Documentation for ModVisc 0.01
by
Prof. Dr. Harro Schmeling
and Jan Philipp Kruse

Universitiy of Frankfurt

Geodynamics

2012

## Content:

1. General information
2. Parameter description
2.1 modulus
$2.2 \quad$ viscosities
3. Plotting
3.1 modulus
3.2 viscosities
4. Saving
4.1 matlab data files
$4.2 \quad$ txt files

## 1. General information



Figure 1: example for calculating and plotting elastic moduli or seismic velocities

In Fig. 1 you can see how to use ModVisc 0.01. It is possible to switch between the calculation of elastic moduli or effective viscosities. The handling is for both tabs the same.

## 2. Parameter description

### 2.1 Modulus

| parameter name | description | default value |
| :---: | :---: | :---: |
| $\mathrm{K}_{0}$ | Intrinsic bulk-modulus of the matrix | 0,66 |
| $\mathrm{K}_{\mathrm{f}}$ | Intrinsic bulk-modulus of the fluid | 0,2 |
| $\mu_{0}$ | Intrinsic shear-modulus of the matrix | 0,4 |
| $\varphi_{\text {min }}$ | Minimum value for melt fraction (zero is not allowed) | $10^{-6}$ |
| $\varphi_{\text {max }}$ | Maximum value for melt fraction (has to be smaller or equal to one; one means $100 \%$ melt fraction) | 0,2 (20\%) |
| $\varphi_{\text {num }}$ | Number of fraction values between $\varphi_{\min }$ and $\varphi_{\max }$; realized with $\varphi=\operatorname{logspace}\left(\log 10\left(\varphi_{\min }\right), \log 10\left(\varphi_{\max }\right), \varphi_{\text {num }}\right)$; for detailed information please read matlab documentation about logspace | 1000 |
| $\mathrm{n}_{\text {max }}$ | Tells maximum number of iterations which are allowed for each fraction value $\varphi$ | 1000 |
| unit | Unit for the moduli; free choose is not allowed because seismic velocities are also calculated | MPa |
| $\rho_{0}$ | Intrinsic density of the matrix | $3300\left[\mathrm{~kg} \mathrm{~m}^{-3}\right]$ |
| $\Delta \rho$ | Density difference between matrix and fluid; density for calculating the seismic velocities is given by $\rho=\rho 0-\Delta \rho \varphi$ | $300\left[\mathrm{~kg} \mathrm{~m}^{-3}\right]$ |
| films | Check if you want to include film geometry | unchecked |
| tubes | Check if you want to include tube geometry | unchecked |
| spheroids | Check if you want to include spheroid geometry | checked |
| model name | This name appears in the model table and in the legend for the case of plotting | model 1 |
| $\alpha_{1}$ | Aspect ratio of the oblate ellipsoidal films; should be $\ll 1$ otherwise there will occur relative errors for K and $\mu$ which increase linear with melt fraction; detailed information are given in 1) | 0,01 |


| $\mathrm{c}_{1 \mathrm{i}}$ | Relative fraction for isolated oblate ellipsoidal films; has to <br> be a value between zero and one (zero means 0\%, one <br> means 100\%); see * | 0 |
| :--- | :--- | :--- |
| $\mathrm{c}_{1 \mathrm{c}}$ | Relative fraction for connected oblate ellipsoidal films; has <br> to be a value between zero and one (zero means 0\%, one <br> means 100\%); see * | 0 |
| $\kappa$ | Shape parameter for the cross section of the tubes; value <br> interval reachs from zero to infinity (choose a really large <br> value); for detailed information see 1) resp. 2) | 0 |
| $\mathrm{c}_{2 \mathrm{i}}$ | Relative fraction for isolated tubes; has to be a value <br> between zero and one (zero means 0\%, one means $100 \%$ ); <br> see * | 0 |
| $\mathrm{c}_{2 \mathrm{c}}$ | Relative fraction for connected tubes; has to be a value <br> between zero and one (zero means 0\%, one means 100\%); <br> see * | 0 |
| $\alpha_{3}$ | Aspect ratio of the oblate ellipsoidal spheroids; value has to <br> be larger than zero and equal or smaller than 1 ( <br> $0<\alpha_{3} \leqslant 1 \quad$ ) | 0,1 |
| $\mathrm{c}_{3 \mathrm{i}}$ | Relative fraction for isolated oblate ellipsoidal spheroids; <br> has to be a value between zero and one (zero means $0 \%$, <br> one means 100\%); see * | 0 |
| $\mathrm{c}_{3 \mathrm{c}}$ | Relative fraction for connected oblate ellipsoidal <br> spheroids; has to be a value between zero and one (zero <br> means 0\%, one means 100\%); see * | 1 |

[^0]
### 2.2 Viscosities

| parameter name | description | default value |
| :---: | :---: | :---: |
| $\eta_{\mathrm{b} 0}$ | Effective bulk-viscosity of the matrix is set to infinity, because matrix is incompressible; for detailed information see [1] | $\infty$ |
| $\eta_{\text {bf }}$ | Effective bulk-viscosity of the fluid is set to zero, because effective bulk viscosity relates the dilatational strain rate to the isotropic part of the viscous stress tensor and not to the pore fluid pressure; for detailed information see [1] | 0 |
| $\eta_{\text {s } 0}$ | Intrinsic dynamic shear-viscosity of the matrix | $10^{18}$ |
| $\varphi_{\text {min }}$ | Minimum value for melt fraction (zero is not allowed) | $10^{-6}$ |
| $\varphi_{\text {max }}$ | Maximum value for melt fraction (has to be smaller or equal to one; one means $100 \%$ melt fraction) | 0,2 (20\%) |
| $\varphi_{\text {num }}$ | Number of fraction values between $\varphi_{\text {min }}$ and $\varphi_{\text {max }}$; realized with $\varphi=\operatorname{logspace}\left(\log 10\left(\varphi_{\min }\right), \log 10\left(\varphi_{\max }\right), \varphi_{\text {num }}\right)$; for detailed information please read matlab documentation about logspace | 1000 |
| $\mathrm{n}_{\text {max }}$ | Tells maximum number of iterations which are allowed for each fraction value $\varphi$ | 1000 |
| unit | Unit for the viscosities; is set to SI-unit and not changeable | Pa s |
| films | Check if you want to include film geometry | unchecked |
| tubes | Check if you want to include tube geometry | unchecked |
| spheroids | Check if you want to include spheroid geometry | checked |
| model name | This name appears in the model table and in the legend for the case of plotting | model 1 |
| $\alpha_{1}$ | Aspect ratio of the oblate ellipsoidal films; should be $\ll 1$ otherwise there will occur relative errors for $\eta_{\mathrm{b}}$ and $\eta_{\mathrm{s}}$ which increase linear with melt fraction; detailed information are given in 1) | 0,01 |
| $\mathrm{c}_{1}$ | Relative fraction for oblate ellipsoidal films; has to be a value between zero and one (zero means $0 \%$, one means $100 \%$ ); see ** | 0 |


| $\kappa$ | Shape parameter for the cross section of the tubes; value <br> interval reachs from zero to infinity (choose a really large <br> value); for detailed information see 1) resp. 2) | 0 |
| :--- | :--- | :--- |
| $c_{2}$ | Relative fraction for tubes; has to be a value between zero <br> and one (zero means 0\%, one means $100 \%) ;$ see ** | 0 |
| $\alpha_{3}$ | $\left.\begin{array}{l}\text { Aspect ratio of the oblate ellipsoidal spheroids; value has to } \\ \text { be larger than zero and equal or smaller than } 1\left(0<\alpha_{3} \leqslant 1\right.\end{array}\right)$ | 0,1 |
| $c_{3}$ | Relative fraction for oblate ellipsoidal spheroids; has to be a <br> value between zero and one (zero means $0 \%$, one means <br> $100 \%) ;$ see ** | 1 |

** $\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}=1$ has to be fulfilled

## 3. Plotting

You are able to plot the results of one or many models in one plotting window. Depending on whether you want to plot modulus or viscositiy models you can choose between different values to plot. All values are plotted against the total melt fraction $\varphi$.

### 3.1 Modulus

| value | description |
| :--- | :--- |
| $\mathrm{K}_{\mathrm{u}}$ | Unrelaxed bulk-modulus |
| $\mathrm{K}_{\mathrm{r}}$ | Relaxed bulk-modulus |
| $\mu_{\mathrm{u}}$ | Unrelaxed shear-modulus |
| $\mu_{\mathrm{r}}$ | Relaxed shear-modulus |
| $\mathrm{v}_{\mathrm{u}}$ | Unrelaxed poisson-ratio |
| $\mathrm{v}_{\mathrm{r}}$ | Relaxed poisson-ratio |
| $\mathrm{v}_{\mathrm{pu}}$ | Velocity of p-waves calculated with unrealxed <br> moduli |
| $\mathrm{v}_{\mathrm{pr}}$ | Velocity of p-waves calculated with realxed <br> moduli |
| $\mathrm{v}_{\mathrm{su}}$ | Velocity of s-waves calculated with unrealxed <br> moduli |
| $\mathrm{v}_{\mathrm{sr}}$ | Velocity of s-waves calculated with realxed <br> moduli |


| $\mathrm{v}_{\mathrm{pu}} / \mathrm{v}_{\mathrm{su}}$ | Ratio of the velocities calculated with unrelaxed <br> moduli |
| :--- | :--- |
| $\mathrm{v}_{\mathrm{pr}} / \mathrm{s}_{\mathrm{sr}}$ | Ratio of the velocities calculated with relaxed <br> moduli |

If you want to have for example $\mathrm{K}_{\mathrm{u}}$ and $\mathrm{K}_{\mathrm{r}}$ from one or from different models in one plot window you have to check these checkboxes and choose one model or by holding CTRL many models inside the model table. After that you have to press the plot button in the toolbar at the top of the program (see Fig. 1)

### 3.2 Viscosities

| value | description |
| :--- | :--- |
| $\eta_{\mathrm{b}}$ | bulk-viscosity |
| $\eta_{\mathrm{s}}$ | shear-viscosity |
| $v$ | poisson-ratio |

For the viscosities it is possible to plot bulk- and shear-viscosity in one plot window. There is even an option to plot only the important parts, because in some configurations the bulk- resp. shearviscosity will rapidly decrease until the error boundary is reached. These values are not biased and maybe you don't want to plot them.

## 4. Saving

It is possible to save the calculated models as a text file (*.txt) or as a Matlab file (*.mat).

## 4.1 matlab data files

ModVisc saves the calculated models internally as a structure (struct). So even when you choose more than one model for saving there will be only one mat file. This mat file contains all models in the form of a struct (see "help struct" in matlab). To import your saved data in Matlab two alternatives. On the one hand you can do it interactive with File > Import Data and on the other hand you can do it in the command line with the command:
>>load 'path/filename'

When the saved data contains moduli models the variable name is "mod_models", when the saved data contains viscosity models the variable name is "visc_models". The following table should give you an overview which


[^0]:    * the sum of all c's has to be 1

