Comparing expressive power in two-dimensional semantics

Thomas Ede Zimmermann (Goethe University Frankfurt)
Bonn Workshop Context-Sensitivity and Logical Consequence, June 2019

0. The bigger picture

Variables explained away

(0a) \((\exists x) [P(x) \land \lnot Q(x)]\) vs. \(P \land Q \neq \emptyset\)

(b) \((\exists w) [w_0 R w \land P(w)]\) vs. \(\therefore p\)

Explaining index variables away

Köpping & Zimmermann (forthcoming)

Whether two-dimensional logic is expressively equivalent to intensional logic is open to interpretation (and ideology).

Propositionalism

Quine (1953); D. Kaplan (1975); Larson (2002)

Intensionality is (reducible to) clausal embedding.

Law of the instrument

A. Kaplan (1964: 28)

Give a small boy a hammer, and he will find that everything he encounters needs pounding.

1. Comparative Expressivity of Formal Languages

Schematic definitions

- A language \(L^*\) is at least as expressive as a language \(L\) iff for any (relevant) expressions \(\alpha^*\) in \(L^*\) there is a (relevant) expression \(\alpha\) in \(L\) such that \(\alpha^* \sim \alpha\).

where \(\sim\) denotes model-theoretic equivalence, i.e.:

\[
\alpha^* \sim \alpha \text{ iff } \left[\alpha^* \right]^\theta = \left[\alpha \right]^\theta
\]

... for all \(L\)-determinants \(\theta\) and matching \(L^*-\)determinants \(\theta^*\).

Examples

<table>
<thead>
<tr>
<th>#</th>
<th>(L)</th>
<th>(L^*)</th>
<th>relevant expressions</th>
<th>determinants reversible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st order logic</td>
<td>pred. functor logic</td>
<td>(closed) sentences</td>
<td>structures +</td>
</tr>
<tr>
<td>2</td>
<td>2nd order logic</td>
<td>PFL2</td>
<td>(closed) sentences</td>
<td>structures +</td>
</tr>
<tr>
<td>3</td>
<td>modal prop. logic</td>
<td>1st order logic</td>
<td>formulae</td>
<td>pointed structures –</td>
</tr>
<tr>
<td>4</td>
<td>modal prop. logic</td>
<td>mon. 2nd order logic</td>
<td>formulae</td>
<td>frames –</td>
</tr>
<tr>
<td>5</td>
<td>int. type logic</td>
<td>2-sorted type theory</td>
<td>typed terms</td>
<td>pointed models –</td>
</tr>
<tr>
<td>6</td>
<td>2-sorted type theory</td>
<td>int. type logic</td>
<td>(closed) sentences</td>
<td>structures + (g(i_0)) +</td>
</tr>
<tr>
<td>7</td>
<td>2-sorted type theory</td>
<td>int. type logic</td>
<td>intensional terms</td>
<td>structures + (g(i_0)) +</td>
</tr>
</tbody>
</table>

\(\alpha \in L\)

(1) \((\exists x) [P(x) \land Q(x)]\)

(2) \((\exists \emptyset) [P(x) \land \lnot P(x)]\)

(3) \(\therefore [p \land q]\)

(4) \(\therefore [p \rightarrow \therefore p]\)

(5) \(\lambda p^{*} (i) \cdot (\exists x) \cdot \left[B(x) \land P(x) \right]\)

(6) \(\lambda f^{*} (i) \cdot B(f(i)(x))\)

... where \(\Sigma\) abbreviates: \(\lambdax^{*} \cdot \therefore \left[\lambda x^{*} Q(s,t,i) \cdot [p = \left[[\lambda q. \forall q. = Q] \right]\left[\lambda q. \forall q. \right] = Q] \right]\)

... and \(\Phi\) abbreviates: \(\lambda R. (\emptyset R) \cdot \left[\Sigma (p) \land \left[p \land B(x) \right] \right]\)

(7) \(\lambda p^{*} [\lambda x^{*} \cdot (\forall j^{*} [i_0 Epi_j \rightarrow p(j)]]\)

\(\alpha^* \in L^*\)

cf.

\(\emptyset \in \emptyset\)

\(\emptyset \in \emptyset\)

Quine (1960)

D. Kaplan (1974)

Gallin (1975)

Gallin (1975)

Zimmermann (1989)
3. Two-dimensional Languages

Determinants of denotation
\[\llbracket \alpha \rrbracket^{M,c,i} \], where
- \(M \) is an interpretation (of non-logical constants)
- \(c \) is a context
- \(i \) is an index
- ‘…’ could be empty or contain more determinants (e.g. a variable assignment) and will be suppressed

Additional structural assumptions
- Diagonal:
 Each context \(c \) determines its index \(i_c \) due to parameterization:
 \(c = (c_1, \ldots, c_n, \ldots, c_k) \), and: \(i^c = (i^c_1, \ldots, i^c_n) \).
- No monsters:
 \(\alpha \) is an interpretation of \(\alpha \)
 \(\beta \) is an interpretation of \(\beta \)
 then: \(\llbracket \alpha \beta \rrbracket^{M,c,i} = \llbracket \alpha \rrbracket^{M,c,i} \llbracket \beta \rrbracket^{M,c,i} \),
 where \(\llbracket \gamma \rrbracket^{M,c} \) is the intension of \(\gamma \):
\[\llbracket \gamma \rrbracket^{M,c}(i) = \llbracket \gamma \rrbracket^{M,c'} \], for any index \(i \).
- … or, equivalently:
 All syntactic constructions are (at most) intensional, i.e.: for every context \(c \in C \), there is a corresponding operation \(\Gamma_c \) on (possible) intensions such that for any expression \(\alpha \) built up by \(\Sigma \) from expressions \(\beta \) and \(\gamma \), the following equation holds:
\[\llbracket \alpha \rrbracket^{M,c} = \Gamma_c(\llbracket \beta \rrbracket^{M,c}, \llbracket \gamma \rrbracket^{M,c}) \).

Relevant determinants
- **characters** assigning denotations \(\llbracket \alpha \rrbracket^{M,c,i} \) relative to models \(M \) and (arbitrary) points of reference \((c,i)\).
 Motivation: linguistic meaning, cognitive significance \(\text{Montague (1970), Kaplan (1989)} \)

- **epistemic contents** assigning denotations \(\llbracket \alpha \rrbracket^{M,c,i} = \llbracket \alpha \rrbracket^{M,c,i} \) relative to models \(M \) and contexts \(c \).
 Motivation: logical validity; cognitive significance \(\text{Montague (1970); Lewis (1979)} \)

- **intensions** assigning denotations \(\llbracket \alpha \rrbracket^{M,c} \) relative to models \(M \) and contexts \(c \).
 Motivation: indirect denotation, expressed content \(\text{Montague (1970); Kaplan (1989)} \)

Notions of Truth
\[\varphi \text{ is true at (or in) a context } c \text{ [relative to a model } M \text{] iff } \llbracket \varphi \rrbracket^{M,c} = 1. \]
\[\varphi \text{ is true of an index } i \text{ [relative to a context } c \text{ in a model } M \text{] iff } \llbracket \varphi \rrbracket^{M,c}(i) = 1. \]
[Hence being true in a context is being true of its index]
\[\varphi \text{ is true of an index-component } i_m \text{ as the } m \text{-component [relative to …] iff } \llbracket \varphi \rrbracket^{M,c}(i_1, \ldots, i_m, \ldots, c_n) = 1. \]

4. Properties as Objects of Intentional Attitudes

Propositionalism

Propositionalism

Any intentional attitude is [definable in terms of] a propositional attitude.

Examples
- To seek a unicorn is to try for it to be the case that one finds a unicorn. \(\text{Quine (1953)} \)
- To want chocolate is to desire for it to be the case that one has chocolate. \(\text{Larson (2002)} \)
Counterexamples
To think of a unicorn is not to think that there is a unicorn.
To like chocolate is not to like for oneself to have chocolate.

Anti-propositionalism
Some intentional attitudes are irreducibly attitudes towards properties. cf. Grzankowski (2013)

Perspectivism
Some intentional attitudes are irreducibly attitudes towards properties.

Question
What distinguishes anti-propositionalism and perspectivism?

Some tentative answers:
The difference between …
… having a property and being exposed to a property
… properties as attributes vs. properties as objects
… truth at a location and truth of an object

References
van Benthem, Johan: ‘Correspondence Theory’. In: D. M. Gabbay & F. Guenthner (eds.), Handbook of
Dosen, Kosta: ‘Second-order logic without variables’. In: W. Buszkowski et al. (eds.), Categorial
Köpping, Jan; Zimmermann, Thomas Ede: ‘Looking Backwards in Type Logic’. Inquiry. Forthcoming. [Early
access version available online]
Larson, Richard: ‘The Grammar of Intensionality’. In: G. Preyer & G. Peter (eds.), Logical Form and
New York 1953: 139-159.
104 (1960), 343–347.
Zimmermann, Thomas Ede: ‘On the Proper Treatment of Opacity in Certain Verbs’. Natural Language
Semantics 1 (1993), 149-179.