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With the aim of a simultaneous interpretation of elastic, anelastic and electric in situ data from the asthenosphere a
comprehensive set of numerical models is developed for partial melt in different geometrical configurations. For the
elastic and anelastic modulus use is made throughout of the melt squirt mechanism. Frequency dependence is not
treated in detail but estimated from the limiting cases of the relaxed and unrelaxed modulus. This has the advantage
that quantitative values of viscocity and flow path dimensions are not required. In the models melt can be assumed to
occur in the form of tubes, films, and triaxial ellipsoidal inclusions of arbitrary aspect ratio. The conditions in which the
solutions for triaxial ellipsoidal inclusions can be approximated by simpler ones for spheroidal inclusions are discussed.
It is then shown up to which aspect ratio a published model on melt films is applicable. The problem of interconnection
of inclusions is treated with a statistical numerical approach. It is found that a reduced degree of interconnection may
have a significant influence on anelastic relaxation at melt fractions corresponding to a moderate modulus decrease. A
useful representation of the anelastic melt models is introduced by plotting the relaxation strength against the effective
modulus, both of which depend on the state of melting. Such diagrams allow a clear distinction between the different
melt geometries and may be used for the interpretation of observed data. Finally, different melt geometries are
superimposed and it is found that under certain conditions bulk dissipation may reach the order of that for shear.

1. Introduction

Seismological and magnetotelluric investiga-
tions have shown that mantle regions of low seismic
velocities can generally be correlated with those of
high seismic absorption and high electrical con-
ductivity. In such zones the geotherm may ap-
proach or exceed the solidus temperature. The
melt fraction, geometry, and degree of intercon-
nection strongly influences the seismic velocities,
the seismic absorption, and the electrical conduc-
tivity, but in different manners.
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A number of theoretical investigations focus on
the relationship between the seismic properties
and partial melt, assuming different idealized melt
geometries (Walsh, 1969; O’Connell and Budian-
sky, 1977; Mavko, 1980). Other workers have dis-
cussed the dependence of the electrical conductiv-
ity on the amount of partial melt (Waff, 1974,
Shankland and Waff, 1974; Haak, 1980). In part I
and 11 of the present paper a numerical set of melt
models is developed in which the idealized melt
geometries, the degree of interconnection, and the
melt fraction are varied systematically. The effect
of partially molten material on both seismic and
electric properties is studied. These seismic and
electric models are combined in a model set, which
is applicable to in situ data. In additional papers



(Schmeling, 1984, 1985, and in prep.(a)) the melt
models are applied to data of the oceanic astheno-
sphere and the anomalous mantle below Iceland.
For more details on the methods used reference is
made to Schmeling (1983).

2. The occurrence of partial melt

It is widely accepted that the undepleted upper
mantle has a pyrolitic composition (Ringwood,
1962a,b, 1975). Besides that of possible variations
in composition the water content strongly in-
fluences the solidus temperature. In upper mantle
conditions small amounts of water ( < 0.4%) may
reduce the solidus temperature by several hundred
degrees (Green and Lieberman, 1976). A compila-
tion of several melting curves of pyrolite at differ-
ent pressures and water contents is shown in Fig.
1.

The geometrical distribution and the connecti-
veness of the melt in a partially molten polycrys-
talline rock is determined by three factors: (1) the
melt fraction; (2) the location of melt; and (3) the
minimum total free energy of the solid—solid and
the solid-liquid interfaces. The latter condition
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Fig. 1. Melting curves of pyrolite and spinel lherzolite at
different pressures and water concentrations (values in %, dr.:
dry). W: Wyllie (1971); R: Ringwood (1975); GL: Green and
Liebermann (1976); MKF: Murase et al. (1977), S: Scarfe et al.
(1972).
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determines the dihedral angle, ¢ (which is defined
according to Fig. 2a)-and, furthermore, it implies
that the curvature of the solid-liquid interface
should have a constant minimum value. Possible
melt distributions for different dihedral angles are
shown in Fig. 2 (after Stocker and Gordon, 1975
and Kingery et al., 1976). If ¢ =0° the melt wets
all grain faces, if 0° < ¢ < 60° the melt situated at
grain edges or corners will form an interconnected
system of tubes, and if ¢ > 60° the melt will be
concentrated in pockets at grain corners. Bulau et
al. (1979) argued that even when ¢ = 0° the melt
should occur only within tubes along grain edges
similar to Fig. 2¢ but with more pronounced cusps.
However, this would imply that a considerable
amount of the dry grain boundaries would have a
higher level of surface energy as compared to the
case of complete wetting. If melt occurs within
grains, it is expected to have a spherical geometry
as a consequence of minimum surface energy. In-
clusions occurring at grain faces but not reaching
the grain edges will have a disc or spherical shape
(see block digrams in Fig. 2).

When ¢ > 60° it is obvious that the possibility
of interconnection of the melt inclusions is depen-
dent on the grain geometry and the amount of
melt. Bulau et al. (1979) determined the critical
melt fraction leading to an interconnected system
of melt pockets as a function of the dihedral angle.
They found a steady increase from 0 to 30%
critical melt fraction for angles increasing from 60
to 180°.

Most melting experiments find that the melt
occurs in films wetting the grain faces (Arzi, 1972.
1978a.b; Mehnert et al., 1973; Buesch et al., 1974;
Arndt, 1977; Van der Molen and Paterson, 1979)
although compact melt pockets have also been
observed in dunite (Berckhemer et al., 1982a,b).
Waff and Bulau (1979) carried out melting experi-
ments with mechanical mixtures of dunite and
basalt powders and approached the textural equi-
librium. They found the melt occurring within
intergranular tubes with a mean dihedral angle of
47°, the grain faces appeared to be dry (Cooper
and Kohlstedt, 1982). A completely connected melt
system was found for a melt fraction of 1-2% in
tubes (Waff and Bulau, 1979), but 5-10% were
needed in the case of films (Mehnert et al., 1973;
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Fig. 2. (a) Illustration of the definition of the dihedral ange ¢. (b—e) Possible geometries of the melt phase in a partially molten rock:
films (b), tubes (c), and melt pockets (d and e). The hatched areas in the block diagrams (lower part of each Figure) also show possible
melt geometries depending on the location of the melt within grains, at grain faces, or at grain edges.

Arndt, 1977). Arzi (1974, 1978a) and Van der
Molen and Paterson (1979) observed an increase
of dry grain faces if the melt fraction decreases.
The specimens of peridotite and dunite used in the
experiments by Berckhemer et al. (1979, 1982a)
also showed melt films at some, but not all grain
faces (B. Aitken, personal communication, 1981).
Padovani (1977) observed evidence for both con-
nected and unconnected melt in xenoliths at
Kilbourne Hole, New Mexico, which originated

from the lower crust and partially melted during
ascent.

Assessing all the arguments and observations
mentioned above it appears reasonable to consider
the whole variety of possible melt geometries and
a variable degree of interconnection when for-
mulating melt models describing the elasticity,
anelasticity, and electrical conductivity of partially
molten rocks.
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Fig. 3. Standard linear solid. (a). Symbolic representation. (b).
Corresponding elastic modulus and internal friction (arbitrary
units) as a function of normalized frequency.

3. Basic relations

In a linear viscoelastic, body stress and strain
can be related by the complex elastic modulus M

M=M,+iM,=|M|exp(iy) (1)

M may be any one of the elastic moduli or a linear
combination of these. In general M is frequency
dependent. The unrelaxed and relaxed moduli M,
and M, can be defined by the following limits
which are real numbers
M, = lim M(w)
W — 0
M, = lim M(w) (2)
w—0
The absorption factor Q7! can be defined by the
complex modulus

Q‘1=M2/M1=tan¢ (3)

A basic viscoelastic body is the standard linear
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solid introduced by Zener (1948). It consists of
two springs and one damping element (Fig. 3a).
The elastic modulus and the corresponding Debye
peak of absorption of such a standard linear solid
are shown in Fig. 3b as functions of the frequency.
A single Debye peak is characterized by a relaxa-
tion time 7 and the relaxation strength A
M -M
4= ()

The amplitude of a Debye peak is given by
M —-M
max = A'/2 = e 5
2/M, - M, ©)
This modified relaxation strength A’ will be used
throughout this paper as an estimate for anelastic-
ity. For small A_one can write

max = 48/2 (6)
A real viscoelastic material can be approxi-
mated by superimposing different relaxation times.
If their normalized distribution is given by V(7)dr,

the real and imaginary parts of the modulus can
be written (Nowick and Berry, 1972)

. wir?
M =M +(M,— M, V———+Hn—d 7
(@) =M+ (M, = M) [ V——smdr (1)
o wT
M ={(M,— M V——-=s=sd 8
(@)= (M, = M) [ V———dr (8)

From (8) one can estimate the upper bound for
Q! of an arbitrary distribution V' given between
7, and 7, by applying the mean value theorem for
integrals

wT ™
M. =(M,-M)——— | Vir
dw)= (M=M= |

wT
=(M,-M)———==<(M,—M,)/2
(M, = M) —T < (M, = M,)/

where (7, < 7(w) < ,)Thus

07 '<4A2 9)
for all possible distributions of relaxation
processes.

Another useful relation results from the
Kramers—Krénig-relation which combines real and
imaginary parts of the modulus. After Nowick and
Berry (1972, p. 37) the Kramers—Kronig-relation
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for M, can be written

2 oo M, (& da
My(w) = M, + 22 [ 2l8) _do

7 Jg T =2

(10)
From this one obtains

2 o)
M, = Mr+;f0 My(w)dIn o

For small A it follows
1 © —1f ~ -
A2 = Wfo 0 Y&)dIna (11)

Thus the half relaxation strength can be approxi-
mated by the area of the Q™ '-spectrum plotted
versus In w and divided by #. (11) can be used to
estimate Q™! for given relaxation strengths and
certain relaxation spectra. For instance, assuming
a constant Q band model over the range 1/7, < w
< 1/7, Q is related to A (cf. Mavko, 1980) by

0= 1.36

= —_ 12
/ log,om =087 (12)

which varies only weakly with the width of the
band.

In the model set presented below the relaxed
and unrelaxed moduli and the relaxation strength
are considered for a partially molten material. The
explicit frequency dependence of the moduli and
Q was not treated in detail. Equations 7-12, to-
gether with assumptions about relaxation spectra,
can be used to estimate the behaviour of Q with
frequency. As an advantage of this simplified ap-
proach a detailed knowledge of the melt viscosity
is not required.

4. Previous work

This section reviews earlier models of elasticity
and anelasticity which include relaxed and unre-
laxed states as well as frequency dependent ab-
sorption models of general solid—fluid systems (sce
also Watt et al., 1976; Mavko et al., 1979).

4.1. Elasticity moduli

Early estimates of bounds of moduli for com-
posite materials (Voigt, 1928; Reuss, 1929) as-

sumed highly anisotropic materials. Hashin and
Shtrikman (1963) gave bounds on the elastic con-
stants of an isotropic material (subsequently de-
noted as HS-bounds). They showed, that without
knowledge of‘the geometry of the components, the
HS-bound of the bulk modulus is the best possi-
ble. The lower HS-bound of the shear modulus of
a solid-fluid system is of no use since it is zero. A
useful alternative is to specify the geometry of the
phases. If the fluid phase occurs in widely sep-
arated inclusions, the elastic interactions between
inclusions can be neglected. Under this assump-
tion Eshelby (1957) and Hashin (1959) derived
expressions for the bulk and shear moduli of a
material containing spherical inclusions. Surpris-
ingly, the moduli lie above the HS-bounds and
approach these only at small fluid concentrations.
Since this discrepancy is due to the neglect of
elastic interactions it can give an idea about the
validity of the non-interaction assumption.

Eshelby (1957) investigated the elastic field of
an ellipsoidal elastic or fluid inclusion embedded
in a homogeneous elastic medium under external
stress. Using Eshelby’s (1957) results Wu (1966)
derived analytical expressions for the effective
moduli for the case of spheroidal (a =5 # c),
penny shaped (a = b > ¢), and needle shaped (a
> b = ¢) inclusions, where a,b,¢ are the three half
axes of the ellipsoidal inclusion. For the case of
soft penny shaped inclusions Wu’s formulae are
no more applicable. Walsh (1969) modified them
for fluid inclusions with a small but finite aspect
ratio a = ¢/a). In contrast to Wu’s moduli Walsh’s
results are only valid for the case of non-interac-
tion between the inclusions, which leads to diffi-
culties at fluid concentrations of the same order as
aspect ratios (Schmeling, in prep.(b)).

To take into account the interaction between
inclusions and thus allow for higher concentra-
tions the most successful approach so far is the
“self consistent scheme” (Budiansky, 1965; Hill,
1965), subsequently abbreviated as “SCS”. Rather
than considering explicitly the elastic interactions
between densely distributed inclusions one ap-
proximates the elastic field around a particular
inclusion by embedding it in an infinite homoge-
neous medium with the mean effective moduli to
be determined. This leads to an implicit system of



coupled equations for the effective moduli. With
this approach the effective moduli of a solid con-
taining spherical inclusions lie well between the
HS-bounds.

A very comprehensive study of the elasticity of
a material containing dry cracks or thin fluid films
was carried out by O’Connell and Budiansky (1974,
1977) and Budiansky and O’Connell (1976). They
approximated the cracks respective films by flat
ellipsoidal inclusions with the axes a, b > c. The
SCS was applied. The parameter determining the
elasticity was the crack density, defined as

N A?

e=2 i (13)
where N is the number of cracks per volume, A4 is
the area and P is the perimeter of a crack. In the
case of circular cracks with the radius a’ (13)
reduces to

€= Na" (14)

This crack density is related to the porosity (or
fluid fraction) 8 and the aspect ratio a (=c¢/a’)
by

B=4mae/3 (15)

O’Connell and Budiansky (1974) showed that the
elastic moduli of a material containing elliptical
cracks with a # b > ¢ are nearly equal to those of
circular cracks (a’ = b’ > ¢) as long as the crack
densities defined by (13) and (14) are the same.
Keeping B and the small axis ¢ constant, the
radius of the circular cracks g’ is related to 4 and
P of the elliptical cracks

a’ =2A4/P (16)

O’Connell and Budiansky (1977) introduced the
crack density in a form allowing for distributed
inclusion shapes. If V(a) is the normalized distri-
bution of aspect ratios, the aspect ratio a and the
quantity D in O’Connell and Budiansky’s equa-
tions for both the unrelaxed and relaxed moduli
(or in eq. B7 in our Appendix B) have to be
replaced by

o =j:° V(a)ada (17)

D’=f0 DV(a)da
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For the relaxed shear modulus an arbitrary distri-
bution of « can thus be represented by exacily one
aspect ratio o’ (because D =1, see Appendix B).
For unrelaxed moduli this is only approximately
the case as long as a <« K;/K, where K, K; are
the bulk moduli of the effective material and of
the fluid, respectively.

The inclusion geometries mentioned so far have
always been convex so that for cracks the opposite
faces are decoupled over their entire area regard-
less how small the aspect ratio is. However, micro-
scopic investigations of cracked rocks show that
many (or most) of the cracks are irregular and the
faces have local point contact (Walsh and
Grosenbaugh, 1979). Such contacts increase in area
with lithostatic pressure if the cracks are dry or
filled with a compressible fluid. Thus, when using
models of ellipsoidal cracks caution must be taken
if small aspect ratios are assumed because the
“effective” aspect ratio may be larger due to the
contacts at the faces. Theoretical models for the
compressibility in the case of non-ellipsoidal cracks
were developed by Mavko and Nur (1978) and
Walsh and Grosenbaugh (1979). However, similar
models for the shear modulus are missing.

Mavko (1980) determined the effective moduli
for the fluid (i.e., melt) distributed in form of
tubes along grain edges (Fig. 2¢). He varied the
shape of the cross section of the tubes by a param-
eter k (Fig. 4) and used the SCS to determine the
dry and saturated shear moduli and the dry bulk
modulus. However, for the determination of the
saturated bulk modulus he used Gassmann’s (1951)
relation together with the self consistent dry mod-
ulus. This inconsistency is discussed in Appendix
A

The effect of applying the SCS can be demon-

0 1 0

Fig. 4. Shapes of cross-sections of the tube model after Mavko
(1980) depending on the parameter k. (From: Mavko, 1980.)
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Fig. 5. Shear modulus (upper diagram) and half relaxation
strength A’/2 (lower diagram) for the tube model (x = 0) of
Mavko (1980), calculated with and without applying the SCS.
The lower (upper) curves of the shear modulus represent the
relaxed (unrelaxed) state.

strated using Mavko’s (1980) model. In Fig. 5 the
shear modulus (top) and maximum shear absorp-
tion (= haif relaxation strength) (bottom) are
shown with and without applying the SCS as a
function of melt fraction 8. Above 5% melt the
moduli begin to diverge slightly. However, the
absorption with the SCS shows a striking dif-
ference compared to that without the SCS even at
melt fractions as low as 5%. This raises the ques-
tion on the reliability of the SCS for the de-
termination of relaxation strength relative to that
of the corresponding moduli.

4.2. Relaxation models

In the following part of this section absorption
mechanisms in a solid-liquid system are discussed.
Biot (1956a,b) developed a theory describing
seismic wave propagation and absorption in a
fluid saturated porous medium. Biot’s theory con-
siders a regional flow of the fluid with respect to
the solid as a result of inertia and a pressure
gradient along the seismic wave length. This mech-

anism appears insufficient to account for seismic
absorption in a partial melt (Schmeling, 1983). On
the other hand, due to microscopic heterogeneities
such as variable geometries and orientations of
pores a locally inhomogeneous flow field may
become important, which is not accounted for in
Biot’s approach. In particular, elastic energy may
be dissipated either by viscous shear between op-
posed boundary faces of fluid films, or flow driven
by pressure gradients within or between pores.

4.2.1. Viscous shear

Walsh (1968, 1969) calculated the viscous shear
relaxation of a material containing penny shaped
randomly distributed and oriented fluid inclu-
sions. He found that such a material behaves like a
standard linear solid with a characteristic relaxa-
tion frequency depending on the aspect ratio and
the fluid viscosity. Walsh also estimated the re-
laxation strength, however, the solution is only
valid for widely dispersed inclusions and it cannot
be applied to the case of complete grain boundary
relaxation. O’Connell and Budiansky (1977) car-
ried out a viscoelastic analysis of viscous shear
relaxation in fluid filled cracks. Owing to the SCS
used the effective complex shear and bulk moduli
become coupled. Thus, the model material loses
the property of a standard linear solid. Since egs.
4-12 are based on the standard linear solid, the
deviation due to the SCS is assessed briefly. A
single absorption peak can be constructed taking
the unrelaxed and relaxed moduli with respect to
viscous shear relaxation and assuming a standard
linear solid (i.e., using eq. 5). Compared to the
absorption peaks obtained by the complete
viscoelastic analysis (O’Connell and Budiansky,
1977, fig. 4) there exists no significant difference
in the amplitude. However, the maxima of O’Con-
nell and Budiansky’s Q~'-spectra are shifted
slightly towards lower frequencies due to the SCS.

At crack densities corresponding to the case of
complete wetting of grain faces O’Connell and
Budiansky (1977) found Q! of viscous shear re-
laxation to range between 0.14 and 0.26. However,
as was already pointed out by Nowick and Berry
(1972), small irregularities of the grain faces could
considerably inhibit a complete shear relaxation.
Furthermore, if the corresponding relaxation times



are considered, viscous shear relaxation would
account for measured Q' in the asthenosphere
only if the melts have viscosities of 10°~107 Pa s
(Nur, 1971; Solomon, 1972). However, measured
viscosities of silicate melts are between 1 and 1000
Pa s (Kushiro et al.,, 1976; Kushiro, 1977; and
others). O’Connell and Budiansky (1977) therefore
concluded that viscous shear relaxation was im-
portant for seismic frequencies only if the aspect
ratios were smaller than 1077, This is demon-
strated in Fig. 6 (top), where the characteristic
frequencies are shown as a function of aspect ratio
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Fig. 6. Lines of constant relaxation frequencies as a function of
log viscosity and log aspect ratio or log(2R /d ), the equivalent
aspect ratio for tubes. The numbers beside the curves refer to
the log frequency f in Hz. Upper diagram: viscous shear
relaxation. Central diagram: melt squirt in films. Lower di-
agram: melt squirt in tubes. Assumptions for the moduli:
K = 0.66 Mbar, p =04 Mbar, K; =0.2 Mbar.
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and viscosity. The hatched area indicates the
seismic band.

4.2.2. Melt squirt

Alternatively, pressure driven fluid flow is
another potential mechanism of stress relaxation.
Pressure variations may be produced within single
inclusions if they deform non uniformly under an
externally applied uniform stress. Such deforma-
tions of non-ellipsotdal dry cracks have been con-
sidered by Mavko and Nur (1978). Somewhat
longer relaxation times are involved if the fluid
flow takes place between neighbouring but in-
terconnected inclusions. If the inclusions have a
different geometry, say, a crack is connected with
a spherical inclusion, an externally applied hydro-
static pressure will produce different fluid pres-
sures in the two inclusions which, in turn, can
equalize by flow. The corresponding relaxation
frequency was estimated by Johnston et al. (1979).
For typical bulk moduli and viscosities (see e.g.,
Kushiro et al.,, 1976; Stolper et al., 1981) the
frequency ranges in the seismic band if the crack
aspect ratio is smaller than 107°-10" 2,

Relaxation due to flow between interconnected
inclusions of similar shape is possible if the exter-
nally applied stress is pure shear. Mavko and Nur
(1975) introduced the term “melt squirt” for this
mechanism. The fluid is squirted from inclusions
oriented essentially perpendicular to the principle
axis of compression to those essentially perpendic-
ular to the principle axis of tension. O’Connell and
Budiansky (1977) carried out a viscoelastic analy-
sis of this mechanism for fluid filled cracks and
estimated the characteristic frequency which is
shown in Fig. 6 (centre). Melt squirt may be
important in the seismic frequency range at aspect
ratios <107%2-1072. O’Connell and Budiansky
(1977) also calculated Q-spectra for distributed
aspect ratios. They found that melt squirt could be
important if the crack densities are sufficiently
high for complete grain boundary wetting.

Mavko (1980) determined the relaxation due to
melt squirt for the case in which melt occurs
within tubes (Fig. 2c). He estimated the relaxation
frequency for the case of tapered off cross sections
(x =0, see Fig. 4). If the ratio length to the diame-
ter of the tubes is smaller then 1072-10772, it is
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possible that the frequency ranges in the seismic
band (Fig. 6, bottom).

Based on the characteristic relaxation frequen-
cies summarized in Fig. 6 it is assumed here that
melt squirt is the only important relaxation mecha-
nism due to melt at seismic frequencies. Thus, the
term “ unrelaxed” will be used only with respect to
the melt squirt mechanism, and it is assumed that
viscous shear relaxation has already taken place.

5. The complete set of melt models
5.1. The general equations

In this section a set of very general self con-
sistent equations for the relaxed and unrelaxed
moduli for a material containing arbitrary inclu-
sions will be given. By utilizing published solutions
for particular inclusion geometries a comprehen-
sive set of equations is established with additional
allowance for a varying degree of interconnection
as well as superposition of melt geometries.

Since only melt squirt is considered here (see
end of section 4.2.2) the unrelaxed modulus will be
defined by the condition of no fluid exchange
between inclusions. It is assumed that the pressure
within each inclusion is uniform and no viscous
shear stresses exist in the fluid. Different fluid
pressures in different inclusions can then equalize
by fluid flow if the inclusions are interconnected.
The resulting isobaric state will be taken to define
the relaxed moduli.

After Mavko (1980) the effective elastic moduli
of a material containing arbitrary inclusions car
be obtained by using the Betti~Rayleigh-reciproc-
ity theorem (see e.g., Love, 1907, p. 205). It con-
nects two arbitrary elastic states of equilibrium of
a linear elastic body. If these two states 1 and 2
are represented by the surface displacements u,, u,
and the surface stress vectors or tractions T,, T,
acting on the body the theorem can be written

fiﬁzdF=fT2ﬁ,dF (18)
F F

where the integration has to be carried out over
the total outer and inner surfaces F.
The formulae of the different moduli for arbi-

trarily shaped, fluid filled inclusions being partly
interconnected and partly isolated can be obtained
by the following approach. The two states of
stresses and displacements shown in Fig. 7 can be
connected by the reciprocity theorem assuming
linear elasticity. Figure 7a shows the body contain-
ing inclusions loaded by an external traction T..
The inclusions “con” are regarded to be connected
and thus allow for an equilibration of fluid pres-
sures in the relaxed state. The inclusions “is0™ are
regarded to be isolated. u and v are the pore wall
and body surface displacements. The individual
pore pressures are indicated by p,y. ppy..... In
Fig. 7b the pore walls are loaded with the tractions
T the same as the external T ~-tractions. Thus the
resulting displacements u, and v, are the same as
if the pores would contain solid matrix material.
The two states of stress in Fig. 7 can be combined
by the reciprocity theorem giving

fFCT‘eVOdF + ié —[/ pititipd F = '/; TvdF

N

+ ¥ [TadF (19)
i=1"/

where N is the total number of inclusions, F, and

f; are the external and inclusion surfaces, and b is

the surface normal vector. As external tractions,

either pure shear stress S or hydrostatic pressure

P are taken. The shear tractions are given by

B S 0 0),
S=)0 -S Ojn
0 0 0

The specific strain energy represented by the first
integrals on either side of (19) can be taken to
define the undisturbed (matrix) and effective shear
and bulk moduli, respectively

1
—=—— [ &vd 20a
Ko VSzf o (202)
1 s
o VPZ.[&PnVOdF

(20b)

where V is the total volume.
To determine the unrelaxed moduli eq. 19 to-
gether with eq. 20 can be evaluated assuming that
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Fig. 7. lllustration for the reciprocity theorem. The inclusions “con.” are assumed to be interconnected, those indicated by “iso.” are

isolated. For details, see text.

at the first instant of loading all inclusions are
isolated. To take into account the SCS the result-
ing moduli are given together with the unrelaxed
Poisson-constant » in a set of coupled equations
which have to be solved simultaneously

1 _1 l(L,L)§ 4
Ku KO V Kf KO ,-:11+0._1 i__ 1
" VK¢ K,
(21)
1 1 1 X

— == fiﬁdF (22)
TS (23)

Here 6,(= f,u nd F/V,P) represents the apparent
compressibility of the i-th inclusion if it were dry
and has to be determined for the particular inclu-
sion geometries. 6, =6,(K ,u,) has to be de-
termined for an inclusion embedded in a K ,—, -
material. V; is the volume of the i-th inclusion. For

inclusions of similar shape (which then have the
same pore pressure) (21) represents a self-con-
sistent version of the Gassmann relation (Gass-
mann, 1951) (eq. Al, Appendix A). This relation
gives the effective bulk modulus of a fluid-saturated
body if the porosity and the bulk modulus of the
fluid, the solid matrix, and the dry porous body
are known. Note that (21) reduces to the original
Gassmann-relation if the SCS is dropped, i.e., if
K, on the right-hand side is replaced by K, and
8. =0,(Ky, o). The derivation of (21) is given in
Appendix A. In deriving (22) it has been taken
into account that the second term in (19) vanishes
if pure shear is assumed as the external traction.
To obtain the general equations for the relaxed
moduli one has to distinguish between isolated
and connected inclusions. It is assumed that in the
second category the fluid pressure has equalized
due to flow between pores (and is actually 0 for
external pure shear) while the isolated pores retain
the fluid with different individual pore pressures.
Applying the reciprocity theorem gives the relaxed
shear modulus as the solution of the coupled equa-
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tions (where K’ and »’ are auxiliary quantities)

1 _1 1(1 1 )2 14
" K, VK, K, = {1 1
=114+6 Y —
i Kf Kl
l N\'Uh
+— 28V, (29)
Vi=l
N
1 1 L
11 . [TudF
M Ho SV i=1"f K
NCAI\
+ fTiﬁdF (25)
i=1"1 Ki=0
y =R 2 (26
6K’ +2p, )

The sums in (24) and (25) have to be extended
over the isolated (N,,) and the interconnected
(N,,,) inclusions, respectively. Here 6, has to be
taken as a function of K’ and pu,. In the first
integral of (25) fluid filled inclusions are assumed
while dry pores have to be considered in the
second integral. To determine the relaxed bulk
modulus Gassmann’s (1951) relation can be used
in the form

K'+F . K(K.—K')
=Ko With F=—————= (27
Kr Kiso iso e BC(KiSO_Kf) ( )
Here K, , has to be determined simultaneously

with a quantity p,, using eqgs. 21-23 by summing
only over the isolated inclusions and reducing V
by the total volume of the interconnected pores. 8,
represents the volume concentration of the inter-
connected pores.

The sums occurring in the set of eqs. 21-25 can
be evaluated for particular inclusion geometries. It
seems reasonable to model a range of geometries
as broad as possible for a partially molten rock by
allowing for film, tubular, and spheroidal shaped
inclusions. If these geometries are denoted by the
subscripts m = 1, 2, 3, respectively, and the corre-
sponding melt fractions of the isolated and con-
nected inclusions by 8, and f., respectively, the

equations can be written as

1 1
1 1 3 (E-—Ig)(ﬁmi*—ﬁmc)
=4 Z
Ko Koo sy 1+6;(K v,) 1_1
m u? “u’ u Kf K

u

(28)
11
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—=—x Z Am(Ku’ Ky, Vu’ Kf)'(Bmi+Bmc)
My Ho m=1
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= m/ (30)
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—=—+
K K, mz=1 1+0‘1(K" M y/),(_l__i)
m * r? K'r K/
+0m(K,’ ul” V’)'Bmc (31)
1 1

3
— =+ A, (K, u, v, Ki)-B,
T U m‘v:l( m( ® 4 f) B

+Am(K” p‘n Vl? Kf=0)'Bmc) (32)
, 3K'~2p,
YK T 2, (33)

K, is obtained by using (27) where K has to be
determined with p;,, from (28) to (30) assuming a
modified total melt fraction B, =8,,/(1 = B,..).
The quantities 6, and A,, (m=1, 2, 3) for the
particular geometries can be taken from O’Connell
and Budiansky (1977), Mavko (1980) and Wu
(1966). They are listed in Appendix B.

The above set of equations gives the moduli
necessary to determine the relaxation strength for
shear, A#, and for compression A, according to
€q. 4 or the maximum Q! denoted by A7/2 and

'k/2 according to (5). However, since the deriva-
tions of the relaxed and unrelaxed bulk modulus
are based on different approaches care has to be
taken when their difference is small, i.e., when A
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is small. It should be mentioned that for melt films
also distributed aspect ratios can be considered
using the representative aspect ratio « as given in
eq. 17. In the following three sections the theory
for melt inclusion models is extended with regard
to general ellipsoidal inclusions, variable degree of
interconnection between inclusions, and combina-
tion of inclusions of different geometry.

5.2. Moduli and relaxation strength for ellipsoidal
inclusions

5.2.1. Triaxial inclusions

In the viscoelastic models by O’Connell and
Budiansky (1977) and Walsh (1969) the melt films
were approximated by ellipsoidal inclusions hav-
ing a small aspect ratio a( < 1). However, as has
been pointed out in section 4.1., it is questionable
whether such small values of «a are reasonable. The
elastic solutions for ellipsoidal inclusions given by
Wu (1966), Kuster and Toksoz (1974) and Kor-
ringa et al. (1979) allow for arbitrary aspect ratios.
However, these solutions do not consider triaxial
ellipsoids (a # b # c); furthermore, they do not
consider relaxation. To account for these extra
factors the model presented here gives the relaxed
and unrelaxed moduli and the relaxation strength
for ellipsoidal inclusions with the half axes a = b
> ¢. Whether the case a # b # ¢, as was shown for
films by O’Connell and Budiansky (1974), can be
reduced to the case a’ = b’ # ¢ by using relation
(16) will be tested numerically.

The set of eqs. 21-27 has been taken to de-
termine the effective moduli for ellipsoidal inclu-
sions of the same shape assuming complete inter-
connection. For this case the pore wall displace-
ments can be determined by using the results of
Eshelby (1957). Eshelby gave the solutions for the
strain of an inclusion if a uniform arbitrary stress
is applied at infinity. Assuming either pure shear
or uniform compression at infinity, Eshelby’s
expressions were solved numerically to give the
integrals over the pore wall displacements. These
were integrated numerically over all possible
orientations of the inclusions to give the effective
moduli. The numerical accuracy of the multiple
integrations was tested by known analytical solu-
tions for disc-, needle-, and spherical shaped inclu-
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sions and turned out to be better than 0.5%.

The numerical solutions have been used to test
the conditions in which triaxial ellipsoids with the
axes a, b, ¢ can be reduced to the case a’ =b' # c.
For different b/a-ratios a’ was determined
according to (16). With this a’ an & was defined
as o« =c/a’. Numerical determinations of effec-
tive moduli and relaxation strengths have been
carried out by varying b/a for different o’ and
melt concentrations. Figure 8 shows some results
for the unrelaxed shear modulus (where the undis-
turbed modulus was 0.4 Mbar). Since the abscissa
gives b/a, the curves for the moduli and relaxa-
tion strengths should be horizontal if (16) is appli-
cable to ellipsoidal inclusions with finite thickness.
The deviation from horizontal increases with o
and with melt concentration. From Fig. 8 it can be
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Fig. 8. Unrelaxed shear modulus (upper part) and half relaxa-
tion strength A’/2 (lower part) for ellipsoidal inclusions with
three different axes a > b > ¢ as a function of b/a. &' =c/a’
and B give the particular aspect ratios and melt fractions.
Assumptions for the moduli: K, = 0.66 Mbar, p, =04 Mbar,
K; = 0.2 Mbar, p; = 0. The SCS was applied.
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Fig. 9. (a) Relaxed (top) and unrelaxed (bottom) moduli for
ellipsoidal inclusions. The numbers beside the curves give the
aspect ratios. The bars indicate the deviation from O’Connell
and Budiansky’s (1977) film model (and are omitted for a = 0.2).
(b) Half shear relaxation strength A’/2 for ellipsoidal

inferred that (16) appears to be applicable for
a’ <0.2. For o« > 0.2 the condition (16) is only
applicable if, with decreasing «’, a decrease of the
moduli of a few percent and an increase of the
relaxation strength up to a factor of two is taken
into account.

5.2.2. Spheroidal inclusions

The extension of (16) towards finite aspect ratios
is regarded to be sufficiently accurate to drop the
complicating assumption of three different axes
and, instead, to consider ellipsoids with two equal
axes a = b # ¢ (i.e., spheroids). The analytical eqgs.
28-33 (plus 27) are applied for the particular case
of completely interconnected spheroidal inclu-
sions. (5) was used to determine A’/2 for shear
which gives approximately the half shear relaxa-
tion strength.

Figure 9 shows the decrease of the unrelaxed
and relaxed shear and bulk' modulus and A’/2
with increasing melt fraction for different aspect
ratios. After Berckhemer et al. (1982a) and Stolper
et al. (1981) the following values have been chosen
to represent partially molten ultrabasic rocks un-
der room pressure: Ky=0.66 Mbar, p,=04
Mbar, K;=0.2 Mbar, u,=0. The self-consistent
scheme was applied. The vertical bars indicate the
deviation from the film model of O’Connell and
Budiansky (1977) who considered infinitely thin
cracks when determining the reduction of strain
energy due to the cracks. For a < 0.01 the present
models agree well with the film model, however,
above a = 0.03 finite inclusion thickness influences
the elasticity significantly. It is noteworthy that for
aspect ratios between 0.2 and 1 the moduli do not
differ very much. This suggests that, so long as the
melt pockets have a convex shape, the elastic
behaviour of a material containing melt pockets of
different shape does not differ significantly from a
material having completely spherical inclusions.
The vertical bars in Fig. 9b indicate that the
relaxation strength (actually A’ /2) does not show a
pronounced departure from the film model. The

(spheroidal) inclusions (solid curves) and melt tubes (dashed
curves). The numbers give the aspect ratio, x gives the shape of
the tubular cross section. The bars give the deviation from the
film model. The undisturbed moduli are the same as in Fig. 8.



deviations in moduli partially cancel out when
taking the difference between u, and p, as
required by (5). Figure 9b shows that high relaxa-
tion strengths are obtained for arbitrarily small
melt fractions as long as the aspect ratio is suffi-
ciently small. However, for a > 0.1, significant melt
fractions are required for high values of relaxation
strength. In contrast to the moduli themselves,
A’/2 depends significantly on the aspect ratio
between a-values of 0.2 and 1.

An interesting result is the finite relaxation
strength for spherical inclusions (a = 1). Under an
external load one would expect the fluid pressure
in all spheres to be equal (or zero in the case of
pure shear) because no relaxation due to pressure
induced flow should be possible. In fact the finite
A’ /2 is a consequence of the SCS which is used to
approximate the interactions between inclusions.
This can be illustrated by considering a spherical
inclusion being influenced by an external pure
shear of magnitude p (Fig. 10). According to
Eshelby’s (1957) solutions the pressure in the sur-
rounding material at a (b) can be determined to
be +(—)5 p(1 +»)/(7 — 5v) where v is the Pois-
son-ratio. Thus, an imaginary neighbouring inclu-
sion near point a will show a lower fluid pressure
than one near b; such differences would be
equalized by fluid flow if they were intercon-
nected.

0

(@]

Fig. 10. See text.
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Figure 11 shows a possible combination of the
results shown in Fig. 9. Such a diagram could be
used to interpret in situ data of particular regions
of the asthenosphere in terms of melt fraction and
geometry if estimates of the relaxation strength
and the reduction of the shear modulus due to
melt are given from seismic data. The shear relaxa-
tion strength (actually A’ /2) is plotted versus the
unrelaxed shear modulus which in turn decreases
below the undisturbed value of 0.4 Mbar as the
melt fraction increases. The uppermost curve rep-
resents extremely thin films. Finite aspect ratios
result in lower curves. For thin melt films a par-
ticular data pair of A’, u, on the upper curve may
result from different melt fractions B8 and aspect
ratios a as long as their ratio a/B (i.e., “crack
density”) is equal. However, for finite aspect ratios
there exists an unequivocal relationship between
the four quantities A, p , «, 8. Hence, if both the
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Fig. 11. Half shear relaxation strength A’/2 as a function of
the decreasing unrelaxed shear modulus for ellipsoidal
(spheroidal) inclusions and films. The curves 2%, 5% and 8%
give the melt fractions leading to the modulus decreases and
relaxation strengths shown. The undisturbed moduli are the
same as in Fig. 8.
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relaxation strength and the shear modulus are
given, it is possible to determine both the aspect
ratio and the melt fraction assuming ellipsoidal
inclusions. Three lines of corresponding melt frac-
tions are shown.

An interesting feature arises from the diagram:
if the modulus decrease is fixed, high relaxation
strength (absorption) results from low melt frac-
tions and vice versa.

For comparison Fig. 12 shows the melt model
for tubes from Mavko (1980) in a representation
corresponding to Fig. 11. The curves for the differ-
ent cross-sections are similar to those for el-
lipsoidal inclusions with aspect ratios between 0.2
and 0.5, however, the melt fractions are higher.

If the spheroidal inclusions are chosen to be
prolate (a > b = ¢), the shear relaxation strength
does not change more than by a factor of three
and there is only a narrow range of effective
moduli between the spherical and the tubular case.
The range 1s approximately the same as that

10°

Tubes

10k .

RELAX. STRENGTH /2

A

I Y T S S SR

0.40 .35 0,30 0.25

SHEARMODULUS (MBARY> , (UNRLX).

Fig. 12. The same as Fig. 11, but for melt tubes with the shape
parameter k = 0, 1, co.

covered by oblate spheroids with a between 0.3
and 1 (Fig. 9).

For the above models certain typical elastic
moduli M, and K have been chosen. It should be
mentioned that these undisturbed moduli can be
regarded as normalizing quantities as long as the
undisturbed Poisson-ratio v, does not deviate too
much from 0.25. Thus, the results can be trans--
ferred to other materials and pressure conditions.
However, varying K with respect to K, signifi-
cantly influences the effective bulk modulus, while
the shear modulus and the corresponding relaxa-
tion strength are affected only slightly so long as
K;/Ky,=0.15.

5.2.3. The influence of a reduced degree of inter-
connection

Assuming that the melt does not fracture its
surroundings when a seismic wave is passing
through, seismic absorption (or relaxation) by melt
flow can only occur through interconnected pores;
isolated melt inclusions are not involved in melt
squirt. The unrelaxed moduli are completely inde-
pendent of the connectiveness. By contrast, the
relaxed moduli, and especially the shear relaxation
strength, depend strongly on the degree of inter-
connection of melt inclusions. Schmeling (1983,
and in prep.(b)) developed a statistical model to
describe the connectiveness of a system of ran-
domly oriented and distributed ellipsoidal inclu-
sions or films (with the axes a = b # ¢). The degree
of interconnection, ¢, is defined as the fraction of
inclusions which overlap at least with one of the
neighbouring inclusions. The statistical model de-
termines { as a function of 8 and a. As a result,
lines of constant { are shown in Fig. 13b. Figure
13a illustrates the basic idea of this model. The
degree of interconnection {(a, 8) can be used to
define the portions of melt fractions in egs. 28—33
representing isolated and interconnected pores, B,
and f.. The total melt fraction, 8, can be written

B=(1-5)B+ B

Effective moduli and shear relaxation strength have
been determined by taking { from the diagram of
Fig. 13. Figure 14 shows the departure of the
relaxation strength from the case of complete in-
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Fig. 13. (a) Illustration of the variable degree of interconnection for ellipsoidal (spheroidal) inclusions as a function of melt fraction 8
and aspect ratio a. The quotes indicate the idealistic nature of this model, since in nature irregularities at the film faces could prevent
a complete loss of shear strength at small melt fractions. (b) Curves of constant degree of interconnection as resulting from the
statistical model of overlapping of penny shaped or ellipsoidal (spheroidal) inclusions. The numbers at the curves give the total

probability of overlapping with neighbouring inclusions.

terconnection (dashed curves) for melt films and
spheroidal inclusions. For strong modulus de-
crease (right part of curves) the melt fraction is
high and, thus, { is high. The relaxation strength
approaches the dashed curves. However, at low
melt fractions, i.e, for only slightly -decreased
moduli, { is low and the relaxation strengths differ
significantly from those of the interconnected case.
It should be emphasized that in situ determina-
tions of the decrease of the shear modulus in the
oceanic asthenosphere appear to lie well around
10% (Schmeling, 1984; and in prep.(a)). Thus, the
possibility of a reduced degree of interconnection
and a corresponding decrease of the relaxation
strength due to melt should therefore be kept in
mind.

5.3. Superposition of different melt geometries

The set of eqs. 28-33 allows the superposition
of different inclusion geometries. A number of
possible combinations of superpositions have been
discussed by Schmeling (1983). Here only the most
interesting one, i.e., that of melt films plus spherical
inclusions, is considered. For simplicity a complete
degree of interconnection has been assumed. The
aspect ratio for the films was chosen to be 0.01.
Figure 15a shows the effective unrelaxed moduli,
u, K, and K+4/3 p (= modulus for P-waves) as
a function of melt fraction for different volumetric
fractions of melt in films and in spheres (given in
percent of the total melt fraction). As expected a
gradual transition in the moduli occurs from the
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Fig. 14. Half shear relaxation strength A’/2 as a function of
the decreasing unrelaxed shear modulus for films and spheroids.
The solid curves take into account a reduced degree of inter-
connection according to Fig. 13, while the dashed curves as-
sume complete interconnection.

curves for spheres to those for films. Figure 15b
shows the shear relaxation strength (A’/2) as a
function of the decreasing unrelaxed shear mod-
ulus. Starting with the case of spheres, there is a
drastic increase of the relaxation strength if a
small amount of melt occurs in films. 5% of the
melt in films leads to an increase in A’ of one
order of magnitude. However, this is quite natural
since the relaxation for the case of spheres is based
only on the elastic interaction of the spheres and
would not occur without the application of the
SCS. On the other hand, it is clear from Fig. 15b
that quite a lot of melt is needed in pockets to
reduce the relaxation strength considerably below
that for films. It should be noted that the curves
for 5% F and 1% F are very sensitive to the aspect
ratio of the films. The three curves 2%, 5% and 8%
indicate the corresponding total melt fractions.

A very interesting aspect arises from the bulk

relaxation strength shown in Fig. 15c. Almost no
relaxation occurs if only one inclusion shape is
present because the relaxation depends only on the
coupling between K, and p, (and K, and p,) as
a consequence of the SCS (see curve for 100% S).
If melt occurs only in films the behaviour of the
bulk relaxation strength is indicated by the curve
100% F. A increases generally with melt fraction.
However, when the relaxed shear modulus reaches
0, the coupling between X and p decreases until
eventually p, also reaches 0. No further coupling
occurs and so A also approaches 0. Such a material
without shear strength (p = 0) represents a suspen-
sion with free fluid flow. Hence different fluid
pressures do not occur which could equilibrate by
relaxation.

If films and spheres are superimposed, the bulk
relaxation strength increases significantly. Ap-
parently there exists a certain ratio of films to
spheres where the relaxation strength is maximum.
The reason for this high relaxation strength lies in
different fluid pressures due to different pore
geometries. As a comparison the dashed curve in
Fig. 15c gives the shear relaxation strength.

The mechanism of bulk relaxation was pointed
out earlier by Johnston et al. (1979). Budiansky
and O’Connell (1980) gave quantitative results,
but only for 5% volumetric fraction of spheres, a
crack density of 0.1, and a fluid bulk modulus of
0.5 K. They calculated the frequency dependent
ratio Qx'/Q, ' ranging between 0.05 and 0.5.
However, as has been pointed out by Schmeling
(1983) the ratio of the relaxation strength A% /A’
and hence also of Qx'/Q, ", is sensitive to the
total melt fraction, the ratio between B; and pS,
(the melt fractions of the films and of the spheres),
and K. The dependence of A%/A} on B and on
B:/ B, can be seen by relating the dashed curve for
shear relaxation to those for bulk relaxation in
Fig. 15¢. The dependence on K; may be described
briefly by noting that the bulk relaxation strength
for B;/B, = 10/90 increases roughly by one order
of magnitude if K; decreases from 0.5 K to 0.15
K,. If the above parameters are chosen properly
(e.g., K;=0.15 K, B;/B,=10a, and B <15%) it
is even possible to obtain shear and bulk relaxa-
tion strengths of the same order of magnitude.



6. General discussion and conclusions

This paper has tried to establish a comprehen-
sive set of elastic and anelastic models with melt
inclusions covering a considerably broad range of
melt geometries. In particular melt is assumed to
occur in ellipsoidal inclusions with arbitrary com-
binations of half axes, in thin films, and in tubes
of different cross-sections. Furthermore superposi-
tions of these geometries are possible and the
degree of interconnection can be varied. However,
it is clear that the above inclusion geometries
represent only idealized cases. In particular, the
ellipsoidal melt pockets have a convex shape while
in nature concave tetrahedrons are possible as well
(see Fig. 2c or d). The effect of compact inclusions
with concave curvature and sharp edges can be
assessed roughly by comparing the different tube
models with concave and convex cross-sections
(Figs. 4 and 12).

It should be emphasized that melt squirt was
regarded as the only important relaxation mecha-
nism due to partial melt. Viscous shear relaxation
was considered by O’Connell and Budiansky
(1977). Relaxation due to phase changes and ther-
moelasticity can also lead to high relaxation
strengths, particularly in compression (Vaisnys,
1968; Kjartansson, 1979; Mavko, 1980). However,
although the characteristic frequencies of these
effects are difficult to estimate, they appear to lie
below the seismic frequency band. Absorption in
the solid phase appears to be present almost inde-
pendently of melt at low melt fractions and is
found to dominate over the above mechanisms
{Berckhemer et al., 1982a; Kampfmann, 1984; see
also Schmeling, 1983).

The melt was assumed to be distributed iso-
tropically in this study. However, a preferred
orientation of grains and of melt inclusions might
have been established in partially molten regions
which are subjected to regional stresses. Such ani-
sotropy would result in an anisotropic decrease of
the effective moduli (Anderson et al., 1974), while
melt squirt relaxation would be less efficient.

The models considered here allow the following
conclusions:

(1) triaxial ellipsoidal inclusions can be ap-
proximated by spheroidal inclusions (a = b # ¢) if
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relation (16) is used;

(2) O’Connell and Budiansky’s (1977) film
model is accurate up to aspect ratios of = 0.03;

(3) for aspect ratios between 0.2 and 1 melt
squirt relaxation is small and the effective moduli
do not vary significantly with aspect ratio;

(4) a reduced degree of interconnection would
be of importance in reducing the relaxation
strength, and thus Q~', especially at melt con-
centrations leading to a moderate modulus (or v,)
decrease;

(5) if different melt geometries are present in
the same rock, the bulk relaxation strength in-
creases significantly. Under certain conditions it
may reach the order of the shear relaxation
strength; and

(6) it has been found to be useful to represent
the melt models by plotting the relaxation strength
as a function of the modulus decrease (Figs. 11, 12
and 15b). This allows a clear distinction between
the effects of different melt geometries. Further-
more, such diagrams can be used easily for the
simultaneous interpretation of observed values of
Q™! and of seismic velocity decreases.

The basic idea of the present paper was to
provide a comprehensive set of elasticity and re-
laxation melt models which could be combined
with corresponding melt models for the electrical
conductivity. Such a set of models was developed
by Schmeling (1983) and will be presented in part
I1 of this paper. By combining these sets of models
it 1s possible to carry out a combined interpreta-
tion of seismic and electrical conductivity data
from partially molten mantle regions (Schmeling,
1983, 1984, 1985). To apply the models to observa-
tional data the following conditions should be
fulfilled: seismic velocities of the anomalous re-
gion under consideration should be available, to-
gether with estimates of the velocities of the un-
molten material. If Q '-data are available, these
can be used to limit an upper boundary for the
relaxation strength due to partial melt. It should
be noted that laboratory measurements indicate
that seismic absorption seems to be dominant in
the solid phase at high temperatures, while the
modulus decrease appears to be controlled by the
melt (Berckhemer et al, 1982a,b; Kampfmann,
1984). To estimate the in situ relaxation strength,



Filtms , =001
+ Spheres

0°%F 100% S

(MBARD

o

10%F 90% s

MODUL 1

75°/oF 25002
50%F 50% S

25%eF 7570 S

RELAX.STRENGTH 12

8°/o Melt
0.40 0.35 0.30 0.25
b) SHEARMODULUS (MBAR) (UNRLX)



10

53

Films , ¢=0.01

+ Spheres -~

10,— -~

BULK RELAX. STRENGTH /2
o

75°%F|25% S
100%F\0% S

10%F 90% S
5%F 95°%S

4 2°/oF 98% S
1%F 99%S

/ 100% S

0.00 .05 010
c) MELT FRACTION /3

0.15
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A’/2 as a function of the total melt fraction. Dashed: A’/2 (for shear) for the combination 10%F and 90%S.

information about the absorption band is desira-
ble. Furthermore the absorption band could be
used to estimate the unrelaxed moduli, which in
turn does not depend on frequency dependent
relaxation. Finally, observations of the electrical
conductivity have the potential of putting stronger
constraints on the fractions and geometries of melt
in anomalous mantle regions (Schmeling, 1985).
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Appendix A

Self consistent bulk modulus and Gassmann’s rela-
tion

To obtain the bulk modulus Mavko (1980) ap-
plied Gassmann’s (1951) relation both for the re-
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laxed and the unrelaxed moduli. This relation gives
the effective bulk modulus of a saturated porous
material, K,, in which the fluid pressure is as-
sumed to be constant throughout the pore-space

=Kf'(K0—Kd)

K, +F
K—KOK—d—O+F T (A1)

where K;, K, and K, are the bulk moduli of the
fluid, of the solid matrix and of the dry porous
body, respectively. Here a self-consistent deriva-
tion of K, is presented which takes into account
the possibility of different pore pressures. It is
assumed that the apparent compressibility of a dry
pore of volume V;, 6, = (V;P)”'/;i hd F, under an
external compression, P, is known if the inclusion
were embedded in a medium with the moduli K
and p: 6,(K,n). If a material containing N iso-
lated inclusions filled with a fluid of bulk modulus
K, is loaded externally by hydrostatic compres-
sion, T = Ph, a pore pressure p,; will develop in
the i-th pore. Applying the reciprocity theorem
(Fig. 7) and using (19) and (20b) one obtains for
the effective saturated bulk modulus

1 1 1 8V, 1 X .
K—T{;+ PV | Z 7 ,+-——P2Vi§1 j}ipp,-nuodF
(A2)

i
Here 8V,/V; is the relative change in volume of the
i-th saturated pore. The pore pressure in the last
term in (A2) is constant and can be written in
front of the integral. The remaining integral gives
the volume change of the i-th pore as if it were
filled with K,-material. Thus we have ffiﬁﬁodF =
— V,P/K, and can write

1 1 1 38 1 J

Now the two quanuties 8V,/V, and p,; have to be
determined. One condition can be written down
directly

SI/, _ ppi

VoK, (A4)

To obtain a second condition, consider State 1 in
Fig. 7. Now take one pore j and reduce the pore
pressure to 0. The resulting relative volume change
(with respect to the unloaded case) is 8V,/V; =6, P,

where 6, is assumed to be known. Since the
neighbouring inclusions are assumed to be
saturated, the SCS requires 8,(K,u) to be taken
for K= K, and p = p,, where the subscript s indi-
cates the saturated condition. Now increase the
pore pressure of the particular j-pore to P. The
relative volume change of this pore is now such as
if it were filled with K, p-material and is given
by P/K,. If the relation between §V,/V, and p,; is
linear, the two cases constructed above allow the
determination of the corresponding linear equa-
tion. This equation together with (A4) can be
solved for p,; and &V,/V,

6.pP 8V, p,;
- J LA
S W R 7 ¢ (sec A4
iTK, " K,

If these are inserted into (A3), one finally obtains
the saturated bulk modulus as a function of the
apparent compressibility of dry pores

K, K, VK~ K0 '=10(K5,u)+1 1
Kf Ks
(A5)

In contrast to the Gassmann relation, (AS5)
accounts for possibly different pore pressures. This
can be important in the case of the unrelaxed state
or when considering (partly) isolated pores of dif-
ferent geometry. However, when considering the
relaxed case of interconnected pores of different
geometry one should use Gassmann’s relation. In
the case of inclusions of the same shape (A5) can
be written

Gassmann’s relation (Al), together with the self-
consistent dry bulk modulus (eq. 24, where all
inclusions have to be treated by the second sum-
mation) can be written in a form comparable to
(A6)
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(A7)

1 1
1+6~ 1(I<d’f"'d) (K KO)

It turns out that (A7) is identical with (A6) if the
SCS is dropped in (A6) and in the equation for the
dry bulk modulus. Mavko (1980) determined the
unrelaxed bulk modulus by calculating K; with
0(K,, p,) and inserting this into Gassmann’s
relation. This (K, p,) agrees with that in (A6);
however, instead of 1/K, in the denominator of
(A6), Mavko still uses 1 /K, as required by (A7).
However, some test calculations found the dif-
ference between Mavko’s approach and the self
consistent form (A6) to be below 1.5% with respect
to K. If the self consistent equation of the bulk
modulus given by O’Connell and Budiansky (1977)
(with Mavko’s (1980) modification) is written in a
form comparable to (A6) it turns out that the term
1/K, is missing in the denominator.

Appendix B

The quantities occurring in eqs. 32-37 have the
subscripts 1, 2, 3 which refer to filmshaped, tubu-
lar, and spheroidal inclusions, respectively. They
were obtained by O’Connell and Budiansky (1977),
Mavko (1980), and Wu (1966), respectively.

4 1 1=»2 1

0‘(1{’”’”):5'?'%@1 (B1)

where «, is the aspect ratio of the films

2(1-»?) 2+«) +2

H(K’”)_3K( =2 G

+%(1 —2v)) (B2)

:(K.p,v)=K '{1-[3(g+¢)/2~R(3g/2
+5¢/2-4/3)]}
x{1-[1+3(g+¢)/2—R(3g/2
+5¢,/2)] +0.5(3 - 4R)
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xplg+o-R(g=o
+2¢)]} (B3)
where
o—ay(1-a}) [cos lay—ay(1- )| (Ba)
g=a2(1-a2) '(36-2) (Bs)
R =3u/(3K + 4p) (B6)

where a; = aspect ratio of spheroidal inclusions
and k: parameter describing the shape of the
tubular cross-sections (see Fig. 4 or Mavko, 1980).

A (K.p,vK) = 158W —V)D+3]'al1
(B7)
where
D(K,p,K¢)=(1/K;—1/Ky)-(6,(K,p)
+1/K) ",
D=1if K;=0.

A (K,p.v,K¢)=B,(K,p,v)
L(z(l_y)((zﬂ)z”)—uzu) (BS)
15p (2+x) -2

x[20=»)(@+x)"+2) - (1= 20)((2+ )’
_2)][ -2(1- u)((z +x)*+2)
+[.L((2 + x) - 2

K K; 2u(1+v)
B,= [ (1+v)+ (2+K)+2
(2+n) )
+§(3/2 )“(2(?)")_2}1 (B10)
A3(.K’.‘L’V’Kf)
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+{1-3G¢+g-R(g-¢))) "'
+({1 -3¢ +g-R(g—9)])
X{B¢(3—4R)+g— R(g+¢—4/3)}
+2{R(g+¢)—g+B(1-9)(3—-4R)}
x {1 -§[9 +3g — R(5¢ + 3g)]
+3Bo(3~-4R)}
~2{B(1-¢)(3-4R)-1+3¢
+%g—%?R(5¢+g—4)}
{1Bo(3—4R) +1g—3R(g—-¢)})
(1-i[3¢+g—R(s—-9)]} '
x {R(3g+5/2¢)—3(g+¢)+B(3—4R)
~1(3B-1)(3-4R)[g+¢—R

X(g—¢+2¢2)]}ﬂ] (B11)

where B = K;/3K and ¢, g, and R according to
(B4), (BS) and (B6).
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