Nano-Fluxonics lab

Assoc. Prof. Priv.-Doz. Dr. habil. Oleksandr  V. Dobrovolskiy, D. Sci. (KhNU)                     

M.Sci. in Physics, V. Karazin Kharkiv National University (KhNU), Ukraine, 2005; PhD,
B. Verkin Institute for Low Temperature Physics and Engineering (ILTPE), Ukraine, 2009; 
Postdoctoral researcher, Goethe University Frankfurt 2009-10; Principal investigator (PI), DFG 
project, 2011-15, Management Committee (MC) member COST Action MP1201 "NanoSC“, 
2012-16; Habilitation in Physics, Goethe University Frankfurt, 2016; D.Sci. in Physics and 
Mathematics, B. Verkin ILTPE, Ukraine; Privatdozent since 2016; Assoc. Prof. since 2017;  
PI, DFG project, 2017-19; MC member COST Action MP16218 "NanoCoHybri“, 2017-21;
80+ publications incl. 3 book chapters and 3 reviews; member of the research group 
"Thin Films and Nanostructures" of Prof. Dr. Michael Huth

Current research projects

Enhancing speed limits to the Abrikosov vortex dynamics, DFG 1511/3-1, No. 374052683, 2017-2019
Nanoscale coherent hybrid devices for superconducting quantum technologies, COST Action CA16218, 2017-2021
Magnonics, Interactions and Complexity - MagIC (KhNU), H2020-MSCA-RISE-2014, No. 644348, 2015-2019
Spin+X - collaboration with Nano-Magnonics group of Jun.-Prof. Dr. habil. Andrii Chumak within SFB/TRR 173 B04

Publications since 2017


1. Route to form skyrmions in soft magnetic films
D. Navas, R.V. Verba, A. Hierro-Rodriguez, S. A. Bunyaev, X. Zhou, A.O. Adeyeye,
O. V. Dobrovolskiy, B.A. Ivanov, K. Yu. Guslienko, and G. N. Kakazei

2. Spin-wave phase inverter upon a single nanodefect
O. V. Dobrovolskiy, R. Sachser, S. A. Bunyaev, V. M. Bevz, M. Zelent, W. Smigaj,
J. Rychly, M. Krawczyk, R. V. Vovk, M. Huth, and G. N. Kakazei,

3. Crystalline niobium carbide superconducting nanowires prepared by focused ion beam direct writing
F. Porrati, S. Barth, R. Sachser, O. V. Dobrovolskiy, A. Seybert, A. S. Frangakis, and M. Huth

4. Local flux-flow instability in superconducting films near Tc
A. I. Bezuglyj, V. A. Shklovskij, R. V. Vovk, V. M. Bevz, M. Huth, and O. V. Dobrovolskiy

5. Supersonic dynamics of guided magnetic flux quanta
O. V. Dobrovolskiy, V. M. Bevz, E. Begun, R. Sachser, R. V. Vovk, and M. Huth


1. Microwave radiation detection with an ultra-thin free-standing superconducting niobium nanohelix
S. Lösch, A. Alfonsov, O. V. Dobrovolskiy, R. Keil, V. Engemaier, S. Baunack, G. Li, O. G. Schmidt, and D. Bürger
ACS Nano, (2019)

Magnetic properties of Permalloy antidot arrays fabricated by interference lithography
A. S. Silva, A. Hierro-Rodriguez, S. A. Bunyaev, G. N. Kakazei,
O. V. Dobrovolskiy, C. Redondo, R. Morales, H. Crespo, and D. Navas
AIP Advances, (2019)


1. Magnon-Fluxon interaction in a ferromagnet/superconductor heterostructure
O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer, V. V. Kruglyak,
R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak
Nature Physics, accepted (2019), arXiv:1901.06156

Reduction of microwave loss by mobile fluxons in grooved Nb films
O. V. Dobrovolskiy, R. Sachser, V. M. Bevz, A. Lara, F. G. Aliev,
V. A. Shklovskij, A. I. Bezuglyj, R. V. Vovk, and M. Huth
Phys. Stat. Sol. - RRL 13
(2019) 18002231-5, arXiv:1805.10882

3. Microwave emission from superconducting vortices in Mo/Si superlattices
O. V. Dobrovolskiy, V. M. Bevz, M. Yu. Mikhailov, O. I. Yuzephovich,
V. A. Shklovskij, R. V. Vovk,  M. I. Tsindlekht, R. Sachser, and M. Huth

Nature Comms. 9, 4927 (2018),

4. Role of magnons and the size effect in heat transport through an insulating ferromagnet-insulator interface
V. A. Shklovskij, V. V. Kruglyak, R. V. Vovk, and O. V. Dobrovolskiy
Phys. Rev. B 98, 224403 (2018), arXiv:1808.07294

5. Nonlinear relaxation between magnons and phonons in insulating ferromagnets
V. A. Shklovskij, V. V. Mezinova, and O. V. Dobrovolskiy,
Phys. Rev. B 98, 104405–1-7 (2018), arXiv:1806.05501

6. Radiofrequency generation by coherently moving fluxons
O. V. Dobrovolskiy, R. Sachser, M. Huth, V. A. Shklovskij, R. V. Vovk, V. M. Bevz, and M. I. Tsindlekht
Appl. Phys. Lett. 112, 152601–1-5 (2018), arXiv:1804.00856

7. Mobile fluxons as coherent probes of periodic pinning in superconductors
O. V. Dobrovolskiy, M. Huth, V. A. Shklovskij, and R. V. Vovk
Scientific Reports 7, 13740
1-10 (2017), arXiv:1710.02554

8. Pinning effects on self-heating and flux-flow instability in superconducting films near Tc

V. A. Shklovskij, A. P. Nazipova, and O. V. Dobrovolskiy,
Phys. Rev. B 95, 184517–1-9 (2017), arXiv:1705.00363

9. Pinning effects on flux-flow instability in epitaxial Nb thin films

O. V. Dobrovolskiy, V. A. Shklovskij, M. Hanefeld, M. Zörb, L. Köhs, and M. Huth,
Supercond. Sci. Technol. 30
, 085002 (2017), arXiv:1704.08833


1. Vortices at microwave frequencies (Book chapter)
E. Silva, N. Pompeo, and O. V. Dobrovolskiy
in Superconductors at the Nanoscale: From Basic Research to Applications
(eds.) R. Wördenweber. V. Moshchalkov, S. Bending, F. Tafuri
De Gruyter, Berlin, 2017, chap. 8, pp. 253-278
ISBN 978-3-11-045620-2

2. Pinning and vortex dynamics in superconductors (Tutorial)
V. A. Shklovskij and O. V. Dobrovolskiy
Lambert Academic Publishing, Saarbrücken, 2017, 136 p.
ISBN 978-3-330-04172-1


1. FEBID meets materials science (Invited Review)
M. Huth, F. Porrati, O. V. Dobrovolskiy
Microelectron. Engin., 185 
186, 9 (2018), arXiv:1709.05835

2. Vortices at microwave frequencies (Invited Review)
E. Silva, N. Pompeo, and O. V. Dobrovolskiy
Phys. Sci. Rev. 10, 20178004 (2017) 

3. Abrikosov fluxonics in washboard nanolandscapes (Invited Review)
O. V. Dobrovolskiy,
Physica C 533
, 80–90 (2017), arXiv:1510.06872

Last update: 10.02.2019