Strong NPIs are NPIs that are only fine in anti-additive contexts, whereas weak NPIs are fine in a whole range of other licensing contexts, often taken to be downward-entailing contexts. Similarly, strong PPIs are anti-licensed in all downward-entailing contexts; weak PPIs are only bad in anti-additive contexts.

Following Chierchia (2006, 2013) NPIs are taken to be elements that introduce (sub)-domain alternatives that must be obligatorily exhaustified by a covertly present exhaustifier (EXH) that the NPI agrees with: the NPI carries an uninterpretable feature [us] that agrees with [s] present on EXH. Unless the NPI is shielded by a downward-entailing operator, exhaustification gives rise to an inherent contradiction, resulting in an ungrammaticality judgment. Following Gajewski (2011), this approach takes the weak-strong NPI distinction to lie in the distinction as to whether the exhaustifier only looks at the semantics of the NPI licenser, or also at its pragmatics (both the presupposition and the implicatures). Weak NPIs trigger the covertly present exhaustifier (EXH) to look at the semantic contribution of the licenser only; strong NPIs also trigger EXH to look at the licenser’s pragmatic contribution. Since the joint semantic-pragmatic contribution of all non-anti-additive licensers is no longer downward entailing (e.g., enriched ‘few N’ means ‘few but at least one N’), only anti-additive licensers can license strong NPIs.

This analysis ignores a recent observation made by Collins & Postal (2014), who observe that in English (but, as I will show, the observation extends to other languages) all strong NPIs are strict NPIs (i.e. NPIs that must be licensed within a local syntactic domain, such as a finite clause or a syntactic island) and vice versa. Licensing such strong/strict NPIs across such locality boundaries, like adjunct islands, is not possible. Weak NPI licensing, by contrast, is not subject to such syntactic locality constraints and may apply across locality boundaries. This is a problem for the Chierchia-Gajewski analysis, which presupposes feature checking to underlie both strong and weak NPI licensing.

I show in this talk that the distinction between strong/strict NPIs and weak/non-strict is best captured by modifying Chierchia’s (2013) approach to NPI-thood (who explains NPI-thood in terms of obligatory strengthening by exhaustification). I argue that there are two ways for establishing a relation between an NPI and a (covert) exhaustifier: one established in the syntax and one where NPIs are exhaustified in purely pragmatic way: if an element introduces sub-domain alternatives, at some pragmatic level, these domain alternatives must be exhaustified. This means that there are two different types of exhaustifiers, a syntactic and a pragmatic type. The next step is to assign these two types of exhaustifiers different semantic/pragmatic properties. The syntactic exhaustifier takes the enriched meaning contribution of an NPI licenser into consideration; the pragmatic exhaustifier only applies to the assertion. Then, NPIs exhaustified by the latter type are weak NPIs, the ones exhaustified by the former type are strong NPIs.

In the final part of the talk, I apply this analysis to PPI-thood and I show that a number of previously ununderstood properties of PPI-anti-licensing follow naturally under this approach.