Classical Montague Grammar (Zimmermann)

(This course covers essentially the content of [Montague1970] - with some small changes and additions.)

Part I

Syntax-Semantics Interface

1 Syntax

(1.1) If $\Delta_{1}, \ldots, \Delta_{n}$ are deep structure of the corresponding syntactic categories $\kappa_{1}, \ldots, \kappa_{n}$, then the result of applying the (n-place) syntactic construction C to $\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ will be a deep structure of category κ_{n+1}.
Notation: $\left(C, \kappa_{1}, \ldots, \kappa_{n}, \kappa_{n+1}\right)$
(1.2) old men and old women
(1.3)

(USC) Uniqueness of Structure Constraint on an algebra $\left(\Sigma,\left(C_{i}\right)_{i \in I}\right)$:
$\overline{\text { If } C_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)=C_{j}\left(\Delta_{1}^{\prime}, \ldots, \Delta_{m}^{\prime}\right)}$, then $i=j$, and $\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\left(\Delta_{1}^{\prime}, \ldots, \Delta_{m}^{\prime}\right)$ (and hence $C_{i}=C_{j}, m=n, \Delta_{1}=\Delta_{1}^{\prime}, \ldots, \Delta_{n}=\Delta_{m}^{\prime}$.
(1.4) $\left({ }_{N}(\operatorname{Adj} \text { old })_{A d j}\left(N(N \text { men })_{N}(\operatorname{Conj} \text { and })_{C o n j}(N \text { women })_{N}\right)_{N}\right)_{N}$

John seeks a unicorn, 4
John seeks a unicorn, 5

unicorn

Definition

A (deep) syntax is a quintuple $\left(\Sigma,\left(C_{i}\right)_{i \in I},\left(L_{k}\right)_{k \in K}, R, \mathrm{~S}\right)$, where

- $\left(\Sigma,\left(C_{i}\right)_{i \in I}\right)$ statisfies (USC);
- the Lexikon $\bigcup_{k \in K} L_{k}$ generates the set Σ of (syntactic) structures;
(i.e. no lexical item is a value of an operation C_{i} and Σ is the smallest set that contains the lexicon and is closed under all C_{i});
- the elements of R [ules] are as in (1.1) - where C is one of the C_{i} and all $k_{j} \in K$ [ategories];
- $\mathrm{S}[$ entence $] \in K$.

If $\Delta \in \Sigma$ and $k^{*} \in K$, then Δ is of category k^{*} if: either $\Delta \in L_{k *}$ (in which case Δ 's rank $\rho(\Delta)$ is 0),
or $\Delta=C_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ (and thus $\left.\rho(\Delta)=\max \left(\rho\left(\Delta_{1}\right), \ldots, \rho\left(\Delta_{n}\right)\right)+1\right), \Delta_{1}, \ldots, \Delta_{n}$ are of categories k_{1}, \ldots, k_{n}, respectively, and $\left(C_{i}, k_{1}, \ldots, k_{n}, k^{*}\right) \in R$.

2 Compositionality

(2.1) The meaning of a complex expression can be determined from the meanings of its parts.
(2.2) If S_{1} and S_{2} are sentences (of some fixed language), then so is ' $\left(S_{1}\right.$ and $\left.S_{2}\right)$ '.
(2.3) $C\left(\Delta, \Delta^{\prime}\right)=$ ' $\left(\Delta \text { and } \Delta^{\prime}\right)^{\prime}$, whenever Δ and Δ^{\prime} are structures
(2.4) If $C\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is a structure, then its meaning is uniquely determined by the meanings of $\Delta_{1}, \ldots, \Delta_{n}$ and C.
(2.5) For each (n-place) syntactic construction C there is a corresponding (n-place) meaning combination M such that the meaning of any structure $C\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is $M\left(b_{1}, \ldots, b_{n}\right)$, where b_{1} is Δ_{1} 's meaning, etc.
(2.6) $\mu\left(C\left(\Delta_{1}, \ldots, \Delta_{n}\right)\right)=M\left(\mu\left(\Delta_{1}\right), \ldots, \mu\left(\Delta_{n}\right)\right)$

Jones knows that S, C_{0}

$M_{0}\left(\mu(\mathbf{J o n e s}), M_{1}(\mu(\right.$ know $), \mu($ that $\left.S))\right)$
$\mu($ Jones knows that $S), C_{0}$

$\mu\left(\right.$ Jones knows that $\left.S^{\prime}\right), C_{0}$

(2.11) $\mu($ that $S)=\mu\left(\right.$ that $\left.S^{\prime}\right)$
$\Rightarrow \mu\left(\right.$ Jones knows that $\left.S^{\prime}\right)=\mu\left(\right.$ Jones knows that $\left.S^{\prime}\right)$
(2.12) $L_{1}=\{\mathbf{0}, \ldots, 9\} ; L_{n}=\emptyset(n \neq 1) ; C_{n}\left(\Delta, \Delta^{\prime}\right)={ }^{‘}\left[{ }_{n} \Delta \Delta^{\prime}\right]^{\prime} ;$
$R=\left\{\left(C_{n}, 1, n, n+1\right) \mid n \geq 1\right\}$.
(2.13) $M_{n}(x, y)=10^{n} x+y$
(2.14) $\mu\left(C_{2}\left(7, C_{1}(\mathbf{1}, \mathbf{2})\right)\right)$

$$
\begin{aligned}
& =M_{2}\left(\mu(\mathbf{7}), \mu\left(C_{1}(\mathbf{1}, \mathbf{2})\right)\right) \\
& =M_{2}\left(\mu(\mathbf{7}), M_{1}(\mu(\mathbf{1}), \mu(\mathbf{2}))\right) \\
& =M_{2}\left(7, M_{1}(1,2)\right) \\
& =10^{2} \times 7+10^{1} \times 1+2 \\
& =712
\end{aligned}
$$

Definitions

Given a syntax $\left(\Sigma,\left(C_{i}\right)_{i \in I},\left(L_{k}\right)_{k \in K}, R, S\right)$, a corresponding semantics is a triple $\left(B, \mu_{0},\left(M_{i}\right)_{i \in I}\right)$, where B is some non-empty set; $\mu_{0}: \bigcup_{k \in K} L_{k} \rightarrow B$; and $\left(M_{i}\right)_{i \in I}$ is similar to $\left(C_{i}\right)_{i \in I}$. Given any $\Delta \in \Sigma$, then either $\Delta \in L_{k *}$ and its meaning (according to $\left(B, \mu_{0},\left(M_{i}\right)_{i \in I}\right)$) is $\mu_{0}(\Delta)$; or else $\Delta=C_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and its meaning [...] is $\mu\left(C\left(\Delta_{1}, \ldots, \Delta_{n}\right)\right)=$ $M\left(\mu\left(\Delta_{1}\right), \ldots, \mu\left(\Delta_{n}\right)\right)$, where $\mu\left(\Delta_{1}\right), \ldots, \mu\left(\Delta_{n}\right)$ are the respective meanings [...] of $\Delta_{1}, \ldots, \Delta_{n}$.
(2.15) $(\exists x) \mathbf{P}(x)$
(2.16) $\mathbf{P}(a)$
(2.17) The meaning of a complex expression is determined by the meanings of (certain) less complex expressions.
(2.18) $(\forall x) \mathbf{P}(x)$
(2.19) There exists a function f which can be applied to pairs consisting of syntactic constructions and sets of meanings such that the meaning of a complex structure Δ of the form $C\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ equals the value $f(C, \mathrm{~b}[\mathrm{X}])$, where X is some set of structures of ranks less than Δ.

Part II

Meaning and Reference

3 Local Perspective

(3.1)

Syntactic Category	Type of extension	Example	Extension of example
proper name	individual (bearer)	Fritz	Fritz Hamm
definite description	individual (described)	the fifth- biggest city of France	Nice
count nouns	set (of individuals)	table	set of tables
intransitive verb	set (of individuals)	sleep	set of sleepers
transitive verb	set of pairs (of individuals)	eat	set of pairs (eater, food)
ditransitive verb	set of triples (of individuals)	give	set of triples (giver, recipient, gift)
sentence	truth value $(\emptyset$ or $\{\emptyset\})$	snow is white	1

(3.2) Jones knows that snow is white.
(3.3) Jones knows that grass is green.
(3.13)

(3.14) (i) $\{\boldsymbol{t}, \boldsymbol{e}\} \subseteq \mathbf{I T}$ and $\{(a, b),(\boldsymbol{s}, b)\} \subseteq$ IT, if $\{a, b\} \subseteq \mathbf{I T}$. types
(ii) $\mathbf{E}_{\boldsymbol{t}}=\{0,1\}, \mathbf{E}_{\boldsymbol{e}}=\mathbf{U}, E_{(a, b)}=\mathbf{E}_{b}^{\mathbf{E}_{a}}, \mathbf{E}_{(s, b)}=\mathbf{E}_{b}^{\mathbf{W}} \quad$ extensions
(iii) $\mathbf{I}_{a}=\mathbf{E}_{(s, a)} ; \mathbf{M}_{\boldsymbol{a}}=\mathbf{I}_{\boldsymbol{a}} \mathbf{C}$. intensions and meanings
(iv) A point of reference is an element of $\mathbf{W} \times \mathbf{C}$.
(v) A property is an element of $\mathbf{I}_{\boldsymbol{e} t}$.
(vi) P is a subproperty of Q iff $P(w) \subseteq Q(w)$, for any $w \in \mathbf{W}$.

Definition

A local (Fregean) language is a quintuple $\left(\Xi, f,\left(M_{i}\right)_{i \in I}, \mu_{0}, \Delta\right)$, where

- $\Xi=\left(\Sigma,\left(C_{i}\right)_{i \in I},\left(L_{k}\right)_{k \in K}, R, S\right)$ is a syntax;
- $f: K \rightarrow \mathbf{I T}$ is a function (type assignment) such that $F(\mathbf{S})=\mathbf{t}$;
- $\mu_{0}: \bigcup_{k \in K} L_{k} \rightarrow \bigcup_{a \in \mathbf{I T}} \mathbf{M}_{a}$ is a function (lexical meaning assignment) such that $\mu_{0}(\delta) \in \mathbf{M}_{a}$ whenever $\delta \in L_{k}$ and $f(k)=a$;
- $\left(M_{i}\right)_{i \in I}$ is a family of meaning operations (similar to $\left.\left(C_{i}\right)_{i \in I}\right)$ such that $M_{i}\left(b_{1}, \ldots, b_{n}\right) \in$ $\mathbf{M}_{f\left(k_{0}\right)}$ whenever $b_{1} \in \mathbf{M}_{f\left(k_{1}\right)}, \ldots, b_{n} \in \mathbf{M}_{f\left(k_{n}\right)}$ and $\left(M_{i}, k_{1}, \ldots, k_{n}, k_{0}\right) \in R$.
- $\Delta \subseteq \mathbf{W} \times \mathbf{C}$ is the diagonal or set of utterance points.
\Rightarrow If Δ is of category k, then Δ 's meaning is in $\mathbf{M}_{f(k)}$.
(3.15) $M\left(b_{1}, \ldots, b_{n}\right)(c)(w)=M^{\prime}\left(b_{1}(c), \ldots, b_{n}(c)\right)(c)(w)$
(3.16) $M\left(b_{1}, \ldots, b_{n}\right)(c)=M^{\prime}\left(b_{1}(c), \ldots, b_{n}(c)\right)(c)$
(3.17) δ is deictic iff $\mu(\delta)(c)(w)=\mu(\delta)(c)\left(w^{\prime}\right)$, for all $w, w^{\prime} \in \mathbf{W}$.
(3.18) δ is a hyponym of δ^{\prime} (in a local language L) iff $\mu_{0}(\delta)(c)(w)$ is a subproperty of $\mu_{0}\left(\delta^{\prime}\right)(c)(w)$ whenever (c, w) is a point of $\left\{\begin{array}{l}\text { reference } \\ \text { utterance }\end{array}\right\}$.
(3.19) φ of category S is an a priori truth $\mathrm{iff} \mu(\varphi)(c)(w)=1$, for all $(w, c) \in \boldsymbol{\Delta}$.

4 Global Perspective

(4.1) The meaning of pebble is that (local) meaning b of type $(\boldsymbol{e}, \boldsymbol{t})$ such that for any point of reference (w, c) and any individual x the following holds:
$b(c)(w)(x)=\left\{\begin{array}{l}1, \text { if } x \text { is a pebble with respect to the relevant paramters of }\langle w, c\rangle ; \\ 0, \text { otherwise. }\end{array}\right.$
(4.2) The meaning of stone is that closed meaning b of type ($\boldsymbol{e}, \boldsymbol{t})$ such that for any point of reference (w, c) and any individual x the following holds:
$b(c)(w)(x)=\left\{\begin{array}{l}1, \text { if } x \text { is a stone with respect to the relevant paramters of }\langle w, c\rangle ; \\ 0, \text { otherwise } .\end{array}\right.$

Definition

(i) An ontology is a pair (E, C) where $C \neq \emptyset$ and there are non-empty sets D and W such that $E=\left(E_{a}\right)_{a \in \mathbf{I T}}$ satisfies the equations (3.14)(ii).
(ii) An ersatz (Fregean) language based on an ontology (E, C) is a quintuple that is like a local language except that E and C play the respective rôles of extensions and contexts.
(iii) A global (Fregean) language is a class of ersatz local languages that share the same syntax and type assignment.
(iv) δ is $\left\{\begin{array}{c}\text { deictic } \\ \text { a hyponym of } \delta^{\prime} \\ \text { an a priori truth }\end{array}\right\}$ in a global language iff δ is $\left\{\begin{array}{c}\text { deictic } \\ \text { a hyponym of } \delta^{\prime} \\ \text { an a priori truth }\end{array}\right\}$ in each of its members.
(4.3) φ of category S is contingent (in a given [ersatz] local language L iff there are points of reference (w, c) and $\left(w^{\prime}, c^{\prime}\right)$ such that $\mu(\varphi)(c)(w)=1$ and $\mu(\varphi)\left(c^{\prime}\right)\left(w^{\prime}\right)=$ 0 , where $\mu_{L}(\varphi)$ is the meaning of $\mu_{L}(\varphi)$ according to L.
(4.4) φ of category S is independent of ψ of category S (in a given [ersatz] local language) iff $\left\{\mu_{L}(\varphi)(c)(w), \mu_{L}(\psi)(c)(w) \mid(w, c)\right.$ is a point of reference of $\left.L\right\}$ has 4 members.

Part III

Indirect Interpretation

5 Translation

(5.1)

English		Logic	
structure	category	\mid structure \mid	type
book	N	B	et
cheap	Adj	C	et
$\left(N_{N}\left(A_{\text {adj }}\right.\right.$ cheap $),\left(_{N}\right.$ book $\left.)\right)$	N	$[\boldsymbol{\lambda x}[\mathbf{C}(\boldsymbol{x}) \wedge \mathbf{B}(\boldsymbol{x})]]$ $\left[=F_{\text {mod }}(\right.$ cheap,book $\left.)\right]$	
$\left[=F_{\lambda}\left(\boldsymbol{x}, F_{\wedge}\left(F_{\text {app }}(\mathbf{C}, \boldsymbol{x}), F_{\text {app }}(\mathbf{B}, \boldsymbol{x})\right)\right)\right]$			

(5.2) $\left|F_{\text {mod }}\left(\Delta, \Delta^{\prime}\right)\right|=F_{\lambda}\left(\boldsymbol{x}, F_{\wedge}\left(F_{a p p}(\Delta, \boldsymbol{x}), F_{a p p}\left(\Delta^{\prime}, \boldsymbol{x}\right)\right)\right) \quad$ where \boldsymbol{x} is a fixed variable
(5.3) A syntactic polynomial (over a given syntax) is a term of the form $\boldsymbol{F}\left(\boldsymbol{X}_{\mathbf{1}}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}\right)$, where \boldsymbol{F} is the (unique) name of an n-place syntactic construction (of that syntax) and each $\boldsymbol{X}_{\boldsymbol{i}}$ is either itself a syntactic polynomial (...), or a meta-variable (standing in for an arbitrary structure), or the (unique) name of a particular structure (...).

A derived construction (on a syntax) if is an operation on syntactic structures (...) that is denoted by some syntactic polynomial (...) - in the more or less obvious sense.
(5.4) A translation from a syntax $\Xi=\left(\Sigma,\left(C_{i}\right)_{i \in I},\left(L_{k}\right)_{k \in K}, R, S\right)$ to a syntax $\Xi^{\prime}=$ $\left(\Sigma^{\prime},\left(C_{i}^{\prime}\right)_{i \in I^{\prime}},\left(L_{k}^{\prime}\right)_{k \in K^{\prime}}, R^{\prime}, S^{\prime}\right)$ is a triple $\left(g, t,\left(T_{i}\right)_{i \in I}\right)$, such that:

- $g: K \rightarrow K^{\prime}$ is a function (category assignment) such that $g(S)=S^{\prime}$;
- $t: \bigcup_{k \in K} L_{k} \rightarrow \Sigma^{\prime}$ is a function (lexical translation) such that $t(\delta)$ is a structure of category $g(k)$ in Ξ^{\prime} whenever $\delta \in L_{k}$;
- $\left(T_{i}\right)_{i \in I}$ is a family of derived constructions on Ξ^{\prime} that is similar to $\left(C_{i}\right)_{i \in I}$;
- if $\left(C_{i}, k_{1}, \ldots, k_{n}, k^{*}\right) \in R$ and $\Delta_{1}, \ldots, \Delta_{n}$ are structures of the respective categories k_{1}, \ldots, k_{n}, then $T_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is of category $g\left(k^{*}\right)$. Given any $\Delta \in \Sigma$, then either $\Delta \in L_{k^{*}}$ and its translation $|\Delta|$ (according to $\left(g, t,\left(T_{i}\right)_{i \in I}\right)$ is $t(\Delta)$; or else $\Delta=C_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and its translationtranslation [...] is $\left.\mid C_{i}\left(\Delta_{1}, \ldots, \Delta_{n}\right)\right) \mid=$ $T_{i}\left(\left|\Delta_{1}\right|, \ldots,\left|\Delta_{n}\right|\right)$, where $\left|\Delta_{1}\right|, \ldots,\left|\Delta_{n}\right|$ are the respective translations $[\ldots]$ of $\Delta_{1}, \ldots, \Delta_{n}$.

6 Intensional Type Logic (ITL)

(6.1) The variables of ITL form a family $\left(V a r_{a}\right)_{a \in \boldsymbol{I} \boldsymbol{T}}$ of pairwise disjoint, infinite sets; the constants of ITL form a family $\left(\mathrm{Con}_{a}\right)_{a \in \boldsymbol{I} \boldsymbol{T}}$ of pairwise disjoint sets; the syncategorematic expressions form the set $\left\{\lambda(),,=, \wedge^{\vee},{ }^{\vee}\right\}$. No variable is a constant or a syncategorematic expression, etc.

The syntax of ITL is a quintuple $\left(\Sigma,\left(C_{i}\right)_{i \in I},\left(L_{k}\right)_{k \in K}, R, t\right)$, where:

- Σ consists of (finite) strings over $\bigcup_{a \in \mathbf{I T}} \operatorname{Con}_{a} \cup \underset{a \in \mathbf{I T}}{ } \operatorname{Var}_{a} \cup\left\{\lambda,(),,=,{ }^{\wedge},{ }^{\vee}\right\}$
- $I=\{a p p, a b s, i d$, cup, cap $\} ;$
- $C_{a p p}\left(\Delta, \Delta^{\prime}\right)=\Delta\left(\Delta^{\prime}\right) ; C_{a b s}\left(\Delta, \Delta^{\prime}\right)=\left(\lambda \Delta \Delta^{\prime}\right) ; C_{i d}\left(\Delta, \Delta^{\prime}\right)=\left(\Delta=\Delta^{\prime}\right) ;$ $C_{\text {cup }}(\Delta)=\left({ }^{\vee} \Delta\right) ; C_{\text {cap }}(\Delta)=\left({ }^{\wedge} \Delta\right) ;$
- $K=\mathbf{I T} \cup\{(\mathrm{VAR}, a) \mid a \in \mathbf{I T}\}$;
- $L_{k}=\operatorname{Var}_{k} \cup \operatorname{Con}_{k}$ if $k \in \mathbf{I T} ; L_{k}=\operatorname{Var}_{a}$ if $k=(\mathrm{VAR}, a)$;
- $R=\left\{\left(C_{a p p},(a, b), a, b\right) \mid a, b \in \mathbf{I T}\right\} \cup\left\{\left(C_{a b s},((\mathrm{VAR}, a), b,(a, b) \mid a, b \in \mathbf{I T}\} \cup\right.\right.$ $\left.\left.\left.\left\{C_{i d}, a, a, t\right) \mid a \in \mathbf{I T}\right\} \cup\left\{C_{c u p},(\boldsymbol{s}, a), a\right) \mid a \in \mathbf{I T}\right\} \cup\left\{C_{c a p}, a,(\boldsymbol{s}, a)\right) \mid a \in \mathbf{I T}\right\}$.

An ITL-ontology is a pair (E, C), where $E=\left(E_{a}\right)_{a \in \mathbf{I T}}$ satisfies the equations (3.14)(ii) and C is the set of variable assignments, i.e. the set of functions $h: \bigcup_{a \in \mathbf{I T}} \operatorname{Var}_{a} \rightarrow \bigcup_{a \in \mathbf{I T}} E_{a}$ such that $h(\boldsymbol{x}) \in E_{a}$ whenever $\boldsymbol{x} \in$ Var $_{a}$.

A local (ersatz) language of ITL is a Fregean langugage $\left(\Xi, f,\left(M_{i}\right)_{i \in I}, \mu_{0}, \boldsymbol{\Delta}\right)$ based on an ITL-ontology (E, C) where

- Ξ is the syntax of ITL;
- $f(a)=f((\mathrm{VAR}, a))=a$, for any $a \in \mathbf{I T}$;
- for any $b, b^{\prime} \in \bigcup_{a \in \mathbf{I T}} E_{a}, w, w^{\prime} \in W$, and $h \in C$ the following hold:

$$
\begin{aligned}
& M_{a p p}\left(b, b^{\prime}\right)(h)(w)=b(h)(w)\left(b^{\prime}(h)(w)\right) \text { whenever } b \in M_{a, b} \text { and } b^{\prime} \in M_{a} ; \\
& M_{a b s}\left(\mu_{0}(\boldsymbol{x}), b\right)(h)(w)(u)=b(h[\boldsymbol{x} / u])(w) \text { if } \boldsymbol{x} \in \operatorname{Var}_{a}, u_{a}, \text { and } b \in M_{(a, b)}, \\
& \text { where } h[\boldsymbol{x} / u]=(h \backslash\{(\boldsymbol{x}, h(\boldsymbol{x}))\}) \cup\{(\boldsymbol{x}, u)\} ; \\
& M_{i d}\left(b, b^{\prime}\right)(h)(w)=\left\{\emptyset \mid b(h)(w)=b^{\prime}(h)(w)\right\} \text { whenever } b, b^{\prime} \in M_{a} ; \\
& M_{\text {cup }}(b)(h)(w)=b(h)(w)(w) \text { whenever } b \in M_{(\mathbf{s}, a)} ; \\
& M_{\text {cap }}(b)(h)(w)\left(w^{\prime}\right)=b(h)\left(w^{\prime}\right) \text {. } \\
& \text { - } \mu_{0}(\boldsymbol{c})(h)(w)=\mu_{0}(\boldsymbol{c})\left(h^{\prime}\right)(w) \text { whenever } w \in W, h, h^{\prime} \in C \text { and } \boldsymbol{c} \in \cup_{a \in \mathbf{I T}} \text { Con }_{a} ; \\
& \mu_{0}(\boldsymbol{x})(h)(w)=h(\boldsymbol{x}) \text { whenever } w \in W, h \in C \text { and } \boldsymbol{x} \in \bigcup_{a \in \mathbf{I T}} \operatorname{Var}_{a} ;
\end{aligned}
$$

- $\boldsymbol{\Delta}=W \times C$.

If M is a local language of ITL, α is an ITL formula (structure), $\mu(\alpha)$ is α 's meaning $\llbracket \alpha \rrbracket^{M, h, w}$ according to $M, h \in C$, and $w \in W$ is: $\mu(a)(h)(w)$.

Given a local ITL-language M, the exists a function $F: \bigcup_{a \in I T} \operatorname{Con}_{a} \rightarrow \bigcup_{a \in I T} I_{a}$ such that $F(\mathbf{c}) \in I_{a}$ whenever $\mathbf{c} \in \operatorname{Con}_{a}$ and such that the following hold:
(i) $\llbracket \alpha \rrbracket^{M, g, w}=F(\alpha)(w)$, if $\alpha \in \operatorname{Con}_{a}$;
(ii) $\llbracket \alpha \rrbracket^{M, g, w}=g(\alpha)$, if $\alpha \in V a r_{a}$;
(iii) $\llbracket \alpha \rrbracket^{M, g, w}=\llbracket \alpha_{1} \rrbracket^{M, g, w}=\left(\llbracket \alpha_{2} \rrbracket^{M, g, w}\right)$, if $\alpha=\alpha_{1}\left(\alpha_{2}\right)$;
(iv) $\llbracket \alpha \rrbracket^{M, g, w}=\left\{\left(u, \llbracket \alpha_{1} \rrbracket^{M, g[x / u], w}\right) \mid u \in D_{b}\right\}$, if $\alpha=\left(\lambda \boldsymbol{x} \alpha_{1}\right)$ und $\boldsymbol{x} \in \operatorname{Var}_{b}$;
(v) $\llbracket \alpha \rrbracket^{M, g, w}=\left\{u \mid\left[u=0\right.\right.$ and $\left.\left.\llbracket \alpha_{1} \rrbracket^{M, g, w}=\llbracket \alpha_{2}^{M, g, w}\right]\right\}$, if $\alpha=\left(\alpha_{1}=\alpha_{2}\right)$;
(vi) $\llbracket \alpha \rrbracket^{M, g, w}=\llbracket \alpha_{1} \rrbracket^{M, g, w}(w)$, if $\alpha=\left({ }^{\vee} \alpha_{1}\right)$;
(vii) $\llbracket \alpha \rrbracket^{M, g, w}=\left\{\left(w^{\prime}, \llbracket \alpha_{1} \rrbracket^{M, g, w^{\prime}}\right) \mid w^{\prime} \in W\right\}$, if $\alpha=\left({ }^{\wedge} \alpha_{1}(\right.$.
(6.2) If α and α^{\prime} are ITL-formulae of the same category, then α and α^{\prime} are logically equivalent if $\llbracket \alpha \rrbracket^{M, g, w}=\llbracket \alpha^{M, g, w}$ for any local ITL-languages M, worlds w and assignments g. Notation: $\alpha \equiv \alpha^{\prime}$.
(6.3) An ITL-formula α is modally closed if (i-a) $\alpha \in \bigcup_{a \in I T} \operatorname{Var}_{a}$; or (i-b) $\alpha={ }^{\wedge} \alpha$ (for some β), or (ii) there are modally closed α_{1} and α_{2} such that (ii-a) $\alpha=\alpha_{1}\left(\alpha_{2}\right)$, or (ii-b) $\alpha=\left(\lambda \alpha_{1} \alpha_{2}\right)$, or (ii-c) $\alpha=\left(\alpha_{1}=\alpha_{2}\right)$.

Down-Up Cancellation
${ }^{\mathrm{V} \wedge} \alpha \equiv \alpha$, for all ITL-formulae α.
Up-Down Cancellation
$\overline{{ }^{\wedge}} \alpha \equiv \alpha$, if α is modally closed (and of a category ($\left.\boldsymbol{s}, a\right)$).
(6.4) Abbreviations in ITL and Ty2:

Notation	where	is short for
$\alpha(\beta, \gamma)$	$\alpha: a(a b) ; \beta, \gamma: a$	$\alpha(\gamma)(\beta)$
T		$\left(\lambda x_{t} x\right)=(\lambda x x)$
\perp		$(\lambda x \mathrm{~T})=(\lambda x x)$
$\neg \varphi$	$\varphi: t$	($\varphi=\perp$)
$(\forall x) \varphi$	$\boldsymbol{x} \in \operatorname{Var} ; \boldsymbol{\varphi}: \boldsymbol{t}$	$(\lambda x \varphi)=(\lambda x$ T $)$
$(\exists x) \varphi$	$\boldsymbol{x} \in \operatorname{Var} ; \varphi: \boldsymbol{t}$	$\neg(\forall x) \neg \varphi$
[$\varphi \leftrightarrow \psi$]	$\varphi, \psi: t$	($\varphi=\psi$)
[$\varphi \wedge \psi$]	$\varphi, \psi: t$	$\begin{aligned} & \left(\forall \boldsymbol{R}_{t(t \boldsymbol{t})}\right)[\boldsymbol{R}(\varphi, \psi) \leftrightarrow \boldsymbol{R}(\mathrm{T}, \mathrm{~T})] \\ & \text { [alternatively: } \left.\left(\forall f_{t t}\right)[\varphi \leftrightarrow[f(\psi) \leftrightarrow f(\psi)]]\right] \end{aligned}$
[$\varphi \vee \psi$]	$\varphi, \psi: t$	$[\neg \varphi \wedge \neg \psi]$
$[\varphi \rightarrow \psi]$	$\varphi, \psi: t$	[$\neg \varphi \vee \psi$]
etc.		

(6.5) Special ITL-conventions:

Notation	where	is short for
$\alpha\{\beta\}$	$\alpha: \boldsymbol{s}(a \boldsymbol{t}) ; \beta: a$	${ }^{\vee} \alpha(\beta)$
$\alpha\{\beta, \gamma\}$	$\alpha: \boldsymbol{s}(a(a \boldsymbol{t})) ; \beta, \gamma: a$	${ }^{\vee} \alpha(\gamma)(\beta)$
$\square \boldsymbol{\varphi}$	$\boldsymbol{\varphi}: \boldsymbol{t}$	$\left({ }^{\wedge} \varphi=^{\wedge} \mathrm{T}\right)$
$\diamond \varphi$	$\varphi: \boldsymbol{t}$	$\neg \square \neg \varphi$

(6.6) $(\lambda x . \square(x=d))(c) \not \equiv \square(c=d)$

Restricted β-conversion (ITL)
$\overline{((\lambda \boldsymbol{x} \alpha)(\beta)) \equiv \alpha[\boldsymbol{x} / \beta] \text {, if (i) } \beta}$ does not contain a free variable that would get bound when \boldsymbol{x} in α is replaced by β and either (ii-a) no occcurrence of \boldsymbol{x} in α lies within the scope of ${ }^{\wedge}$, or (ii-b) β is modally closed.

Two-sorted Type Theory
$\overline{2 T}$ contains $\boldsymbol{t}, \boldsymbol{e}$, and \boldsymbol{s} and all pairs (a, b) such that $a, b \in \mathbf{2 T}$. $\left(V a r_{a}\right)_{a \in \mathbf{2 T}}$ and $\left(\mathrm{Con}_{a}\right)_{a \in 2 \mathrm{~T}}$ are analogous to ITL, but the only syntactic constructions are $C_{a p p}, C_{a b s}$, and $C_{i d}$.
β-conversion (Ty2)
$\overline{((\lambda \boldsymbol{x} \alpha)(\beta)) \equiv \alpha[\boldsymbol{x}} / \beta], \beta$ if does not contain a free variable that would get bound when \boldsymbol{x} in α is replaced by β.
[Notation: $\left.((\lambda \boldsymbol{x} \alpha)(\beta))>_{\beta} \alpha[x / \beta]\right]$
NB1: $((\lambda x \alpha)(x))>_{\beta} \alpha$;
NB2: β-contraction may increase length; e.g., if $x \in \operatorname{Var}_{\boldsymbol{e}}, \mathbf{R} \in \operatorname{Con}_{\boldsymbol{e}(\boldsymbol{e}(\boldsymbol{e} \boldsymbol{e}))}, \mathbf{f} \in \operatorname{Con}_{\boldsymbol{e}(\boldsymbol{e}(\boldsymbol{e e}))}$, $\mathbf{c} \in \operatorname{Con}_{\boldsymbol{e}}$:

$$
(\lambda x \mathbf{R}(x)(x)(x))(\mathbf{f}(\mathbf{c})(\mathbf{c})(\mathbf{c}))>_{\beta} \quad \mathbf{R}(\mathbf{f}(\mathbf{c})(\mathbf{c})(\mathbf{c}))(\mathbf{f}(\mathbf{c})(\mathbf{c})(\mathbf{c}))(\mathbf{f}(\mathbf{c})(\mathbf{c})(\mathbf{c}))
$$

$\boldsymbol{\eta}$-conversion (Ty2 \& ITL)
$\overline{(\lambda \boldsymbol{x} \beta(\boldsymbol{x})) \equiv \beta \text {; if } \boldsymbol{x} \notin \operatorname{Fr}(\beta)}$
α-conversion (Ty2 \& ITL)
$\overline{(\lambda \boldsymbol{x} \alpha) \equiv(\lambda \boldsymbol{y} \alpha[\boldsymbol{x} / \boldsymbol{y}]) \mathrm{iff}}$
no occurrence of \boldsymbol{x} in α lies within the scope of (some) $\boldsymbol{\lambda} \boldsymbol{y}$ and $\boldsymbol{y} \notin F r((\lambda \boldsymbol{x} \alpha))$.

Definition

(a) α is immediately reducible to β iff $\alpha=\gamma\left[x / \delta_{1}\right], \beta=\gamma\left[x / \delta_{2}\right]$ and: [$\delta_{1}>_{\alpha} \delta_{2}$ or $\delta_{1}>_{\beta} \delta_{2}$ or $\left.\delta_{1}>_{\eta} \delta_{2}\right]$
for some $\gamma, \delta_{1}, \delta_{2}$ and variable x (of the appropriate types)
[Notation: $\alpha>\beta$; transitive closure: $\alpha \triangleright \beta$]
(b) α is normal iff $\alpha \triangleright \beta$ implies $\alpha \triangleright_{\boldsymbol{\alpha}} \beta \quad$ (where $\triangleright_{\boldsymbol{\alpha}}$ is the transitive closure of $>_{\boldsymbol{\alpha}}$)
(c) β is a normal form of α iff $\alpha \triangleright \beta$ and β is normal.

Normal Form Theorem (Ty2 \& IL)
Every Ty2-formula has a normal form.
Church-Rosser Theorem (Ty2)
If β and β^{\prime} are normal forms of α, then $\beta \triangleright_{\boldsymbol{\alpha}} \beta^{\prime}$.
(6.7a) $\left(\lambda x \mathbf{P}\left(\left(\lambda y\left(^{\wedge} y\right)\right)(x)\right)\right)(c) \quad\left(\right.$ where $\left.^{x} \in \operatorname{Var}_{\boldsymbol{s e}}, \boldsymbol{y} \in \operatorname{Var}_{\boldsymbol{e}}, \boldsymbol{c} \in \operatorname{Con}_{\boldsymbol{s} \boldsymbol{e}}, \mathbf{P} \in \operatorname{Con}_{(\boldsymbol{s e}) \boldsymbol{t}}\right)$
(b) $\mathbf{P}\left(\left(\lambda y\left({ }^{\wedge} y\right)\right)(c)\right)$
(c) $\left(\boldsymbol{\lambda} \boldsymbol{x} \mathbf{P}\left(\left(^{\wedge} \boldsymbol{x}\right)\right)\right)(\boldsymbol{c})$
[Friedman and Warren1980]
(i) $\boldsymbol{c}^{*}=\boldsymbol{c}(\boldsymbol{i})$, if $\boldsymbol{c} \in \mathrm{Con}_{a}$;
(ii) $\boldsymbol{x}^{*}=\boldsymbol{x}$, if $\boldsymbol{x} \in \operatorname{Var}_{a}$;
(iii) $\alpha(\beta)^{*}=\alpha^{*}\left(\beta^{*}\right)$;
(iv) $(\boldsymbol{\lambda} \boldsymbol{x} \alpha)^{*}=\left(\lambda \boldsymbol{x} \alpha^{*}\right)$;
(v) $(\alpha=\beta)^{*}=\left(\alpha^{*}=\beta^{*}\right)$;
(vi) ${ }^{\vee} \alpha^{*}=\alpha^{*}(\boldsymbol{i})$;
(vii) ${ }^{\wedge} \alpha^{*}=\left(\lambda \boldsymbol{i} \alpha^{*}\right)$.

Four observations on *:

- $\left({ }^{\mathrm{\wedge}} \alpha\right)^{*}>_{\boldsymbol{\beta}} \alpha^{*}$.
- An ITL-formula α is modally closed iff $\boldsymbol{i} \notin \operatorname{Fr}\left(\alpha^{*}\right)$.
- If α is modally closed, $\left({ }^{\vee \wedge} \alpha\right) *>_{\boldsymbol{\eta}} \alpha^{*}$.
- If all constants and free variables of a Ty2-formula α of a type in 2T \backslash IT are of types in $\mathbf{2 T} \backslash \mathbf{I T}$, then α is logically equivalent to the *-image of some ITL-formula.
(6.8a) $(\lambda i(\lambda \boldsymbol{j}(\boldsymbol{i}=\boldsymbol{j}))$
(where $\boldsymbol{i}, \boldsymbol{j} \in$ Var $_{s}$)
(b) $(\lambda i(\lambda F(\lambda i(F=(\lambda p p(i)))))((\lambda p p(i))))$
(where $F \in \operatorname{Var}_{(s t) t}, p \in \operatorname{Var}_{s t}$)
(c) $\left({ }^{\wedge}\left(\lambda \boldsymbol{F}\left({ }^{\wedge}\left(\boldsymbol{F}=\left(\lambda \boldsymbol{p}\left({ }^{\vee} \boldsymbol{p}\right)\right)\right)\right)\right)\left(\left(\lambda \boldsymbol{p}\left({ }^{\vee} \boldsymbol{p}\right)\right)\right)\right)$

Part IV

Descriptive Montague Grammar

7 Extensional Constructions

(7.1) Simple constructions

Construction	Corresponding Rule(s)	Example
$\begin{gathered} F_{\text {pred }}\left(\Delta, \Delta^{\prime}\right)= \\ \Delta \Delta^{\prime}, \text { pred } \\ \overbrace{\Delta \Delta^{\prime}}^{\prime} \end{gathered}$	($F_{\text {pred }}, \mathrm{VP}, \mathrm{NP}, \mathrm{S}$)	$F_{\text {pred }}($ is happy, Mary $)=$ Mary is happy, pred Mary is happy
$\begin{gathered} F_{o b j}\left(\Delta, \Delta^{\prime}\right)= \\ \Delta \Delta^{\prime}, o b j \\ \overbrace{\Delta} \Delta^{\prime} \end{gathered}$	($F_{o b j}, \mathrm{TV}, \mathrm{NP}, \mathrm{VP}$)	$F_{o b j}($ likes, the girl $)=$ likes the girl, obj likes the girl
$F_{c o p}(\Delta)=$ is Δ, cop	($F_{\text {cop }}$, Adj, VP)	$F_{\text {cop }}(\text { happy })=$ is happy, cop happy
$\begin{gathered} F_{\text {def }}(\Delta)= \\ \text { the } \Delta \text {, def } \\ \Delta \\ \Delta \end{gathered}$	($\left.F_{\text {def }}, N, N P\right)$	$\begin{gathered} F_{d e f}(\text { girl })= \\ \text { the girl, } d e f \\ \text { girl } \end{gathered}$

(7.2) Naive type assignment

Category	Example	(Extension) Type
S	Mary is happy; the boy likes the girl	\boldsymbol{t}
NP	Mary; the boy; the girl	\boldsymbol{e}
VP	is happy; likes the girl	$\boldsymbol{e} \boldsymbol{t}$
TV	likes	$\boldsymbol{e}(\boldsymbol{e} \boldsymbol{t})$
Adj	happy	$\boldsymbol{e t}$
N	girl; boy	$\boldsymbol{e} \boldsymbol{t}$

(7.3) Naive lexical translation

Item	Example		Ty2
Mary	\mathbf{m}	$\left[\in \operatorname{Con}_{\boldsymbol{e}}\right]$	$\mathbf{m}_{\boldsymbol{i}}[=\mathbf{m}(\boldsymbol{i})]$
boy	\mathbf{B}	$\left[\in \operatorname{Con}_{\boldsymbol{e} t}\right]$	$\mathbf{B}_{\boldsymbol{i}}$
girl	\mathbf{G}	$\left[\in \operatorname{Con}_{\boldsymbol{e} t}\right]$	$\mathbf{G}_{\boldsymbol{i}}$
likes	\mathbf{L}	$\left[\in \operatorname{Con}_{\boldsymbol{e}(\boldsymbol{e} t)}\right]$	$\mathbf{L}_{\boldsymbol{i}}$
happy	\mathbf{H}	$\left[\in \operatorname{Con}_{\boldsymbol{e} t}\right]$	$\mathbf{H}_{\boldsymbol{i}}$

(7.4) Naive meaning combinations

Construction	Corresponding Polynomial	
$F_{\text {pred }}$	$G_{\text {pred }}(\alpha, \beta)=C_{\text {app }}(\beta, \alpha)$	$[=\beta(\alpha)]$
$F_{\text {obj }}$	$G_{\text {obj }}(\alpha, \beta)=C_{\text {app }}(\alpha, \beta)$	$[=\alpha(\beta)]$
$F_{\text {cop }}$	$G_{\text {cop }}(\alpha)=\alpha$	
$F_{\text {def }}$	$G_{\text {def }}(\alpha)=C_{\text {app }}(\boldsymbol{\iota}, \alpha)\left(\right.$ where $\left.\boldsymbol{\iota} \in \operatorname{Con}_{(\text {et }) \boldsymbol{e}}\right)[=\boldsymbol{\iota}(\alpha)]$	

(7.5a)
Mary is happy, pred
$=\left|F_{\text {pred }}\left(\mathbf{M a r y}, F_{\text {cop }}(\mathbf{h a p p y})\right)\right|$
$=G_{\text {pred }}\left(|\mathbf{M a r y}|, \mid F_{\text {cop }}(\right.$ happy $\left.) \mid\right)$
$=G_{\text {pred }}\left(|\mathbf{M a r y}|, G_{\text {cop }}(\mid\right.$ happy $\left.\mid)\right)$
$=G_{p r e d}\left(\mathbf{m}, G_{c o p}(\mathbf{H})\right)$
$=G_{\text {pred }}(\mathbf{m}, \mathbf{H})$
$=\mathbf{H}(\mathbf{m})$
(a^{\prime}) $\quad \mathbf{H}(\mathbf{m})$

I
the boy likes the girl, pred
$=\mid F_{\text {pred }}\left(F_{d e f}(\mathbf{b o y})\right), F_{o b j}\left(\right.$ likes,$F_{d e f}($ girl $\left.)\right) \mid$
$=G_{p r e d}\left(\left|F_{\text {def }}(\mathbf{b o y})\right|, \mid F_{o b j}\left(\right.\right.$ likes, $F_{d e f}($ girl $\left.\left.)\right) \mid\right)$
$=G_{\text {pred }}\left(G_{d e f}(|\mathbf{b o y}|), G_{o b j}\left(\mid\right.\right.$ likes $\left.\left.\mid, G_{\text {def }}(|\operatorname{girl}|)\right)\right)$
$=G_{\text {pred }}\left(G_{d e f}(\mathbf{B}), G_{o b j}\left(\mathbf{L}, G_{d e f}(\mathbf{G})\right)\right)$
$=G_{\text {pred }}\left(\iota(\mathbf{B}), G_{o b j}(\mathbf{L}, \iota(\mathbf{G}))\right)$
$=G_{\text {pred }}(\iota(\mathbf{B}), \mathbf{L}(\iota(\mathbf{G})))$
$=\mathbf{L}(\iota(\mathbf{G}))(\iota(\mathbf{B}))$
$=\mathbf{L}(\iota(\mathbf{B}), \iota(\mathbf{G}))$

(7.6) Every boy likes Mary

The reconstructed extension ρ_{α} of α (in $F(\alpha,-)$ is a function f that assigns to the extension of any (relevant) β the extension of $F(\alpha, \beta)$:

- $\rho_{\alpha}(\mu(\beta)(c)(w))=\mu(F(\alpha, \beta))(c)(w) \quad$ direct version
- $|\alpha|(|\beta|) \equiv|F(\alpha, \beta)| \quad$ indirect version
- $|\alpha|=\left(\lambda \boldsymbol{x}|F(\alpha, \beta)|\left[{ }^{[\beta \mid} / \boldsymbol{x}\right]\right) \quad$ abstract version
(7.7a) |every boy $\mid(\mid$ likes Mary $\mid) \equiv(\forall x)[\mathbf{B}(x) \rightarrow \mid$ likes Mary $\mid(x)]$
\mid every boy $\mid(\mid$ is happy $\mid) \equiv(\forall x)[B(x) \rightarrow \mid$ is happy $\mid(x)] \ldots$
\mid every boy $\mid(|\beta|) \equiv(\forall x)[\mathbf{B}(x) \rightarrow|\beta|(x)]$
(7.7b) \mid every boy $\mid=\left(\lambda Q_{e t}(\forall x)[\mathbf{B}(x) \rightarrow \boldsymbol{Q}(x)]\right) \quad$ type $((e t) t)[=: q]$
(7.8a) \mid every $\mid(\mid$ boy $\mid) \equiv\left(\lambda Q_{e t}(\forall x)[|b o y|(x) \rightarrow Q(x)]\right)$
\mid every $\mid(|\operatorname{girl}|) \equiv\left(\lambda Q_{e t}(\forall x)[|\operatorname{girl}|(x) \rightarrow Q(x)]\right) \ldots$
$|\operatorname{every}|(|\beta|) \equiv\left(\lambda Q_{e t}(\forall x)[|\beta|(x) \rightarrow \boldsymbol{Q}(x)]\right)$
(7.8b) \mid every $\mid=\left(\lambda P_{e t}\left(\lambda Q_{e t}(\forall x)[P(x) \rightarrow Q(x)]\right)\right) \quad$ type $(e t) q$
(7.9a) |every boy or every girl|(|likes Mary|)
$\equiv[(\forall x)[\mathbf{B}(x) \rightarrow \mid$ likes Mary $\mid(x)] \vee(\forall x)[\mathbf{G}(x) \rightarrow \mid$ likes Mary $\mid(x)]]$
|every boy or every girl|(|is happy|)
$\equiv[(\forall x)[B(x) \rightarrow \mid$ is happy $\mid(x)] \vee(\forall x)[\mathbf{G}(x) \rightarrow \mid$ is happy $\mid(x)]] \ldots$
|every boy or every $\operatorname{girl} \mid(|\beta|)$
$\equiv[(\forall x)[\mathbf{B}(\boldsymbol{x}) \rightarrow|\beta|(\boldsymbol{x})] \vee(\forall x)[\mathbf{G}(x) \rightarrow|\beta|(x)]]$
(7.9b) |every boy or every girl|
$=\left(\lambda Q_{e t}[(\forall x)[\mathbf{B}(x) \rightarrow Q(x)] \vee(\forall x)[\mathbf{G}(x) \rightarrow \boldsymbol{Q}(x)]]\right)$
type q
(7.10a) |or $\mid(\mid$ every boy $\mid)(\mid$ every girl|)
$\equiv\left(\lambda Q_{e t}[(\forall x)[\mathbf{B}(x) \rightarrow Q(x)] \vee(\forall x)[\mathbf{G}(x) \rightarrow Q(x)]]\right)$
$\equiv\left(\lambda Q_{e t}[\mid\right.$ every $\operatorname{boy}|(Q) \vee|$ every $\left.\operatorname{girl} \mid(Q)]\right)$
|or|(|every boy|)(|some girl|)
$\equiv\left(\lambda Q_{e t}[(\forall x)[\mathbf{B}(x) \rightarrow Q(x)] \vee(\exists x)[\mathbf{G}(x) \rightarrow Q(x)]]\right)$
$\equiv\left(\lambda Q_{e t}[\mid\right.$ every $\operatorname{boy}|(Q) \vee|$ some $\left.\operatorname{girl} \mid(Q)]\right) \ldots$
$|\operatorname{or}|(|\beta|)(|\gamma|) \equiv\left(\lambda \boldsymbol{Q}_{\boldsymbol{e t}}[|\beta|(\boldsymbol{Q}) \vee|\gamma|(\boldsymbol{Q})]\right)$
(7.10b) $|\mathbf{o r}|=\left(\lambda \mathcal{H}_{(e t) t}\left(\lambda \mathfrak{B}_{(e t) t}\left(\lambda Q_{e t}[\mathfrak{B}(Q)] \vee[\mathfrak{H}(Q)]\right)\right)\right)$
(7.11) |Mary or every boy|

$$
\begin{aligned}
& \equiv\left(\lambda Q_{e t}[Q(\mathbf{m}) \vee(\forall x)[\mathbf{B}(x) \rightarrow Q(x)]]\right) \\
& \left.\equiv\left(\lambda Q_{e t}[|\operatorname{Mary}|(Q)] \vee \mid \text { every girl } \mid(Q)\right]\right) \quad \quad \text { wrong type }(\boldsymbol{e} \text { vs. } \boldsymbol{q})
\end{aligned}
$$

(7.11a) \mid Mary $\mid(\mid$ likes Mary $\mid) \equiv|l i k e s \operatorname{Mary}|(\mathbf{m})$
$|\operatorname{Mary}|(\mid$ is happy $\mid) \equiv \mid$ is happy $\mid(\mathbf{m}) \ldots$
$|\operatorname{Mary}|(|\beta|) \equiv|\beta|(\mathbf{m})$
(7.11b) $|\mathbf{M a r y}|=\left(\lambda Q_{e t} \boldsymbol{Q}(\mathbf{m})\right)$
(7.12) Revised rules and constructions

Construction	Corresponding Rule(s)	Example
$F_{\text {pred }}\left(\Delta, \Delta^{\prime}\right)=\Delta \Delta_{\Delta}^{\prime}, \text { pred }$	$\left(F_{\text {pred }}, \mathrm{NP}, \mathrm{VP}, \mathrm{S}\right)$	$F_{\text {pred }}$ (Mary, is happy) = Mary is happy, pred Mary is happy
	$\left(F_{\text {pred }}\right.$, Det, $\left.\mathrm{N}, \mathrm{NP}\right)$	$\begin{aligned} & F_{\text {pred }}(\text { the, girl }) \\ & =\text { the girl, pred } \\ & \text { the girl } \end{aligned}$
$\begin{aligned} & F_{\text {coord }}\left(\Delta, \Delta^{\prime}, \Delta^{\prime \prime}\right) \\ & =\Delta \Delta^{\prime} \Delta^{\prime \prime} \text {, coord } \end{aligned}$	($F_{\text {coord }}$, NP, Conj, NP,NP)	$F_{\text {coord }}$ (every boy, or Mary) = every boy or Mary, coord
	($F_{\text {coord }}, \mathrm{VP}, \mathrm{Conj}, \mathrm{VP}, \mathrm{VP}$)	$F_{\text {coord }}$ (likes Mary, or, is happy) = is happy or likes Mary, coord is happy or the girl \|
$\begin{gathered} F_{\text {cop }}(\Delta)=\text { is } \Delta, \operatorname{cop} \\ \Delta \end{gathered}$	($\left.F_{\text {cop }}, \mathrm{Adj}, \mathrm{VP}\right)$	$\begin{gathered} F_{c o p}(\text { happy })=\text { is happy, cop } \\ \text { happy } \end{gathered}$
$F_{o b j}\left(\Delta, \Delta^{\prime}\right)=\overbrace{\Delta \Delta^{\prime}}^{\Delta^{\prime}}, o b j$	($F_{\text {obj }}, \mathrm{TV}, \mathrm{NP}, \mathrm{VP}$)	$F_{o b j}$ (likes, the girl) $=$ likes the girl, obj likes the girl

(7.13) Revised (and expanded) type assignment

Category	(Extension) Type
S	\boldsymbol{t}
NP	\boldsymbol{q}
VP	$\boldsymbol{e} \boldsymbol{t}$
TP	$\boldsymbol{e}(\boldsymbol{e} \boldsymbol{t})$
Adj	$\boldsymbol{e t}$
Conj	$\boldsymbol{q}(\boldsymbol{q q})$

(7.14) Lexical translation: revisions and additions

Item	ITL
Mary	$\left(\lambda Q_{e t} Q(\mathbf{m})\right)$
or	$\left(\lambda \mathfrak{H} \mathcal{e l t e t}^{\left.\left(\lambda \mathcal{B}_{(e t) t}\left(\lambda Q_{e t}[\mathcal{B}(Q) \vee \mathfrak{A}(Q)]\right)\right)\right)}\right.$
every	$\left(\lambda P_{e t}\left(\lambda Q_{e t}(\forall x)[P(x) \rightarrow Q(x)]\right)\right)$
some	$\left(\lambda P_{e t}\left(\lambda Q_{e t}(\exists x)[P(x) \wedge Q(x)]\right)\right)$
the	$\left(\lambda P_{e t}\left(\lambda Q_{e t}(\exists x)(\forall y)[[P(y) \leftrightarrow(x=y)] \wedge Q(x)]\right)\right)$

(7.15) New meaning combinations

Constructions	Corresponding Polynomial
$F_{\text {pred }}$	$G_{\text {pred }}(\alpha, \beta)=C_{a p p}(\alpha, \beta) \quad[=\alpha(\beta)]$
$F_{\text {coord }}$	$G_{\text {coord }}(\alpha, \beta, \gamma)=C_{a p p}\left(C_{a p p}(\beta, \gamma), \alpha\right)[=\beta(\gamma)(\alpha)]$
$F_{\text {cop }}$	$G_{\text {cop }}(\alpha)=\alpha$
$F_{\text {obj }}$	$C_{a b s}\left(\boldsymbol{x}, C_{a p p}\left(\beta, C_{a p p}\left(\boldsymbol{y}, C_{a p p}\left(C_{a p p}(\alpha, \boldsymbol{y}), \boldsymbol{x}\right)\right)\right)\right)$ $[=(\lambda \boldsymbol{x} \boldsymbol{\beta}(\boldsymbol{y} \boldsymbol{y} \boldsymbol{\alpha}(\boldsymbol{x}, \boldsymbol{y})))]$

8 Intensional Constructions

Attitude verbs
(8.1a) John thinks that Mary is happy.
(8.1b) Mary is happy.
(8.1c) Every boy likes Mary.
(8.1d) John thinks that every boy likes Mary.

Opaque verbs
(8.2a) John is looking for a book on Clinton.
(8.2b) Every book on Clinton is a book by Clinton.
(8.2c) Every book by Clinton is a book on Clinton.
(8.2d) John is looking for a book by Clinton.

Core-intensional verbs
(8.3a) The temperature is rising.
(8.3b) The temperature is ninety.
(8.3c) Ninety is rising.
(8.4) Attitude reports: type assignment

Category	(Extension) Type
AttV	$(\boldsymbol{e t})(\boldsymbol{e t})$
Prop	st

(8.5) Attitude reports:additional rules and constructions

Construction	Corresponding Rule(s)	Example
$F_{\text {pred }}\left(\Delta, \Delta^{\prime}\right)=\Delta \Delta_{\Delta}^{\prime}, \text { pred }$	($F_{\text {pred }}, \mathrm{AttP}$, Prop, VP)	$F_{\text {pred }}$ (thinks, that Mary is happy) $=$ thinks that Mary is happy, att thinks that Mary is happy
	($F_{\text {that }}$, S,Prop)	```\(F_{\text {that }}\) (Mary is happy) \(=\) that \(\Delta\), that \(\Delta\)```

(8.6)

Item	ITL	Ty2
thinks	T $\quad\left[\in \operatorname{Con}_{(s t)(e t)}\right]$	\mathbf{T}_{i}
believes	$\begin{gathered} \left(\lambda p\left(\lambda x\left(\lambda q \square\left[{ }^{\vee} q \rightarrow{ }^{\vee} p\right]\right)(\mathbf{B}(x))\right)\right. \\ {\left[\mathbf{B} \in \text { Con }_{(\text {est })}\right]} \end{gathered}$	$\left(\lambda p\left(\lambda x(\forall j)\left[\mathbf{B}_{i}(x)(j) \rightarrow p_{j}\right]\right.\right.$

(8.7) Attitude verbs: additional meaning combination

Construction	Corresponding ITL-Polynomial	Corresponding Ty2-Polynomial
$F_{\text {that }}$	$G_{\text {hat }}(\alpha)=C_{\text {cap }}(\alpha) \quad\left[=^{\wedge} \alpha\right]$	$G_{\text {hat }}(\alpha)=C_{a b s}(\boldsymbol{i}, \alpha)[=(\lambda \boldsymbol{i} \alpha)]$
$F_{\text {att }}$	$G_{\text {att }}(\alpha, \beta)=C_{a p p}(\alpha, \beta)[=\alpha(\beta)]$	$G_{a t t}(\alpha, \beta)=C_{a p p}(\alpha, \beta)$

(8.8) John is-trying-for-it-to-be-the-case that John finds a book on Clinton.
(8.9a) |seeks|(|a book|)

$$
\begin{aligned}
& \equiv(\lambda x \mid \text { tries } \mid(x, \wedge(\exists y)[\text { B }(y) \wedge \mid \text { finds } \mid(x, y)]) \\
& \equiv\left(\lambda x \mid \text { tries } \mid\left(x,\left(^{\wedge}(\wedge \mid \text { a book } \mid)\{\lambda y \mid \text { finds } \mid(x, y)\}\right)\right)\right)
\end{aligned}
$$

$$
\mid \text { seeks } \mid(|\beta|) \equiv\left(\lambda x \mid \text { tries } \mid\left(x,\left({ }^{\wedge}(\wedge|\beta|)\{\lambda y \mid \text { finds } \mid(x, y)\}\right)\right)\right)
$$

(8.9b) |seeks $\mid=\left(\lambda \mathfrak{H}_{s((e t) t)}(\lambda x \mid\right.$ tries $\mid(x, \wedge \mathfrak{H}\{\lambda y \mid$ finds $\left.\mid(x, y)\}))\right)$
(8.10) Opaque verbs: revised type assignment

Category	(Extension) Type
TV	$(\boldsymbol{s q})(\boldsymbol{e t})$

(8.11) Opaque verbs: revised meaning combination

Construction	Corresponding Polynomial (ITL)	Corresponding Polynomial (Ty2)
$F_{\text {obj }}$	$G_{o b j}(\alpha, \beta)=C_{a p p}\left(\alpha, C_{c a p}(\beta)\right)$	$G_{o b j}(\alpha, \beta)=C_{a p p}\left(\alpha, C_{a b s}(i, \beta)\right)$ $[=\alpha(\wedge \beta)]$
$=\alpha(\lambda i \beta)]$		

(8.12) Transitive verbs: revised lexical translation

Item	ITL	Ty2
seeks	$(\lambda \mathfrak{H}(\lambda x \mid$ tries $\mid(x, \wedge \mathfrak{H}\{\lambda y \mathbf{F}(x, y)\})))$ $\left(\mathbf{F} \in C o n_{e}(e t)\right)$	$\left.\left(\lambda \mathfrak{H} \lambda x \mathbf{T}_{i}\left(x, \lambda j \mathfrak{A}_{j}(\lambda y \mathbf{F}(x, y))\right)\right)\right)$
finds	$(\lambda \mathfrak{H}(\lambda x \mathfrak{H}\{\lambda y \mathbf{F}(x, y)\}))$	$\left.\left(\lambda \mathfrak{H} \lambda x \mathfrak{H}_{i}\left(\lambda y \mathbf{F}_{i}(x, y)\right)\right)\right)$
likes	$(\lambda \mathfrak{H}(\lambda x \mathfrak{H}\{\lambda y \mathbf{L}(x, y)\}))$	$\left.\left(\lambda \mathfrak{H} \lambda x \mathfrak{H}_{i}\left(\lambda y \mathbf{L}_{i}(x, y)\right)\right)\right)$
is	$(\lambda \mathfrak{H}(\lambda x \mathfrak{H}\{\lambda y(x=y)\}))$	$\left.\left(\lambda \mathfrak{H} \lambda x \mathfrak{A}_{i}(\lambda y(x=y))\right)\right)$

(8.13a) Mary is looking for a [certain] book on Clinton.
(b) $(\exists x)[\mid$ book on Clinton $|(x) \wedge| \operatorname{tries} \mid(\mathbf{m}, \wedge \mathbf{F}(\mathbf{m}, x))]$
(8.14) Scope construction

Construction	Rule(s)	Example
$\begin{aligned} & F_{\text {scope }, x}\left(\Delta, \Delta^{\prime}\right)=\Delta^{\prime}[x / \Delta] \text {, scope, } x \\ & \left(x \in \operatorname{Var}_{e}\right) \end{aligned}$	$\left(F_{\text {scope }, x}, N P, S, S\right)$	$F_{\text {scope }, \boldsymbol{x}}($ a book, Mary seeks \boldsymbol{x}) $=$ Mary seeks a book, scope, \boldsymbol{x} a book Mary seeks \boldsymbol{x} \square

(8.15) Variables in the lexicon

Irem	ITL	Ty2
\boldsymbol{x}	$(\lambda \boldsymbol{P}(\boldsymbol{P}(\boldsymbol{x}))$	$(\lambda \boldsymbol{P}(\boldsymbol{P}(\boldsymbol{x}))$

(8.16) Scope: meaning combination

Construction	Corresponding Polynomial (ITL and Ty2)
$F_{\text {scope }, \boldsymbol{x}}$	$G_{\text {scope }, \boldsymbol{x}}(\alpha, \beta)=C_{a p p}\left(\alpha, C_{a b s}(\boldsymbol{x}, \beta)\right)[=\alpha(\boldsymbol{x} \boldsymbol{\beta})]$

(8.17) $(\exists j)(\exists k)\left[j<i<k \wedge(\forall h)\left[j<h<k \rightarrow \mathfrak{A}_{j}\left(\lambda x . \mathfrak{A}_{\boldsymbol{h}}(\lambda y . x<y)\right) \wedge\right.\right.$ $\left.\mathfrak{A}_{\boldsymbol{h}}\left(\lambda \boldsymbol{x} . \mathfrak{N}_{\boldsymbol{k}}(\boldsymbol{\lambda y} . \boldsymbol{x}<\boldsymbol{y})\right)\right]$
(8.18) The temperature is ninety and it is rising.

References

[Frege1891] Frege, G. (1891). Function und Begriff. Pohle, Jena.
[Friedman and Warren1980] Friedman, J. and Warren, D. S. (1980). λ-Normal Forms in an Intensional Logic for English. Studia Logica, XXXIX(2-3):311-324.
[Gallin1975] Gallin, D. (1975). Intensional and Higher-order Modal Logic. NorthHolland Pub. Company, Amsterdam.
[Montague1970] Montague, R. (1970). Universal Grammar. Theoria, 36(3):373-398.
[Montague1973] Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English. In Hintikka, J., Moravcsik, J., and Suppes, P., editors, Approaches to Natural Language, pages 221-242. Reidel, Dordrecht.
[Zimmermann1989] Zimmermann, T. E. (1989). Intensional Logic and Two-sorted Type Theory. Journal of Symbolic Logic, 54(1):65-77.

