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With theaim of a simultaneousinterpretationof elastic,anelasticandelectricin situ data from the asthenospherea
comprehensiveset of numericalmodels is developedfor partial melt in different geometricalconfigurations.For the
elastic and anelasticmodulususe is madethroughoutof the melt squirt mechanism.Frequencydependenceis not
treatedin detail but estimatedfrom the limiting casesof the relaxedand unrelaxedmodulus.This hastheadvantage
that quantitativevaluesof viscocityandflow pathdimensionsarenot required.In themodels melt can beassumedto
occurin theformof tubes,films, andtriaxia) ellipsoidal inclusionsof arbitraryaspectratio. The conditionsin which the
solutionsfor triaxial ellipsoidal inclusionscanbeapproximatedby simpler onesfor spheroidalinclusionsarediscussed.
It is thenshownup to which aspectratio a publishedmodel on melt films is applicable.Theproblemof interconnection
of inclusionsis treatedwith a statisticalnumericalapproach.It is found that a reduceddegreeof interconnectionmay
havea significantinfluenceon anelasticrelaxationat melt fractionscorrespondingto a moderatemodulusdecrease.A
usefulrepresentationof theanelasticmelt models is introducedby plotting therelaxationstrengthagainsttheeffective
modulus,both of which dependon the stateof melting. Such diagramsallow a cleardistinctionbetweenthe different
melt geometriesand may be used for the interpretationof observeddata. Finally, different melt geometriesare
superimposedandit is found that undercertainconditionsbulk dissipationmay reachtheorderof that for shear.

I. Introduction A numberof theoretical investigationsfocuson

the relationship between the seismic properties
Seismological and magnetotelluric investiga- andpartial melt, assumingdifferent idealizedmelt

tionshaveshownthatmantleregionsof low seismic geometries(Walsh, 1969; O’Connell and Budian-
velocitiescangenerallybe correlatedwith thoseof sky, 1977; Mavko, 1980). Otherworkershavedis-
high seismic absorptionand high electrical con- cussedthe dependenceof the electricalconductiv-
ductivity. In such zones the geothermmay ap- ity on the amount of partial melt (Waff, 1974;
proach or exceed the solidus temperature.The ShanklandandWaff, 1974; Haak,1980). In part I
melt fraction, geometry,and degreeof intercon- andII of the presentpapera numericalsetof melt
nection strongly influences the seismic velocities, modelsis developedin which the idealizedmelt
the seismic absorption,and the electrical conduc- geometries,the degreeof interconnection,and the
tivity, but in different manners. melt fraction are varied systematically.The effect

of partially molten materialon both seismic and
~‘ Presentaddress:Universityof Uppsala,Instituteof Geology, electric propertiesis studied. These seismic and

Departmentof Mineralogy and Petrology.Box 555, S-75122 electricmodelsare combinedin a model set,which
Uppsala,Sweden. is applicableto in situ data. In additional papers
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(Schmeling,1984, 1985, and in prep.(a))the melt determinesthe dihedralangle,4 (which is defined
modelsare appliedto dataof the oceanicastheno- accordingto Fig. 2a) and, furthermore,it implies
sphereand the anomalousmantle below Iceland. that the curvature of the solid—liquid interface
For moredetailson the methodsusedreferenceis shouldhavea constantminimum value. Possible
madeto Schmeling(1983). melt distributions for different dihedralanglesare

shown in Fig. 2 (after Stockerand Gordon, 1975
and Kingery et al., 1976). If ~ = 0°the melt wets

2. The occurrenceof partial melt all grain faces, if 0°<~ < 60°themelt situatedat
grain edgesor cornerswill form an interconnected

It is widely acceptedthat the undepletedupper systemof tubes, and if 4> 60° the melt will be
mantle has a pyrolitic composition (Ringwood, concentratedin pocketsat grain corners.Bulau et
1962a,b,1975). Besidesthat of possiblevariations al. (1979) arguedthat evenwhen 4 = 0°the melt
in composition the water content strongly in- should occur only within tubes along grain edges
fluencesthe solidustemperature.In uppermantle similar to Fig. 2c but with morepronouncedcusps.
conditions small amountsof water (<0.4%) may However, this would imply that a considerable
reducethe solidustemperatureby severalhundred amountof the dry grain boundarieswould havea
degrees(GreenandLieberman,1976). A compila- higher level of surfaceenergy as comparedto the
tion of severalmelting curvesof pyrolite at differ- case of completewetting. If melt occurs within
ent pressuresand water contentsis shown in Fig. grains, it is expectedto havea sphericalgeometry
1. as a consequenceof minimum surfaceenergy.In-

The geometricaldistribution and the connecti- clusionsoccurring at grain faceshut not reaching
venessof the melt in a partially molten polycrys- the grain edgeswill havea disc or sphericalshape
talline rock is determinedby threefactors: (1) the (seeblock digramsin Fig. 2).
melt fraction; (2) the location of melt; and(3) the When 4> 60°it is obvious that the possibility
minimumtotal free energy of the solid—solid and of interconnectionof the melt inclusionsis depen-
the solid—liquid interfaces. The latter condition dent on the grain geometryand the amount of

melt. Bulau et al. (1979) determinedthe critical
melt fraction leading to an interconnectedsystem

16CC of meltpocketsas a function of thedihedralangle.

R 30kbdr They found a steady increasefrom 0 to 30%
~

005.1,R30kb0~’/, critical melt fraction for anglesincreasingfrom 60
~ to 180°.GL25k

14~ W25kb bQOS w3OkbO,1’/, Most melting experimentsfind that the melt
25kb ~ occursin films wetting the grain faces(Arzi. 1972.1978a,b;Mehnertet al., 1973; Bueschet a!., 1974;

S 0kb dr, Arndt, 1977; Van der Molen and Paterson,1979)
MKF,Okb dr.

O,2/. 15kbO,1~I although compact melt pockets have also been
~12~ 5L30 WDkbdr basaltpowdersand approachedthe texturalequi-

observedin dunite (Berckhemeret al., 1982a,b).
Waff and Bulau (1979)carriedout melting experi-
ments with mechanicalmixtures of dunite and

mac librium. They found the melt occurring within
0.00 0.05 010 0.15 intergranulartubeswith a meandihedralangleof

MELT FRACTION
47°,the grain faces appearedto be dry (Cooper

Fig. 1. Melting curves of pyrolite and spine! lherzolite at andKohlstedt,1982).A completelyconnectedmelt
differentpressuresand water concentrations(values in %, dr.:
dry). W: Wyllie (1971); R: Ringwood(1975); GL: Greenand systemwas found for a melt fraction of 1—2% in
Liebermann(1976); MKF: Muraseci al. (1977), S: Scarfeet al. tubes(Waff and Bulau, 1979), but 5—l0% were
(1972). neededin the caseof films (Mehnert et a!., 1973;
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Fig. 2. (a) Illustrationof thedefinition of thedihedral ange 4. (b—c) Possiblegeometriesof themelt phasein a partially molten rock:
films (b), tubes(c), andmelt pockets(dande). Thehatchedareasin theblock diagrams(lowerpartof eachFigure)alsoshowpossible
melt geometriesdependingon thelocationof themelt within grains,atgrain faces,oratgrain edges.

Arndt, 1977). Arzi (1974, 1978a) and Van der from the lower crust and partially melted during
Molen and Paterson(1979) observedan increase ascent.
of dry grain faces if the melt fraction decreases. Assessingall the argumentsand observations
Thespecimensof peridotiteandduniteused in the mentionedaboveit appearsreasonableto consider
experimentsby Berckhemeret al. (1979, 1982a) the whole variety of possiblemelt geometriesand
also showedmelt films at some,but not all grain a variable degreeof interconnectionwhen for-
faces(B. Aitken, personalcommunication,1981). mulating melt models describing the elasticity,
Padovani(1977) observedevidencefor bothcon- anelasticity,andelectricalconductivityof partially
nected and unconnectedmelt in xenoliths at moltenrocks.
Kilbourne Hole, New Mexico, which originated
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_____________ solid introducedby Zener (1948). It consistsof
~ two springsand one damping element(Fig. 3a).

The elasticmodulusandthe correspondingDebye
peakof absorptionof sucha standardlinearsolid
are shownin Fig. 3b as functionsof the frequency.
A singleDebyepeakis characterizedby a relaxa-

a) tion time T andthe relaxationstrength~

M~MrU (4)
__________________ Mr

The amplitudeof a Debyepeakis givenby
0~ 2
~.1

2~/Mu•Mr
This modified relaxationstrengthL~’will be usedI ~ Q~~=~’/2=Mu~Mr (5)throughoutthis paperasan estimatefor anelastic-ity. For small ~ onecanwrite

(6)
Modulus

A real viscoelastic material can be approxi-

0,01 0.1 1 10 100 matedby superimposingdifferentrelaxationtimes.
If their normalizeddistribution is givenby V(T)dT,b) NORMALIZED FREQUENCY
the real and imaginary parts of the moduluscan

Fig. 3. Standardlinear solid. (a). Symbolicrepresentation.(b). be written (Nowick andBerry, 1972)
Correspondingelasticmodulusand internal friction (arbitrary

~ ~2~2
units) asa functionof normaliaedfrequency. M,(~)= M~+ (M~— Mr) f V d T (7)

~o 1+~
2T2

M
2(~)(Mu_Mr)f V COT2 2d7 (8)

3. Basic relations o 1 + ~

In a linear viscoelastic.body stressand strain From (8) one can estimatethe upper bound for
can be relatedby the complexelasticmodulusM Q of an arbitrarydistribution V given between

r1 and ‘r2 by applying themeanvaluetheoremfor
M=M1 + iM2= M~exp(hJ.~) (1) integrals

M maybe anyoneof the elasticmoduli or a linear w~ ~

M2(c~)= (M~— M1)combinationof these.In general M is frequency 1 + ~2~2 J,~Vd T
dependent.The unrelaxedandrelaxedmoduli M~ -

COT
and Mr can be defined by the following limits (M~— Mr) <(Ma — Mr )/2

~ + ~2~2 —

which are realnumbers
MU urn M(co) where (r1 � ~(w)� T2)Thus

(9)
Mr= lirnM(w) (2)

for all possible distributions of relaxation
The absorptionfactor Q’ can be definedby the processes.
complexmodulus Another useful relation results from the

Kramers—Kronig-relationwhich combinesrealandQ
1=M

2/M1==tant~ (3) .

imaginarypartsof themodulus.After Nowick and
A basic viscoelasticbody is the standardlinear Berry (1972, p. 37) the Kramers—Kronig-relation
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for M5 canbe written sumedhighly anisotropic materials. Hashin and
Shtrikman(1963) gaveboundson the elasticcon-

M1(w) = Mr +
2CO M

2(c~) d~S (10) stantsof an isotropic material (subsequentlyde-

17 ‘0 ~ CO

2 ~ notedas HS-bounds).They showed,that without
From this oneobtains knowledgeof~thegeometryof the components,the

HS-boundof the bulk modulusis the best possi-
M~= Mr + ~ fM

2( w)d ln CO ble. Thelower HS-boundof the shearmodulusof
~ o a solid—fluid systemis of no usesinceit is zero.A

usefulalternativeis to specifythe geometryof the
For small ~ it follows

phases.If the fluid phaseoccurs in widely sep-

~- J Q — i ( £~)d In ~ (11) aratedinclusions, the elasticinteractionsbetween
~ o inclusions can be neglected.Under this assump-

Thus the half relaxationstrengthcan be approxi- tion Eshelby (1957) and Hashin (1959) derived
mated by the areaof the Q*spectrum plotted expressionsfor the bulk and shear moduli of a
versusln CO and divided by ~. (11) canbe used to material containingsphericalinclusions. Surpris-
estimateQ

1 for given relaxation strengthsand ingly, the moduli lie above the HS-boundsand
certain relaxationspectra.For instance,assuming approachtheseonly at small fluid concentrations.
a constantQ bandmodelover the rangel/T

2 << CO Since this discrepancyis due to the neglect of
<<l/T1, Q is relatedto ~ (cf. Mavko, 1980) by elastic interactionsit can give an idea about the

validity of the non-interactionassumption.
i~/2 1.36 (12) Eshelby (1957) investigatedthe elastic field of

1og10’r2— log10T~ an ellipsoidalelastic or fluid inclusion embedded

which variesonly weakly with the width of the in a homogeneouselasticmediumunderexternal
band. stress.Using Eshelby’s (1957) results Wu (1966)

In the model set presentedbelow the relaxed derived analytical expressionsfor the effective
and unrelaxedmoduli and the relaxationstrength moduli for the case of spheroidal (a = b * c),
are consideredfor a partially moltenmaterial. The penny shaped(a= b>> c), and needleshaped(a
explicit frequencydependenceof the moduli and >> b = c) inclusions,wherea,b,c are the threehalf
Q wasnot treatedin detail. Equations7—12, to- axes of the ellipsoidal inclusion. For the caseof
getherwith assumptionsabout relaxationspectra, soft penny shapedinclusionsWu’s formulae are
can be used to estimatethe behaviourof Q with no more applicable.Walsh (1969)modified them
frequency.As an advantageof this simplified ap- for fluid inclusionswith a small but finite aspect
proacha detailedknowledgeof the melt viscosity ratio a(= c/a). In contrastto Wu’s moduli Walsh’s
is not required. resultsare only valid for the caseof non-interac-

tion betweenthe inclusions,which leads to diffi-
culties at fluid concentrationsof the sameorder as

4. Previouswork aspectratios (Schmeling,in prep.(b)).
To take into account the interactionbetween

This sectionreviews earliermodelsof elasticity inclusions and thus allow for higher concentra-
and anelasticity which include relaxed and unre- tions the most successfulapproachso far is the
laxed statesas well as frequencydependentab- “self consistentscheme”(Budiansky, 1965; Hill,
sorptionmodelsof generalsolid—fluid systems(see 1965), subsequentlyabbreviatedas “SCS”. Rather
also Watt et a!., 1976; Mavko et al., 1979). than consideringexplicitly the elasticinteractions

between densely distributed inclusions one ap-
4.1. Elasticitymoduli proximates the elastic field around a particular

inclusion by embeddingit in an infinite homoge-
Early estimatesof boundsof moduli for com- neousmediumwith the meaneffectivemoduli to

posite materials (Voigt, 1928; Reuss, 1929) as- be determined.This leadsto an implicit systemof
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coupledequationsfor the effective moduli. With For the relaxedshearmodulusanarbitrarydistri-
this approachthe effectivemoduli of a solid con- bution of acanthusbe representedby exactlyone
taming sphericalinclusions lie well between the aspectratio a’ (becauseD = 1, seeAppendix B).
HS-bounds. For unrelaxedmoduli this is only approximately

A very comprehensivestudy of the elasticity of the caseas long as a << Kf/K. where K, Kf are
a materialcontainingdry cracksor thin fluid films the bulk moduli of the effective materialand of
wascarriedoutby O’ConnellandBudiansky(1974, the fluid, respectively.
1977) andBudianskyand O’Connell (1976). They The inclusiongeometriesmentionedso far have
approximatedthe cracks respectivefilms by flat alwaysbeenconvexso that for cracksthe opposite
ellipsoidal inclusionswith the axesa, b>> c. The faces are decoupledover their entirearearegard-
SCS was applied.The parameterdetermining the less how small the aspectratio is. However,micro-
elasticity was the crackdensity,definedas scopic investigationsof cracked rocks show that

N A2 many (or most)of the cracksare irregularand the
= 2— — (13) faces have local point contact (Walsh and

TP
Grosenbaugh,1979).Suchcontactsincreasein area

where N is the numberof crackspervolume, A is with lithostatic pressureif the cracksare dry or
the areaand P is the perimeterof a crack. In the filled with a compressiblefluid. Thus,whenusing
case of circular cracks with the radius a’ (13) modelsof ellipsoidalcrackscautionmustbe taken
reducesto if small aspect ratios are assumedbecausethe

Na’3 (14) “effective” aspectratio may be largerdue to the
contactsat the faces. Theoreticalmodels for the

This crack density is related to the porosity (or compressibilityin thecaseof non-ellipsoidalcracks
fluid fraction) /3 and the aspectratio a (= c/a’) were developedby Mavko and Nur (1978) and
by Walshand Grosenbaugh(1979). However, similar

/3 = 4TTae/3 (15) modelsfor the shearmodulusare missing.

O’Connell and Budiansky(1974) showedthat the Mavko (1980) determinedthe effective moduli
elastic moduli of a material containingelliptical for the fluid (i.e., melt) distributed in form of

tubesalong grain edges(Fig. 2c). He varied the
crackswith a * b >> c are nearlyequalto thoseof
circular cracks(a’ = b’ >> c) as long as the crack shapeof the crosssectionof the tubesby aparam-
densitiesdefinedby (13) and (14) are the same. eter ic (Fig. 4) andused the SCSto determinethe
Keeping /3 and the small axis c constant,the dry and saturatedshearmoduli and the dry bulk
radiusof the circularcracksa’ is relatedto A and modulus.However, for the determinationof the

saturatedbulk modulusheusedGassmann’s(1951)
P of the elliptical cracks

relation togetherwith the self consistentdry mod-
a’ = 2.4/P (16) ulus. This inconsistencyis discussedin Appendix

O’Connell andBudiansky(1977) introducedthe A.
The effect of applying the SCScan be demon-

crack density in a form allowing for distributed
inclusionshapes.If V(a) is the normalizeddistri-
bution of aspectratios, the aspectratio a and the
quantity D in O’Connell and Budiansky’s equa-
tions for both the unrelaxedand relaxedmoduli
(or in eq. B7 in our Appendix B) have to be
replacedby

cr’=j V(a)ada (17)
0

D’ = J D V(a )da Fig. 4. Shapesof cross-sectionsof thetubemodel after Mavko
0 (1980)dependingon theparameterK. (From: Mavko, 1980.)
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Mbar anismappearsinsufficient to account for seismic
SHEAR MODULUS absorption in a partial melt(Schmeling,1983). On

the otherhand,dueto microscopicheterogeneities
such as variable geometriesand orientationsof
pores a locally inhomogeneousflow field may

I I I . I becomeimportant,which is not accountedfor in
j 0 0,05 0,1 /3 Biot’s approach.In particular,elastic energy may

be dissipatedeitherby viscous shearbetweenop-
10

posedboundaryfacesof fluid films, or flow driven

1 T by pressuregradientswithin or betweenpores.4.2.1. Viscousshear

rioSCS Walsh(1968, 1969) calculatedthe viscousshear
relaxationof a materialcontainingpenny shaped

1 ~3 randomly distributed and oriented fluid inclu-
sions.He found that sucha materialbehaveslike a

0 0,05 0,1 standardlinear solid with a characteristicrelaxa-
MELT FRACTION ~ tion frequency dependingon the aspectratio and

the fluid viscosity. Walsh also estimatedthe re-
Fig. 5. Shear modulus (upperdiagram) and half relaxation laxation strength, however, the solution is only
strength~‘/2 (lower diagram)for the tube model (K 0) of
Mavko (1980), calculatedwith and without applying the SCS. valid for widely dispersedinclusionsandit cannot
The lower (upper) curvesof the shearmodulusrepresentthe beappliedto the caseof completegrain boundary
relaxed(unrelaxed)state, relaxation.O’Connell and Budiansky (1977) car-

ried out a viscoelasticanalysis of viscous shear
relaxationin fluid filled cracks.Owing to theSCS

stratedusingMavko’s (1980)model. In Fig. 5 the usedthe effectivecomplexshearandbulk moduli
shearmodulus(top) andmaximum shearabsorp- becomecoupled.Thus, the model material loses
lion (~ half relaxation strength) (bottom) are the propertyof a standardlinear solid. Sinceeqs.
shown with and without applying the SCS as a 4—12 are basedon the standardlinear solid, the
function of melt fraction /3. Above 5% melt the deviation due to the SCS is assessedbriefly. A
moduli begin to diverge slightly. However, the single absorptionpeakcan be constructedtaking
absorptionwith the SCS shows a striking dif- the unrelaxedand relaxedmoduli with respectto
ferencecomparedto that without the SCSevenat viscous shearrelaxationand assuminga standard
melt fractionsas low as 5%. This raisesthe ques- linear solid (i.e., using eq. 5). Comparedto the
tion on the reliability of the SCS for the de- absorption peaks obtained by the complete
terminationof relaxationstrengthrelative to that viscoelasticanalysis (O’Connell and Budiansky,
of the correspondingmoduli. 1977, fig. 4) there existsno significant difference

in the amplitude.However,the maximaof O’Con-

4.2. Relaxationmodels nell and Budiansky’s Q~-spectraare shifted
slightly towardslower frequenciesdue to the SCS.

In the following part of this sectionabsorption At crackdensitiescorrespondingto the caseof
mechanismsin a solid—liquid systemare discussed. completewetting of grain faces O’Connell and
Biot (1956a,b) developed a theory describing Budiansky(1977) found Q~ of viscousshearre-
seismic wave propagationand absorption in a laxationto rangebetween0.14 and0.26. However,
fluid saturatedporousmedium. Biot’s theorycon- as wasalreadypointedout by Nowick and Berry
sidersa regional flow of the fluid with respectto (1972), smallirregularitiesof the grain facescould
the solid as a result of inertia and a pressure considerablyinhibit a completeshearrelaxation.
gradientalongthe seismicwave length.This mech- Furthermore,if the correspondingrelaxationtimes
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are considered,viscous shear relaxation would and viscosity. The hatched area indicates the
account for measuredQ in the asthenosphere seismicband.
only if the meltshaveviscositiesof 106_i07 Pa s
(Nur, 1971; Solomon, 1972). However, measured 4.2.2. Melt squirt
viscositiesof silicatemeltsare between1 and1000 Alternatively, pressure driven fluid flow is
Pa s (Kushiro et a)., 1976; Kushiro, 1977; and anotherpotential mechanismof stressrelaxation.
others).O’Connell andBudiansky(1977) therefore Pressurevariationsmay be producedwithin single
concludedthat viscous shear relaxationwas im- inclusionsif they deform non uniformly underan
portant for seismic frequenciesonly if the aspect externally applied uniform stress.Such deforma-
ratios were smaller than 10~~. This is demon- tions of non-ellipsoidaldry crackshavebeencon-
strated in Fig. 6 (top), where the characteristic sidered by Mavko and Nur (1978). Somewhat
frequenciesare shownas a function of aspectratio longer relaxation times are involved if the fluid

flow takes place between neighbouring but in-
terconnectedinclusions. If the inclusions havea
different geometry,say, a crack is connectedwith

I ‘1~~~’ ‘ 6 -Log a sphericalinclusion, an externallyappliedhydro-

4~ static pressurewill producedifferent fluid pres-
sures in the two inclusions which, in turn, can
equalize by flow. The correspondingrelaxation
frequencywas estimatedby Johnstonet a!. (1979).

V
For typical bulk moduli and viscosities(see e.g.,

:0/ Kushiro et al., 1976; Stolper et al., 1981) thea
-o -4 -2 0 log~ frequencyranges in the seismic band if the crack

aspectratio is smallerthan103_102.

*— log ~ Relaxationdueto flow betweeninterconnected
- inclusionsof similar shapeis possibleif the exter-

>3//-12 mechanism.The fluid is squirted from inclusions/ ~ nally appliedstressis pureshear.Mavko andNur
~ 2/ / (1975) introducedthe term “melt squirt” for this

/
o Melt squirt fitms
01 / / I

~ / / ~I / orientedessentiallyperpendicularto the principleaxis of compressionto thoseessentiallyperpendic->c/ I / ular to theprincipleaxis of tension.O’Connell and-6 -4 —2 • 0 1ogo~ Budiansky(1977) carriedout a viscoelasticanaly-

_J~ / /
h log f sis of this mechanismfor fluid filled cracks andestimated the characteristic frequency which is

Vt shown in Fig. 6 (centre). Melt squirt may be

6 tog importantin the seismic frequencyrangeat aspectratios <10_2_103. O’Connell and Budiansky2 M~t~irt (1977) also calculated Q-spectrafor distributedaspectratios.They found thatmelt squirt couldbe2R important if the crack densitiesare sufficientlyC - d high for completegrain boundarywetting.
Fig. 6. Linesof constantrelaxationfrequenciesas a functionof Mavko (1980)determinedthe relaxationdueto
log viscosityandlog aspectratio or log(2R/d), theequivalent melt squirt for the case in which melt occurs
aspectratio for tubes.The numbersbesidethecurvesrefer to within tubes (Fig. 2c). Heestimatedthe relaxation
the log frequencyf in Hz. Upper diagram: viscous shear
relaxation Central diagram: melt squirt in films. Lower di- frequencyfor the caseof taperedoff crosssections
agram: melt squirt in tubes. Assumptionsfor the moduli: (.c = 0, seeFig. 4). If the ratio length to thediame-
K = 0.66 Mbar, ~ = 0.4 Mbar, K

1 = 0.2 Mbar. ter of the tubes is smaller then 102_103, it is
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possiblethat the frequencyranges in the seismic tranly shaped,fluid filled inclusions being partly
band(Fig. 6, bottom). interconnectedandpartly isolatedcanbe obtained

Basedon the characteristicrelaxationfrequen- by the following approach.The two states of
ciessummarizedin Fig. 6 it is assumedhere that stressesand displacementsshown in Fig. 7 canbe
melt squirtis the only importantrelaxationmecha- connectedby the reciprocity theorem assuming
nism dueto meltat seismicfrequencies.Thus,the linearelasticity.Figure7a showsthe body contan-
term “unrelaxed”will beusedonly with respectto ing inclusions loadedby an external traction Te.
the melt squirt mechanism,andit is assumedthat The inclusions“con” are regardedto be connected
viscousshearrelaxationhasalreadytakenplace. and thus allow for an equilibrationof fluid pres-

suresin therelaxedstate.The inclusions“iso” are
regardedto be isolated.ii and~ are the porewall

5. The completeset of melt models and body surfacedisplacements.The individual
pore pressuresare indicatedby p~,Pp2 In

5.1. The general equations Fig.7b theporewalls are loadedwith the tractions
T1, the sameas the externalTe-tractions.Thus the

In this section a set of very generalself con- resultingdisplacementsü0 andi0 are the sameas
sistent equations for the relaxed and unrelaxed if the poreswould contain solid matrix material.
moduli for a materialcontaining arbitrary inclu- The two statesof stressin Fig. 7 canbe combined
sionswill begiven.By utilizing publishedsolutions by the reciprocitytheoremgiving
for particular inclusion geometriesa comprehen-
sive setof equationsis establishedwith additional f T~0dF + ~ f p~liii ~dF =f T~idF
allowancefor a varying degreeof interconnection ,-.=i I

as well assuperpositionof melt geometries. N

Since only melt squirt is consideredhere (see + ~ JTüd F (19)
endof section4.2.2) theunrelaxedmoduluswill be ‘ I I

defined by the condition of no fluid exchange whereN is the total numberof inclusions, f~,and
betweeninclusions.It is assumedthat the pressure f are the externaland inclusionsurfaces,and~iis
within each inclusion is uniform and no viscous the surfacenormal vector. As external tractions,
shear stressesexist in the fluid. Different fluid either pure shearstressS or hydrostaticpressure
pressuresin different inclusionscan thenequalize P~iare taken. The sheartractionsare given by
by fluid flow if the inclusionsare interconnected.
The resultingisobaricstatewill be takento define S 0 0S=0 —SOn
the relaxedmoduh. 0 ~

After Mavko (1980) the effectiveelasticmoduli
of a material containingarbitrary inclusionscan The specific strain energy representedby the first
be obtainedby usingthe Betti—Rayleigh-reciproc- integrals on either side of (19) can be taken to
ity theorem(see e.g., Love, 1907, p. 205). It con- definethe undisturbed(matrix)andeffectiveshear
nectstwo arbitrary elasticstatesof equilibrium of andbulk moduli, respectively
a linear elastic body. If thesetwo statesI and 2 1 1 1 1 =

arerepresentedby thesurfacedisplacernentsü1,ü2 ~ = ~

1F ILeff = VS2 ‘F (20a)
and the surfacestressvectorsor tractionsT

1, T2
actingon the body thetheoremcanbe written 1 1 c ~... 1 1 c ~...

‘ Prni~dF —=—— I PnvdF
K0 VP

2 ~F Keff VP2 ~F
jT

1u2dF_—fT2uidF (18) (20b)

where the integration has to be carried out over where V is the totalvolume.
the total outerandinner surfacesF. To determinethe unrelaxedmoduli eq. 19 to-

The formulae of the different moduli for arbi- getherwith eq. 20 can be evaluatedassumingthat
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~PP1~~~II__Pp
3~Tt iso

b)

Fig. 7. Illustration for thereciprocity theorem.The inclusions“con.” areassumedto be interconnected,thoseindicatedby “iso.” are
isolated.For details,see text.

at the first instant of loading all inclusionsare inclusionsof similar shape(which then have the
isolated.To takeinto accountthe SCS the result- samepore pressure)(21) representsa self-con-
ing moduli are given togetherwith the unrelaxed sistent version of the Gassmannrelation (Gass-
Poisson-constantv in a set of coupledequations mann, 1951) (eq. Al, Appendix A). This relation
whichhaveto be solved simultaneously givestheeffectivebulk modulusof a fluid-saturated

N body if the porosityand the bulk modulusof the
= ~J~_+ I I I ________________ fluid, the solid matrix, and the dry porous body

K~ K0 V K1 K0 ~ i ~

1 1 1 are known. Note that (21) reducesto the original
+ ‘k Gassmann-relationif the SCS is dropped,i.e., if

K~on the right-handside is replacedby K
0 and

~21 = 0.(K0,~t0).The derivation of (21) is given in

1 1 ~ N = Appendix A. In deriving (22) it has been taken
— = — ~ JT~udF (22) into accountthat the secondterm in (19) vanishes

11 I if pureshearis assumedas the externaltraction.

3K~—

2p.~ To obtain the generalequationsfor the relaxed
= 6K + 2~z (23) moduli one has to distinguish betweenisolated

and connectedinclusions,It is assumedthat in the

Here 0,(= f~~üñdF/J’~P)representsthe apparent secondcategory the fluid pressure,has equalized
compressibilityof the i-th inclusion if it were dry due to flow betweenpores(and is actually 0 for
and hasto be determinedfor the particular inclu- externalpureshear)while the isolatedporesretain
sion geometries. 0, = 0,(K~,,i~)has to be de- the fluid with different individual pore pressures.
terminedfor an inclusionembeddedin a Ku—, p. ,,- Applying the reciprocitytheoremgivesthe relaxed
material. l” is the volume of the i-tb inclusion.For shearmodulusas the solution of the coupledequa-
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tions(whereK’ and v’ are auxiliary quantities) equationscanbe written as

1 1 11 I N~, V
= — + — — — — 3 \t~’mi l’’mc

K’ K0 V K1 K0 ,_~ 1 1 1 01+0, ~‘7~7 K K0 1 1
U rn—I 1 + ~ ~u, ~‘u) —

(24) (28)

I I I N1~, 1=1+ ~ A~(K~,~ ~u’ Kt).($mi+$mc)
~ f1.iidF /1,, 1~~O rn-I

p.r ~o S
2V i==1 ~ I K, (29)

N~,,, 3K~—2p.~
+ ~ J~udF~ (25) ~ — 6K~+ 2v~ (30)

,—i I K,—0 ~‘ i i

3K’—2p. 1 1 /3mI

— 6K’ + 2p. (26) K’ K
0 , 1 1r m 1 1+0

1(K’
,~, ,p.~,P K K’

The sumsin (24) and (25) have to be extended
over the isolated (N,

50) and the interconnected
(N~0~)inclusions, respectively.Here 0, has to be +0

1K~ ~. 31
taken as a function of K’ and ~ In the first rn’. p.

1-, Vj ~

integralof (25) fluid filled inclusionsare assumed
while dry pores have to be consideredin the
secondintegral. To determinethe relaxed bulk 1 1
modulusGassmann’s(1951)relation can be used = — + ~ (A,,,(K’, p.r, V’, K1) /3,,,

~ m—lin the form —

+A~(K’,p.1., v’, K1= 0) ~/3rnc) (32)

K,. = ~ ~ with F= (27) ~ = ~ (33)

Here K50 has to be determinedsimultaneously Kr is obtainedby using(27)where K150 hasto be
with a quantityp.~,,,usingeqs.21—23 by summing determinedwith p.,~0from (28) to (30) assuminga
only over the isolated inclusions and reducingV modified total melt fraction /3,~,= f

3mj/(i /3rnc).

by the total volumeof the interconnectedpores.f3~ The quantities Om and Am (m = 1, 2, 3) for the
representsthe volume concentrationof the inter- particulargeometriescanbe takenfrom O’Connell
connectedpores. and Budiansky (1977), Mavko (1980) and Wu

The sumsoccurringin the set of eqs.21—25can (1966).They are listed in AppendixB.
be evaluatedfor particular inclusiongeometries.It The above set of equationsgives the moduli
seemsreasonableto model a rangeof geometries necessaryto determinethe relaxationstrengthfor
asbroadas possiblefor a partially moltenrock by shear,&,,, andfor compression~K’ accordingto
allowing for film, tubular,and spheroidalshaped eq. 4 or the maximum Q denotedby ~/2 and
inclusions. If thesegeometriesare denotedby the ~‘~./2 accordingto (5). However, sincethe deriva-
subscriptsm = 1, 2, 3, respectively,and the corre- tions of the relaxedand unrelaxedbulk modulus
spondingmelt fractions of the isolated and con- are basedon different approachescarehas to be
nected inclusionsby /3 and /3,., respectively,the takenwhentheir differenceis small, i.e., when &C

Schmeling
Beschriftung
2 my_u

Schmeling
Linien
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is small. It shouldbementionedthat for melt films sionsandturnedout to be betterthan0.5%.

also distributedaspectratios can be considered The numericalsolutionshavebeenusedto test
usingthe representativeaspectratio a’ as given in the conditionsin which triaxial ellipsoidswith the
eq. 17. In the following threesectionsthe theory axesa, b, c canbe reducedto the casea’ = b’ ~ c.
for melt inclusion modelsis extendedwith regard For different b/a-ratios a’ was determined
to generalellipsoidalinclusions,variabledegreeof accordingto (16). With this a’ an a’ wasdefined
interconnectionbetweeninclusions,andcombina- as a’ = c/a’. Numerical determinationsof effec-
tion of inclusionsof different geometry. tive moduli and relaxation strengths have been

carried out by varying b/a for different a’ and
5.2. Moduli and relaxation strengthfor ellipsoidal melt concentrations.Figure 8 shows some results

inclusions for the unrelaxedshearmodulus(where the undis-
turbedmoduluswas0.4 Mbar). Sincethe abscissa

5.2.1. Triaxial inclusions gives b/a, the curves for the moduli and relaxa-
In the viscoelasticmodels by O’Connell and tion strengthsshouldbe horizontalif (16) is appli-

Budiansky(1977)andWalsh(1969) the melt films cableto ellipsoidalinclusionswith finite thickness.
were approximatedby ellipsoidal inclusions hay- The deviation from horizontal increaseswith a’
ing a small aspectratio a(“~ 1). However,as has andwith meltconcentration.From Fig. 8 it canbe
beenpointedout in section4,1., it is questionable
whethersuchsmallvaluesof a arereasonable.The
elastic solutionsfor ellipsoidal inclusionsgiven by a’ $
Wu (1966), Kuster and Toksoz (1974) and Kor- 0,4

ringaet al. (1979)allow for arbitraryaspectratios. 2/n-i 0$6
0,2 0,06

However, thesesolutionsdo not considertriaxial
ellipsoids (a* b * c); furthermore, they do not ‘~‘ ~ 2/n-i ~lO8

0,2 QOBQ4 QOBconsider relaxation. To account for theseextra ~ I 03

0,2 0,12factorsthe model presentedheregives the relaxed ‘ ~. 2/,~-I 0,15and unrelaxedmoduli andthe relaxationstrength
0,67 0,2for ellipsoidal inclusionswith the half axes a � b

� c. Whetherthe casea * b * c, as wasshownfor 2/n 0,2
films by O’Connell and Budiansky(1974), can be lOTt

reducedto the case a’ = b’ * c by using relation
(16) will be testednumerically. Q2 0,12

The set of eqs. 21—27 has been taken to de- 0,4 0,2

termine the effective moduli for ellipsoidal inclu- ~ ~2 Q08
2/n 02sions of the sameshapeassumingcompleteinter- c I -L 0,67 0~2

connection.For this casethe pore wall displace- ~— 0,2 0,04

mentscan be determinedby using the resultsof I ~ ~
cii

Eshelby(1957). Eshelbygave the solutionsfor the I

strain of an inclusion if a uniform arbitrarystress
is applied at infinity. Assumingeither pure shear 2/n 0,08

or uniform compression at infinity, Eshelby’s 1O~
0 0,5 1

expressionswere solved numerically to give the
integralsover the pore wall displacements.These
were integrated numerically over all possible Fig. 8. Unrelaxedshearmodulus(upperpart) and half relaxa-
orientationsof the inclusionsto give the effective tion strength~‘/2 (lower part) for ellipsoidal inclusionswith

threedifferent axes a � b � c asa function of b/a. a’ = c/a’moduli. The numerical accuracyof the multiple and $ give the particular aspectratios and melt fractions.

integrationswas testedby known analyticalsolu- Assumptionsfor themoduli: K
0 0.66 Mbar. ~ = 0.4 Mbar,

tions for disc-,needle-,andsphericalshapedinclu- K1 = 0.2 Mbar, ~ = 0. TheSCSwas applied.
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inferred that (16) appearsto be applicable for
ck~ K,. a’ <0.2. For a’ > 0.2 the condition (16) is only

0.6 applicableif, with decreasinga’, a decreaseof the

moduli of a few percentand an increaseof the

into account.

~01QO3165 relaxationstrengthup to a factor of two is taken5.2.2. Spheroidal inclusions
b.oo 0.06 0. 10 , 0. 15 Theextensionof(16)towardsfinite aspectratios

MELT FRACTION ,S is regardedto be sufficiently accurateto drop the

complicating assumptionof three different axes
K and,instead,to considerellipsoidswith two equal

0.6 axesa = b * c (i.e., spheroids).The analyticaleqs.

28—33 (plus 27) are appliedfor the particularcase

3 sions. (5) was used to determine~‘/2 for shear

i ~ ~ ~~0,O10,Q3Q0 ~2 of completely interconnectedspheroidal inclu-which gives approximatelythe half shear relaxa-_________________________________________ tion strength.
0. 00 0. 05 0. 10 0. 15 Figure 9 shows the decreaseof the unrelaxed
a) MELT FRACTION /3 and relaxed shear and bulk modulus and ~‘/2

with increasingmelt fraction for different aspect

100 ________________________________________ ratios. After Berckhemeret al. (1982a)andStolper

to representpartially molten ultrabasicrocks un-
Mbar, K1 = 0.2 Mbar, p.1 = 0. The self-consistent(/1/ 0316 .05 et al. (1981) the following valueshavebeenchosen

- - schemewasapplied.Theverticalbars indicatethe
deviation from the film model of O’Connell and
Budiansky(1977) who consideredinfinitely thin
cracks when determining the reductionof strain
energydueto the cracks.For a � 0.01 the present
modelsagreewell with the film model, however,~_ der room pressure: K0 = 0.66 Mbar, p.0 = 0.4
abovea = 0.03 finite inclusionthicknessinfluences
the elasticitysignificantly. It is noteworthythat for
aspectratiosbetween0.2 andI the moduli do not
differ very much.This suggeststhat, so longas the

— retioa
melt pockets have a convex shape, the elastic
behaviourof a materialcontainingmeltpocketsof
different shapedoesnot differ significantly from a
material having completely spherical inclusions.
The vertical bars in Fig. 9b indicate that the
relaxationstrength(actually~‘/2) doesnot showa0.00” ‘ ‘~:~~‘ ‘~:~~‘ ‘

b) MELI FRAC110 N /3 pronounced departurefrom the film model. The

Fig. 9. (a) Relaxed(top) and unrelaxed(bottom) moduli for _______________ _______
ellipsoidal inclusions.The numbersbesidethe curvesgive the (spheroidal)inclusions (solid curves) and melt tubes(dashed
aspectratios. The bars indicate thedeviation from O’Connell curves).The numbersgive theaspectratio, K givestheshapeof
andBudiansky’s(1977)film model(andareomittedfor a� 0.2). thetubular crosssection.Thebarsgive thedeviationfrom the
(b) Half shear relaxation strength L~’/2 for ellipsoidal film model. Theundisturbedmoduli arethesameas in Fig. 8.
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deviations in moduli partially cancel out when Figure 11 showsa possiblecombinationof the
taking the difference between p.,, and p.~as resultsshown in Fig. 9. Such a diagramcould be
requiredby (5). Figure 9b shows that highrelaxa- usedto interpretin situ dataof particularregions
tion strengths are obtained for arbitrarily small of the asthenospherein terms of melt fraction and
melt fractionsas long as the aspectratio is suffi- geometry if estimatesof the relaxation strength
ciently small.However,for a> 0.1, significantmelt and the reduction of the shearmodulus due to
fractionsare requiredfor high valuesof relaxation meltare givenfrom seismicdata.Theshearrelaxa-
strength. In contrast to the moduli themselves, tion strength(actuallyA’/2) is plotted versusthe
~‘/2 dependssignificantly on the aspect ratio unrelaxedshearmoduluswhich in turn decreases
betweena-valuesof 0.2andI. below the undisturbedvalue of 0.4 Mbar as the

An interesting result is the finite relaxation melt fraction increases.The uppermostcurve rep-
strengthfor sphericalinclusions(a = 1). Underan resentsextremelythin films. Finite aspectratios
external load onewould expect the fluid pressure result in lower curves.For thin melt films a par-
in all spheresto be equal(or zero in the caseof ticulardatapair of ~ ~ on the uppercurve may
pure shear)becauseno relaxationdue to pressure result from different melt fractions/3 and aspect
inducedflow shouldbe possible. In fact the finite ratios a as long as their ratio a/fl (i.e., “crack
~‘/2 is a consequenceof the SCSwhich is usedto density”) is equal.However,for finite aspectratios
approximatethe interactionsbetweeninclusions, there exists an unequivocalrelationship between
This can be illustrated by consideringa spherical the four quantities~ p.,,, a, /3. Hence,if both the
inclusion being influenced by an external pure
shear of magnitude p (Fig. 10). According to
Eshelby’s (1957) solutions the pressurein the sur- 10
rounding materialat a (b) can be determinedto Ellipsoids, 0,01

be +(—) 5 p(l + v)/(7 — 5v) wherep is the Pois-
son-ratio. Thus,an imaginaryneighbouringinclu- Films, o~= 0,001 —

sion nearpoint a will show a lower fluid pressure -t ‘ .00

than one near b; such differences would be 10 0,1

equalized by fluid flow if they were intercon- r’.~ 2

nected.
0,316

I Z 05+ w -2
I) 06

I-

______________ w 1

>‘:

-J

a

bQ b 2’// 5’/, 8’!, Me

0 0.40 ‘ ‘ 0.36 ‘ 0.30 ‘ 0.25
SHEARMODULUS(MBAR) ,(UNRLX)

Fig. 11. Half shearrelaxationstrength ~‘/2 as a function of

t
the decreasing unrelaxed shear modulus for ellipsoidal
(spheroidal)inclusionsand films. The curves2%, 5% and 8%
give the melt fractionsleading to the modulusdecreasesand
relaxation strengthsshown.The undisturbedmoduli are the

Fig. 10. See text, sameas in Fig. 8.
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relaxation strength and the shear modulus are coveredby oblate spheroidswith a between0.3
given, it is possible to determine both the aspect and 1 (Fig. 9).
ratio and the melt fraction assuming ellipsoidal For the above models certain typical elastic
inclusions. Three lines of corresponding melt frac- moduli M0 and K1 have been chosen. It should be
tions are shown. mentioned that these undisturbed moduli can be

An interesting featurearisesfrom the diagram: regardedas normalizingquantitiesas long as the
if the modulus decreaseis fixed, high relaxation undisturbedPoisson-ratior’0 does not deviate too
strength(absorption)results from low melt frac- much from 0.25. Thus, the resultscan be trans-
tionsand viceversa. ferred to othermaterialsandpressureconditions.

For comparison Fig. 12 shows the melt model However, varying K1 with respectto K0 signifi-
for tubes from Mavko (1980) in a representation cantly influencesthe effectivebulk modulus,while
corresponding to Fig. 11. The curves for the differ- the shear modulusand the correspondingrelaxa-
ent cross-sections are similar to those for el- tion strength are affected only slightly so long as
lipsoidal inclusions with aspect ratios between 0.2 K1/K0 � 0.15.
and 0.5, however, the melt fractions are higher.

If the spheroidal inclusions are chosen to be 5.2.3. The influenceof a reduceddegreeof inter-
prolate (a � b = c), the shear relaxation strength connection
does not change more than by a factor of three Assuming that the melt does not fracture its
and there is only a narrow range of effective surroundings when a seismic wave is passing
moduli betweenthe sphericalandthe tubularcase, through,seismicabsorption(or relaxation)by melt
The range is approximately the same as that flow canonly occurthroughinterconnectedpores;

isolated melt inclusions are not involved in melt
squirt. The unrelaxed moduli are completely inde-

__________________________________ pendent of the connectiveness. By contrast, the
relaxed moduli, and especially the shear relaxation
strength, depend strongly on the degree of inter-

Tubes connection of melt inclusions. Schmeling (1983,
and in prep.(b)) developed a statistical model to

- describe the connectiveness of a system of ran-
domly oriented and distributed ellipsoidal inclu-

I sions or films (with the axes a = b * c). The degree
I—

of interconnection,~‘, is defined as the fraction of
LIJ inclusionswhich overlapat least with one of the

i o’~• . neighbouring inclusions. The statistical model de-
termines ~‘ as a function of /3 and a. As a result,

-j lines of constant ~ are shown in Fig. 13b. Figure

8’/, Melt 13a illustrates the basic idea of this model. The
degreeof interconnection~‘(a,~3)can be used to

1 ~‘!~ . definethe portionsof melt fractionsin eqs.28—33
representing isolated and interconnected pores, /3
and /3,.. The total melt fraction, /3, can be written

2’!,

0 . 40 0. 36 0 .30 0 . 25 Effectivemoduli andshearrelaxationstrengthhave
SHEARMODULUS (I1BAR) ,(UNRLX)~ been determined by taking ~‘ from the diagram of

Fig. 12. The sameas Fig. 11, but for melt tubeswith the shape Fig. 13. Figure 14 shows the departureof the
parameter,‘ = 0, 1, ~. relaxationstrength from the caseof completein-
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Fig. 13. (a) Illustration of thevariabledegreeof interconnectionfor ellipsoidal(spheroidal)inclusionsas a function of melt fraction /3
andaspectratio a.The quotesindicate theidealistic natureof this model,since in natureirregularitiesat thefilm facescouldprevent
a complete loss of shearstrengthat small melt fractions.(b) Curvesof constantdegreeof interconnectionas resulting from the
statistical model of overlappingof penny shapedor ellipsoidal (spheroidal)inclusions.The numbersat the curvesgive the total
probability of overlappingwith neighbouringinclusions.

terconnection (dashed curves) for melt films and 5.3. Superpositionofdifferentmelt geometries
spheroidal inclusions. For strong modulus de-
crease(right part of curves) the melt fraction is The set of eqs. 28—33 allows the superposition
high and, thus, ~ is high. The relaxationstrength of different inclusion geometries.A number of
approachesthe dashedcurves. However, at low possiblecombinationsof superpositionshavebeen
melt fractions, i.e., for only slightly decreased discussedby Schmeling(1983).Hereonly the most
moduli, ~‘ is low and the relaxation strengths differ interesting one, i.e., that of melt films plus spherical
significantly from those of the interconnected case. inclusions, is considered. For simplicity a complete
It should be emphasized that in situ determina- degree of interconnection has been assumed. The
lions of the decrease of the shear modulusin the aspectratio for the films was chosento be 0.01.
oceanic asthenosphereappearto lie well around Figure 15a shows the effective unrelaxedmoduli,
10% (Schmeling,1984;and in prep.(a)).Thus,the p., K, and K + 4/3 p. (= modulusfor P-waves)as
possibility of a reduced degree of interconnection a function of melt fraction for different volumetric
and a corresponding decrease of the relaxation fractions of melt in films and in spheres (given in
strength due to melt should therefore be kept in percent of the total melt fraction). As expected a
mind, gradual transition in the moduli occurs from the
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100 relaxationstrengthshown in Fig. 15c. Almost no
relaxation occurs if only one inclusion shape is
presentbecausethe relaxationdependsonly on the

FILMS ~ couplingbetweenK,, andp.,, (and Kr and p.r) as
s~or I ~ a consequence of the SCS(see curve for 100% S).

~io’~- .2-=~~ ~_s~’ If melt occurs only in films the behaviourof the
_~‘0,1 bulk relaxationstrengthis indicatedby the curve

.- ~/‘ 100% F. ~ increases generally with melt fraction.
Iii -. / -_ i_—.”~ — >-~‘ However, whenthe relaxedshearmodulusreachescv / / . _—/ .- ,,/ ~ 316 0, the coupling betweenK and p. decreasesuntil

>< o2 ,~ /~,/ =2 eventuallyp.c, also reaches0. No further coupling
/ // / . - >-~ ~ occursandso~ also approaches0. Sucha material

/ ~/ / ~- ,/__ without shearstrength(p. = 0) representsa suspen-

‘/‘7 / ~ -. ,~, sion with free fluid flow. Hence different fluid
-31/ / / / / — pressures do not occur which could equilibrate by

10 / / / / .__.,/_ relaxation.
I 7/ / / / / E L LI PSO 05 If films and spheres are superimposed, the bulk

7 / / / relaxation strength increases significantly. Ap-
J / / / / parently there exists a certain ratio of films to

1 ~-4 ‘I / / / spheres where the relaxation strength is maximum.
0.40 0.35 0.30 0.25 The reason for this high relaxation strength lies in

SHEARMODULUS (MBAR) ,(UNRLX) different fluid pressures due to different pore
geometries. As a comparison the dashed curve in

Fig. 14. Half shearrelaxationstrength~‘/2 as a functionof Fig. 15c gives the shear relaxation strength.
thedecreasingunrelaxedshearmodulusfor films andspheroids. The mechanismof bulk relaxationwaspointed
The solid curvestake into accounta,reduceddegreeof inter- out earlier by Johnstonet al. (1979). Budiansky
connectionaccordingto Fig. 13, while the dashedcurvesas-
sumecompleteinterconnection, and O’Connell (1980) gave quantitative results,

but only for 5% volumetric fraction of spheres,a
crack densityof 0.1, and a fluid bulk modulusof

curves for spheresto thosefor films. Figure 15b 0.5 K
0. They calculatedthe frequencydependent

shows the shearrelaxation strength(~‘/2) as a ratio Q~/Q~
1ranging between0.05 and 0.5.

function of the decreasingunrelaxedshearmod- However, as has beenpointed out by Schmeling
ulus. Startingwith the caseof spheres,thereis a (1983) the ratio of the relaxationstrength ‘1/~.

drastic increaseof the relaxation strength if a and hencealso of Q~1/Q~,is sensitive to the
small amount of melt occurs in films. 5% of the total melt fraction, the ratio between/3~and /3~

melt in films leads to an increasein ~‘ of one (the meltfractionsof the films andof the spheres),
order of magnitude.However,this is quitenatural and K

1. The dependenceof ~ on /3 and on
sincethe relaxationfor the caseof spheresis based /3f/f3~canbe seenby relating the dashedcurve for
only on the elasticinteractionof the spheresand shearrelaxation to those for bulk relaxationin
would not occur without the application of the Fig. 15c.Thedependenceon K1 may be described
SCS.On the otherhand,it is clear from Fig. 15b briefly by noting that the bulk relaxationstrength
that quite a lot of melt is neededin pockets to for /~f//~~= 10/90 increasesroughly by oneorder
reduce the relaxationstrengthconsiderablybelow of magnitudeif K1 decreases from 0.5 K0 to 0.15
that for films. It should be noted that the curves K0. If the above parameters are chosen properly
for 5%F and 1%F are very sensitive to the aspect (e.g., K1 0.15 K0, /3~/$~lOa, and /3 z 15%) it
ratio of the films. The three curves 2%, 5% and 8% is even possible to obtain shear and bulk relaxa-
indicate the corresponding total melt fractions. tion strengths of the same order of magnitude.

A very interesting aspect arises from the bulk
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6. Generaldiscussionandconclusions relation(16) is used;
(2) O’Connell and Budiansky’s (1977) film

This paper has tried to establish a comprehen- model is accurate up to aspect ratios of 0.03;
sive set of elastic and anelasticmodelswith melt (3) for aspect ratios between 0.2 and 1 melt
inclusions covering a considerably broad range of squirt relaxation is small and the effective moduli
melt geometries. In particular melt is assumed to do not vary significantly with aspect ratio;
occur in ellipsoidal inclusions with arbitrary corn- (4) a reduced degree of interconnectionwould
binationsof half axes, in thin films, andin tubes be of importance in reducing the relaxation
of different cross-sections.Furthermoresuperposi- strength,and thus Q~’,especiallyat melt con-
tions of these geometriesare possible and the centrationsleadingto a moderatemodulus(or v~)

degreeof interconnectioncanbe varied. However, decrease;
it is clear that the above inclusion geometries (5) if different melt geometriesare presentin
representonly idealized cases.In particular, the the samerock, the bulk relaxation strength in-
ellipsoidalmelt pocketshavea convexshapewhile creasessignificantly. Under certain conditions it
in natureconcavetetrahedronsarepossibleas well may reach the order of the shear relaxation
(seeFig. 2c or d). The effectof compactinclusions strength;and
with concave curvature and sharp edges can be (6) it has been found to be useful to represent
assessed roughly by comparing the different tube the melt models by plotting the relaxation strength
models with concave and convex cross-sections as a function of the modulusdecrease(Figs. 11, 12
(Figs. 4 and 12). and 15b). This allows a clear distinction between

It should be emphasized that melt squirt was the effects of different melt geometries. Further-
regarded as the only important relaxation mecha- more, such diagrams can be used easily for the
nism due to partial melt. Viscous shear relaxation simultaneous interpretation of observed values of
was considered by O’Connell and Budiansky Q’ and of seismic velocity decreases.
(1977). Relaxation due to phase changes and ther- The basic idea of the presentpaper was to
moelasticity can also lead to high relaxation provide a comprehensiveset of elasticity and re-
strengths, particularly in compression (Vaisnys, laxation melt models which could be combined
1968; Kjartansson, 1979; Mavko, 1980). However, with corresponding melt models for the electrical
although the characteristic frequencies of these conductivity. Such a set of models was developed
effectsare difficult to estimate,they appearto lie by Schmeling(1983)and will be presentedin part
below the seismic frequencyband. Absorption in II of this paper.By combiningthesesetsof models
the solidphaseappearsto bepresentalmost inde- it is possibleto carry out a combinedinterpreta-
pendently of melt at low melt fractions and is tion of seismic and electrical conductivity data
found to dominate over the above mechanisms from partially molten mantle regions (Schmeling,
(Berckhemeret al., 1982a;Kampfmann,1984; see 1983,1984,1985).To apply themodelsto observa-
alsoSchmeling,1983). tional data the following conditions should be

The melt was assumedto be distributediso- fulfilled: seismic velocities of the anomalousre-
tropically in this study. However, a preferred gion underconsiderationshould be available, to-
orientation of grains and of melt inclusions might gether with estimates of the velocitiesof the un-
have been established in partially molten regions molten material. If Q 1-data are available, these
which are subjected to regional stresses. Such ani- can be used to limit an upper boundary for the
sotropy would result in an anisotropic decrease of relaxation strength due to partial melt. It should
the effective moduli (Anderson et al., 1974), while be noted that laboratory measurements indicate
melt squirt relaxation would be less efficient. that seismic absorption seems to be dominant in

The models considered here allow the following the solid phase at high temperatures, while the
conclusions: modulusdecreaseappearsto be controlled by the

(1) triaxial ellipsoidal inclusions can be ap- melt (Berckhemer et a!., 1982a,b; Kampfmann,
proximated by spheroidal inclusions (a = b ~‘ c) if 1984). To estimate the in situ relaxation strength,
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Fig. 15. Superpositionof melt films (a~0.01)with sphericalinclusions.Thenumbersin %F and %S give thevolumetric fractionof
the films andsphereswith respectto thetotal melt fraction.The undisturbedmoduli-arcthesameasin Fig. 8. (a) Unrelaxedmoduli.
(b) Half shearrelaxationstrengthLI’/2 asa function of thedecreasingunrelaxedshearmodulus.(c) Half bulk relaxation strength

as a functionof the total melt fraction. Dashed:~‘/2 (for shear)for thecombination10%F and90%S.
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laxedandtheunrelaxedmoduli. Thisrelationgives where ~. is assumed to be known. Since the
the effective bulk modulusof a saturatedporous neighbouring inclusions are assumed to be
material, K,, in which the fluid pressureis as- saturated,the SCS requires~.(K,1,c)to be taken
sumedto be constantthroughoutthe pore-space for K = K, and j.i = p~,wherethe subscripts mdi-

Kd + F K (K — K ) catesthe saturatedcondition. Now increasethe
= KOK + F F= ‘~K° K~ (Al) porepressureof the particular f-pore to P. The

0 P ~.0 11 relative volume change of this pore is now such as

where K1, K0, and Kd are the bulk moduli of the if it were filled with K,, fL,-material and is given
fluid, of the solid matrix and of the dry porous by P/K,. If therelationbetweeni~J’~/J~andp,,1 is
body, respectively.Here a self-consistentderiva- linear, the two casesconstructedaboveallow the
tion of K, is presentedwhich takesinto account determinationof the correspondinglinear equa-
the possibility of different pore pressures.It is tion. This equation togetherwith (A4) can be
assumedthat the apparentcompressibilityof a dry solvedfor p,,~ and ~J’~/l’~
poreof volume ~, 9, = (V,Py

1J[ti ~idF, underan ~jz. ~

external compression, F, is known if the inclusion p,,
1 = ~ —~ = (see A4)

were embedded in a medium with the moduli K — + ~ 1

and ~t: O1(K,~i).If a material containing N iso- S I

lated inclusionsfilled with a fluid of bulk modulus If theseare insertedinto (A3), onefinally obtains
K1 is loaded externally by hydrostatic compres- the saturatedbulk modulusas a function of the
sion, T = P~n,a pore pressurep,,1 will develop in apparentcompressibilityof dry pores
the /-th pore. Applying the reciprocity theorem
(Fig. 7) and using(19) and (20b) oneobtains for 1 — 1 + 1 1 — 1 N 9.(K ~.i,)V
the effectivesaturatedbulk modulus K5 — K0 V K1 K0 - 1 1

1 1 1 N 1 N ,~1~ (AS)

(A2) In contrast to the Gassmann relation, (A5)

Here ‘~/J’~ is the relative change in volume of the accounts for possibly different pore pressures. This
i-th saturatedpore. The pore pressurein the last canbeimportantin the caseof the unrelaxedstate
term in (A2) is constant and can be written in or whenconsidering(partly) isolated poresof dif-
front of the integral. The remaining integral gives ferent geometry. However, when considering the
the volume changeof the i-th pore as if it were relaxedcase of interconnectedporesof different
filled with K0-material.Thus we have Jf.~ÜodF= geometryoneshoulduse Gassmann’srelation. In
— V,P/K0 andcanwrite the caseof inclusions of the sameshape(AS) can

be written
1 1 1 N~V 1 N

~ (A3)

Now the two quantities t~J’/J’~and p,,1 have to be
determined.One condition can be written down
directly X ~ (A6)

(A4) l+0’(K,,
Gassmann’srelation (Al), togetherwith the self-

To obtain a second condition, consider State 1 in consistentdry bulk modulus (eq. 24, where all
Fig. 7. Now take one pore j and reducethe pore inclusionshaveto be treatedby the second sum-
pressure to 0. The resulting relative volume change mation) can be written in a form comparable to
(with respectto the unloadedcase)is ~ = O~P, (A6)
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1 1 / 1 1 \ x)[g+4—R(g—4

+2~2)I}1 (B3)
(A7) where

x
(j 1)

I +9~(K~,~d)’~’ = 2 —3/21 _ia_a(1_a2)1/2](B4)
0 q~ a3(1—cs3) [cos

It turns out that (A7) is identicalwith (A6) if the g = a~(1— afl’(34 — 2) (B5)
SCSis droppedin (A6) andin the equationfor the
dry bulk modulus.Mavko (1980) determinedthe R = 3~s/(3K+ 4j.t) (B6)
unrelaxedbulk modulus by calculating Kd with where a3 = aspect ratio of spheroidal inclusions
9(K~, /L11) and inserting this into Gassmann’s and sc: parameterdescribing the shapeof the
relation.This 9(K~,fLu) agreeswith that in (A6); tubularcross-sections(seeFig. 4 or Mavko, 1980).
however,instead of 1/K, in the denominatorof
(A6), Mavko still uses1/K0 as requiredby (A7). A,(K, ~, vK1) = .__~__ . ~ [(2 — v)D + 3] .
However, some test calculationsfound the dif- ISIT/.L 2 — v a1
ference betweenMavko’s approachand the self (B7)
consistentform (A6) to bebelow 1.5% with respect

where
to K0. If the self consistentequationof the bulk
modulusgivenby O’Connell andBudiansky(1977) D(K,~t, K1) = (1/K1 — 1/K0) . (91(K,j~)
(with Mavko’s (1980)modification) is written in a
form comparableto (A6) it turns out that the term + 1/K1) —

1/K5 is missingin the denominator. D = 1 if Kf = 0.

A2(K,,a,v,K1)= B2(K,1t,v)

AppendixB 1 f2(1_v)((2+sc)
2+2)

12~(8)
~ (2+sc)2_2

The quantitiesoccurringin eqs.32—37 havethe
subscripts1, 2, 3 which refer to filmshaped,tubu- < i~(~— v)((2 + ~) + 2) —(1 — 2v)((2+ sc)

2
lar, and spheroidalinclusions, respectively.They
wereobtainedby O’ConnellandBudiansky(1977), — 2){[ — 2(1 — v)((2 + ,c)2 + 2)
Mavko (1980), andWu (1966), respectively.

4 1 1—v2 1
— (Bi)O

1(K,~t,v)= K 1 — 2v~a1 1 1 (1 —2v)
2 ~

wherea
1 is the aspectratio of the films X [K — K~— 2~(1+ v) j (B9)

______ (2+sc)
2+2 B

2= [~(1+v)+~( (2+sc)
2+21—v)3K~ 1—2v (2+sc)2—2 (2 + ,)2 — 2

1 8 ___
+~(1_2v)) (B2) +~(3/2-v) (2+sc)2 ~ (BlO)

(2 + sc)2 — 2 j ~

9
3(K,fL,v) = K’(l — [3(g + ~)/2 — R(3g/2 A3(K,~,v,K1)

+5~/2— 4~~”3)1} =_i._[~{i — ~ [—(1+ a~)g/a~
5/i [

x(1—[1+3(g+~)/2—R(3g/2 -1

+5~/2)]+0.5(3 —4R) +R(2—~+(1+ aflg/a~)J}
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