [λxe (∃ ye) [Di(y) & seek'(x,y)]] , b y t h r e e
conversions
≈ [λxe (∃ ye) [Di(y) & [λy λx Ti(x, [λi Fi(x,y)])](x,y)]]

, by (80)
≈ [λxe (∃ ye) [Di(y) & Ti(x, [λj Fj(x,y)])]]

Alain seeks a dinosaur'
≈ [λxe (∃ ye) [Di(y) & Ti(x, [λj Fj(x,y)])]] (a)

≈ (∃ ye) [Di(y) & Ti(a, [λj Fj(a,y)])]

For the de re reading of (]]) we proceed as follows:
find y'

= Fi(y)

try to find y'
= try '([λi Fi(y)])

, by (77)
= [λ P s (e t) λ x e Ti (x, [λ i Pi (x)])] ([λ i Fi (y)])

, by (75)
≈ [λxe Ti(x, [λj Fj(x,y)])]

, by λ-reduction

Alain tries to find y'
≈ Ti(a, [λj Fj(a,y)])

203 Zimmermann, Formal Semantics

We can now apply the quantifying in rule:

S

NP quant

∆
a dinosaur

Var
y

S

∆
Alain tries to find y

⇒

[λX (∃ y) [D i(y) & X(y)]] ([λ y Ti(a, [λj Fj(a,y)])])

[λ X (∃ y) [Di(y) & X(y)]] y Ti(a, [λj Fj(a,y)])

By λ-reduction, the resulting formula is equivalent to the translation of (]).

-

21. Give the translations of the two readings (de re and de dicto) of:

(85) Ernie owes Bert a horse-size cookie.

as based on the paraphrase:

(85') Ernie is obliged to give Bert a horse-size cookie.

Solution:
The lexical decomposition of owe is:

[λze λQs((et)t) λxe Oi(x, [λi (Qiy) Gi(x,y,z)])],

where ‘O(x,p)’ can be read: ‘x has the obligation to bring it about that p’;
‘Gi’ is the translation of give, the second argument corresponding to the
direct object. We then have:

a horse-size cookie'
≈ [λYet [λXet (∃ xe) [Y(x) & X(x)]]] ([λx [Hi(x) & Ci(x)]])

≈ [λXet (∃ xe) [Hi(x) & Ci(x) & X(x)]]

owe Bert'
= [λze λQs((et)t) λxe Oi(x, [λi (Qiy) Gi(x,y,z)])] (b)

≈ [λQs((et)t) λxe Oi(x, [λi (Qiy) Gi(x,y,b)])]

204 Zimmermann, Formal Semantics

owe Bert a horse-size cookie'
≈ [λQs((et)t) λxe Oi(x, [λi (Qiy) Gi(x,y,b)])]

(λi [λXet (∃ xe) [Hi(x) & Ci(x) & X(x)]])

≈ [λxe Oi(x, [λi (∃ ye) [Hi(y) & Ci(y) & Gi(x,y,b)]])]

Ernie owes Bert a horse-size cookie'
≈ [λxe Oi(x, [λi (∃ ye) [Hi(y) & Ci(y) & Gi(x,y,b)]])] (e)

≈ Oi(e, [λi (∃ ye) [Hi(y) & Ci(y) & Gi(e,y,b)]])

This is the de dicto reading that can be glossed as: ‘Ernie has (in the
situation talked about) the obligation to bring it about that there is a horse-
size cookie which Ernie gives to Bert’. The de re reading is obtained by
quantifying a horse-size cookie' into:

 Ernie owes Bert y'
≈ Oi(e, [λi Gi(e,y,b)])]

We thus get:

[λXet (∃ xe) [Hi(x) & Ci(x) & X(x)]] (λy Oi(e, [λi Gi(e,y,b)]
))
≈ (∃ ye) [Hi(y) & Ci(y) & Oi(e, [λi Gi(e,y,b)])],

which can be glossed as ‘There is a horse-size cookie such that Ernie has
the obligation to bring it about that Ernie gives that cookie to Bert.’

-

22. The sentence

Julius worships a Greek goddess.

obviously does not imply the existence of goddesses. Does that mean that worship

is referentially opaque? If so, find a suitable paraphrase. If not, find a suitable

inference distinguishing worship from seek.

Solution:
As Montague already noted, it seems to be impossible to reduce wor-

ship by paraphrase. However, in spite the failure of existential implic-
ation in worship must be due to something different than referential
opacity. For indefinite objects still are taken to be specific rather than an
arbitrary:

205 Zimmermann, Formal Semantics

(|) Julius worships a Greek god.
Every Greek god is mentioned in Martin’s book.________
Julius worships a god that is mentioned in Martin’s book.

Note that every sentence of this inference may be true even if there are no
gods. We now replace worship by seek:

(2) Julius seeks a Greek god.
Every Greek god is mentioned in Martin’s book.________
Julius seeks a god that is mentioned in Martin’s book.

the inference only goes through if the first sentence is taken in its de re
reading; on the de dicto reading, Martin would not be looking for any god
in particular. But if the first premise is de re, it does imply the existence

of Greek gods – unlike the first premise in (|). The sense in which
worship does not entail existence thus seems to be rather different from
the non-specificity of seek.

-

23. Give a lexical decomposition of to be as generalized to the case of a binary

relation among NPquant-intensions; as in part 4, to be should be taken as

expressing identity among individuals.

Solution:
The decomposition is:

[λQs((et)t) λQ's((et)t) (Qiy) (Q'ix) (x = y)],

which is short for:

(M) [λQs((et)t) λQ's((et)t) Qi([λy Q'i([λx (x = y)])])],

which comes close to Montague’s translation of to be. Note that the shift
from identity as a binary relation among individuals to (M) can essentially
be obtained by interpreting the Lambek proof discussed in exercise 7.

-

206 Zimmermann, Formal Semantics

24. Which of the following two schematic IL-formulae is valid?

(a) ([˘ [ˆα]] = α)
(b) ([ˆ [˘β]] = β)

Note that, for (b) to be well-formed, β must be of some category sb.

Solution:
The Ty2-translations of (a) and (b) are:

(a*) ([λi α*] (i) = α)
(b*) ([λi α*(i)] = α)

(a*) is an instance of λ-conversion and hence valid. The law is sometimes
called Down-Up Cancellation.

But (b*) can go wrong when α* contains a free occurrence of i. In fact, if
α* is Ri where i is a constant of category s(st), (b*) becomes:

 ([λi Ri(i)] = Ri),

which is equivalent to :

(!) ([λi R(i,i)] = [λj R(j,i)]),

by η-conversion. (!) expresses that one index stands in the relation
expressed by ‘R’ to another index if and only if the latter bears that
relation to itself. This condition is, e.g., violated by any non-empty, anti-
symmetric relation.

