Comparing expressive power in two-dimensional semantics

Thomas Ede Zimmermann (Goethe University Frankfurt) Bonn Workshop Context-Sensitivity and Logical Consequence, June 2019

0. The bigger picture

Variables explained away (0a) $(\exists x) [P(x) \land Q(x)]$ vs. $P \cap Q \neq \emptyset$ $(\exists w) [w_0 R w \land p(w)]$ vs. $\diamond p$ (b)

Explaining index variables away Köpping & Zimmermann (forthcoming) Whether two-dimensional logic is expressively equivalent to intensional logic is open to interpretation (and ideology).

Propositionalism Intensionality is (reducible to) clausal embedding.

Law of the instrument

A. Kaplan (1964: 28)

Quine (1953); D. Kaplan (1975); Larson (2002)

Give a small boy a hammer, and he will find that everything he encounters needs pounding.

1. Comparative Expressivity of Formal Languages

Schematic definitions

A language L^* is at least as expressive as a language L iff for any (relevant) expressions α in L there is a (relevant) expression α^* in L^* such that $\alpha^* \sim \alpha$.

where '~' denotes model-theoretic equivalence, i.e.:

•
$$\alpha^* \sim \alpha \text{ iff } \left[\!\left[\alpha^*\right]\!\right]^{d^*} = \left[\!\left[\alpha\right]\!\right]^{d^*}$$

... for all *L*-determinants \vec{d} and matching L^* -determinants \vec{d}^* .

Examples

#	L	<u>L</u> *	relevant expressions	determinants	reversible?	
1	1 st order logic	pred. functor logic	(closed) sentences	structures	+	
2	2 nd order logic	PFL2	(closed) sentences	structures	+	
3	modal prop. logic	1 st order logic	formulae	pointed strue	ctures –	
4	modal prop. logic	mon. 2 nd order logic	formulae	frames	—	
5	int. type logic	2-sorted type theory	typed terms	pointed mod	els –	
6	2-sorted type theory	int. type logic	(closed) sentences	structures +	$g(i_0) +$	
7	2-sorted type theory	int. type logic	intensional terms	structures +	$g(i_0)$ +	
	$\alpha \in L$		$\alpha^* \in L^*$		cf.	
(1)	$(\exists x) [P(x) \land Q(x)]$		ERKPQ		Quine (1960)	
(2)	$(\exists P) (\forall x) [P(x) \land \neg P(x)] $	P(x)]	$\mathbf{E}_1 \mathbf{N} \mathbf{E}_0 \mathbf{N} \mathbf{R}_0 \mathbf{R}_1 \mathbf{K} P R E$	DNPRED	Dosen (1988)	
(3)	$\diamond \left[p \land q \right]$		$(\exists w) [w_0 R w \land [p(w)])$	$\land q(w)]]$	Fine (1975)	
(4)	$[p \rightarrow \Diamond p]$		$(\forall w) wRw$	van B	enthem (1984)	
(5)	$[\lambda P^{s(et)}, (\exists x^e) [\mathbf{B}(x)]]$	$\land P\{x\}]]$	$[\lambda P. (\exists x) [\mathbf{B}(i_0)(x) \land A]$	$P(i_0)(x)]]$	Gallin (1975)	
(6)	$(\forall f^{s,s}) (\exists j^s) \mathbf{B}(f(j)(x))$))	$(\forall R) \ [\Phi(R) \rightarrow (\exists p^{s,t})$	$\Sigma(p) \land \Diamond[p]$	$(\mathbf{B}(x)]]$	
where Σ abbreviates: $[\lambda p^{s,t}] \diamond [\lambda Q^{(s,t),t}] [p = \wedge [[\lambda q, \forall q] = Q]]](\lambda q, \forall q)]$ Gallin (1975) and Φ abbreviates: $[\lambda R. (\forall p) [\Sigma(p) \rightarrow \Sigma(R(p))]]$						
(7)	<i>!</i>) $[\lambda p^{et} [\lambda x^e] [\lambda p^{st} [\lambda x^e] [\lambda q^{st}] \square [\nabla q \rightarrow \nabla p]] (\mathbf{Epi}(x))]]$					
	Zimmermann (198					

Quine (1960)

3. Two-dimensional Languages

Determinants of denotation

- $\llbracket \alpha \rrbracket^{M, c, i,...}, where M is an interpretation (of non-logical constants)$
- c is a context
- *i* is an index
- ...' could be empty or contain more determinants (e.g. a variable assignment) and will be suppressed

Additional structural assumptions

Diagonal:

Each context c determines its index i_c due to parameterization:

$$c = (c_1, \dots, c_n, \dots, c_k)$$
, and: $i^c = (i_1^c, \dots, i_n^c)$

No monsters: •

Kaplan (1989)

if
$$\wedge \llbracket \alpha \rrbracket^{M,c} = \wedge \llbracket \alpha' \rrbracket^{M,c}$$
 and $\wedge \llbracket \beta \rrbracket^{M,c,i} = \wedge \llbracket \beta' \rrbracket^{M,c,i}$, then: $\llbracket \alpha \beta \rrbracket^{M,c,i} = \llbracket \alpha' \beta' \rrbracket^{M,c,i}$,

where $\left\|\gamma\right\|^{M,c}$ is the *intension* of γ : $\left\|\gamma\right\|^{M,c}$ $(i) = \left\|\gamma\right\|^{M,c,i}$, for any index *i*. ... or. equivalently:

All syntactic constructions are (at most) intensional, i.e.: for every context $c \in C$, there is a corresponding operation Γ_c on (possible) intensions such that for any expression α built up by

Σ from expressions β and γ, the following equation holds: $^{[[α]]}M_c = \Gamma_c(^{[[β]]}M_c, ^{[[γ]]}M_c)$.

Relevant determinants

characters assigning denotations $\left[\!\left[\alpha\right]\!\right]^{M,c,i}$ relative to models *M* and (arbitrary) points of reference (c.i). Montague (1970), Kaplan (1989)

Motivation: linguistic meaning, cognitive significance

• *epistemic contents* assigning denotations $\left[\left[\alpha\right]\right]^{M,c} = \left[\left[\alpha\right]\right]^{M,c,i^{c}}$ relative to models M and contexts c. Montague (1970); Lewis (1979)

Motivation: logical validity; cognitive significance

• *intensions* assigning denotations $\wedge [\alpha]^{M,c}$ relative to models M and contexts c.

Motivation: indirect denotation, expressed content Montague (1970); Kaplan (1989)

Notions of Truth

 φ is *true at* (or *in*) a context *c* [relative to a model *M*] iff $[\![\varphi]\!]^{M,c} = 1$.

 φ is *true of* an index *i* [relative to a context *c* in a model *M*] iff $\left[\varphi \right]^{M,c}(i) = 1$.

[Hence being true in a context is being true of its index]

 φ is *true of* an index-component i_m as the *m*-component [relative to ...] iff

$$\left[\left[\varphi\right]\right]^{M,c}(c_1,\ldots,i_m,\ldots,c_n)=1.$$

4. Properties as Objects of Intentional Attitudes

Propositionalism

cf. Forbes (2001), Montague (2007) Any intentional attitude is [definable in terms of] a propositional attitude.

Examples

To seek a unicorn is to try for it to be the case that one finds a unicorn. Quine (1953) To want chocolate is to desire for it to be the case that one has chocolate. Larson (2002)

<u>Counterexamples</u> To think of a unicorn is not to think that there is a unicorn. To like chocolate is not to like for oneself to have choocolate.	Montague (1969) Montague (2007)			
Anti-propositionalism Some intentional attitudes are irreducibly attitudes towards properties.	cf. Grzankowski (2013)			
<i>Perspectivism</i> Some intentional attitudes are irreducibly attitudes towards properties.	Lewis (1979)			
<i>Question</i> What distinguishes anti-propositionalism and perspecitivism?				
Some tentative answers: The difference between having a property and being exposed to a property properties as attributes vs. properties as objects truth <i>at</i> a location and truth <i>of</i> an object				
References van Benthem, Johan: 'Correspondence Theory'. In: D. M. Gabbay & F. Guenthner <i>Philosophical Logic, Vol. II.</i> Dordrecht 1984: 167–248.	(eds.), Handbook of			
Fine, Kit: 'Some Connections Between Elementary and Modal Logic'. <i>Studies in Lo Mathematics</i> 82 (1975),15–31.	ogic and the Foundations of			
Dosen, Kosta: 'Second-order logic without variables'. In: W. Buszkowski et al. (eds Grammar. Amsterdam & Philadelphia 1988: 245–264.	s.), Categorial			
Gallin, Daniel: Intensional and Higher-order Modal Logic. Amsterdam 1975.				
Grzankowski, Alex: 'Non-Propositional Attitudes'. Philosophy Compass 8 (2013), 1	123–1137.			
Kamp, Hans: 'Formal Properties of "Now"'. Theoria 37 (1971), 227-273.				
Kaplan, Abraham: The Conduct of Inquiry: Methodology of Behavioral Science. Sa	n Francisco 1964.			
Kaplan, David: 'How to Russell a Frege-Church'. Journal of Philosophy 72 (1975), 716-729.				
Kaplan, David: 'On the Logic of Demonstratives'. <i>Journal of Philosophical</i> Logic 8 (1979), 81–98.				
Kaplan, David: 'Demonstratives'. In: J. Almog et al. (eds.), Themes from Kaplan. Oxford 1989: 481-563.				
Köpping, Jan; Zimmermann, Thomas Ede: 'Looking Backwards in Type Logic'. Inquaccess version available online]	uiry. Forthcoming. [Early			
Larson, Richard: 'The Grammar of Intensionality'. In: G. Preyer & G. Peter (eds.), I Language Oxford 2002. 228-262.	_ogical Form and			
Lewis, David K.: 'Attitudes de dicto and de se'. Philosophical Review 88 (1979), 51	3–543.			
Lewis, David K.: 'Index, Context, and Content'. In: S. Kanger & S. Öhman (eds.), F. Dordrecht 1980: 79–100.	Philosophy and Grammar.			
Montague, Michelle: 'Against Propositionalism'. Noûs 41 (2007), 503-518.				
Montague, Richard: 'On the Nature of Certain Philosophical Entities'. Monist 53 (19	969), 159-195.			
Montague, Richard: 'Universal Grammar'. Theoria 36 (1970), 373-398.				
Quine, Willard Van Orman: 'Reference and Modality'. In: W. V. O. Quine (ed.), <i>Fron</i> New York 1953: 139-159.	m a Logical Point of View.			
Quine, Willard Van Orman: 'Variables explained away'. <i>Proceedings of the America</i> 104 (1960), 343–347.	an Philosophical Society			
Zimmermann, Thomas Ede: 'On the Proper Treatment of Opacity in Certain Verbs'. <i>Semantics</i> 1 (1993), 149-179.	Natural Language			