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Contents of this workshops

What is hierarchical / multilevel data?
Why should I bother using special methods to 
analyze multilevel data?

What is multilevel linear regression?
What effects can be tested in multilevel linear 
regression models?

What is the basic idea of multilevel structural 
equation modeling?
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Definition of
hierarchical data structures

Synonym: Multilevel structuresSynonym: Multilevel structures
Structures with several hierarchically 
ordered levels
Observable units can be defined within 
each level (e.g. students on a lower, 
classrooms on a higher hierarchical level)
Each unit on a lower level can 
unambiguously be assigned to one and 
only one unit on the higher level.
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Examples of
hierarchical data structures

Level 2: ClassesLevel 2: Classes

Level 1: StudentsLevel 1: Students
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Examples of
hierarchical data structures

Level 3: SchoolsLevel 3: Schools

Level 1:Level 1:
StudentsStudents

Level 2:Level 2:
ClassesClasses
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Examples of
hierarchical data structures

Level 2: DepartmentsLevel 2: Departments

Level 1: EmployeesLevel 1: Employees
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Examples of
hierarchical data structures

Level 3: CompaniesLevel 3: Companies

Level 1:Level 1:
EmployeesEmployees

Level 2:Level 2:
DepartmentsDepartments
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Examples of
hierarchical data structures

Level 2: FlocksLevel 2: Flocks

Level 1: SheepLevel 1: Sheep
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Examples of
hierarchical data structures

Level 2: PersonsLevel 2: Persons

Level 1: Time pointsLevel 1: Time points
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Statistical problems when analyzing  
hierarchical data

Data of level 1 units within the same level 2 units are not 
independent: e.g. students within the same class are 
more similar among each other than to students from 
different classes.
The similarity between level 1 units within the same level 
2 units is expressed by the intra-class-correlation; it is a 
measure for the proportion of variance between level 2 
units.
Standard statistical analysis techniques like linear 
regression or analysis of variance do not take into 
account these dependencies, and results obtained by 
these methods are biased.
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Dealing with hierarchical data structures: 
aggregation and disaggregation

DisaggregationDisaggregation
level 2 data is “multiplied” by assigning each level 1 unit 
the properties of its level 2 unit that were measured at a 
higher level. 
E.g. each student is assigned classroom variables such 
as students per classroom, and all students in a given 
class have the same value on these variable.
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Disaggregation of level 2 data

Values of level-2-variables are 
constant for level 1 units within 
each level 2 unit

level 1 variable
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Disaggregation of level 2 data

DisaggregationDisaggregation
Standard statistical methods like linear regression 
assume that all data is randomly drawn from one 
homogeneous population.
In hierarchical data structures this is not the case. For 
example, schools may be sampled from the population 
of schools, and then students are sampled from the 
selected schools.
If level 2 units are heterogeneous with respect to the 
dependent variable, standard statistical analysis with 
disaggregated data will yield wrong standard errors –
giving significant results were they shouldn’t.
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Dealing with hierarchical data structures: 
aggregation and disaggregation

AggregationAggregation
Level 1 data is aggregated on level 2, and level 2 units 
are used as units of analysis.
E.g. student performance scores are averaged to the 
class level and classes are used at the unit of analysis.
The sample size is reduced to the number of level 2 
units.
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Aggregation of level 1 data

The sample size is 
reduced to the number of 
level 2 units

level 1 variables are aggregated (e.g. 
averaged) within level 2 units
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Aggregation of multilevel data:
“Ecological fallacy” or “Robinson-Effect”

Results from aggregated data cannot be interpreted in 
terms of relations on an individual level.
Robinson (1950) examined the relation between 
percentage of blacks and the level of illiteracy in different 
US regions in 1930.
At an aggregated level, this correlation is .95 – at 
individual level, it’s just .20! (cf. Hox, 2002).
Relations on an aggregated level (“ecological 
correlations”) are of little use (or even misleading) if one 
is interested in relations on an individual level.
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Analyzing multilevel data

Within the last decades, statistical methods to analyze 
relations between variables in hierarchical data 
structures have been developed.



Variance components 
models
(Longford, 1989);
VARCL

Multilevel Regression
(Goldstein, 1986); 
ML3/MLWin

Multilevel Analysis
(Busing et al., 1994); 
MLA

Hierarchical Linear 
Models
(Bryk & Raudenbush, 
1992);
HLM/WHLM

Multilevel 
Regressions 
Modells
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Additional terms

Mixed models
contextual analysis
random coefficients models
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Software

745$Muthen & Muthen (2004)MPLUS

250$Longford (1990)VARCL

freewarefreewareHedeker & Gibbons (1996a,b)mixor / mixreg / 
mixno / mixpreg

880 €Rasbash, Browne, Goldstein, 
Yang et al. (2000)

MlwiN

freewarefreewareBusing, Van der
Leeden & Meijer, E. (1995)

MLA

395 € (Science Plus)
470 $ (ssicentral.com)

Raudenbush, Bryk & Congdon
(2004)

HLM

priceProgram



Multilevel Linear Regression
(Hierarchical Linear Models)
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Multilevel Linear Regression

Multilevel linear regression:
Purpose and basic concepts
Regression equations on different levels
Multilevel regression coefficients and their meaning
An example using HLM 6.0
Decomposing effects of a lower level predictor
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Basic concepts of multilevel linear 
regression

Multilevel regression analysis (“hierarchical linear 
models”) are used to analyze effects of independent 
Variables on different levels on one dependent variable 
on the lowest level (“level 1”).
For example, you want to predict students’ math 
achievement by their individual socioeconomic status as 
well as by the number of students in the class.
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Data structure for
multilevel regression analysis

Data in the dependent variable (Y) is collected at the 
lowest level (level 1).
Independent variables can be located at any level of the 
hierarchy.
Units on a higher level can consist of a varying number 
of lower-level units.
Statistical relations of DVs and IVs as well as relations 
between the hierarchical levels are represented by 
specific models for each level.
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Example of a hierarchical data structure 
with one predictor on each level

Level 2: ClassesLevel 2: Classes

Level 1: StudentsLevel 1: Students

DV:DV: Y = Mathematics achievementY = Mathematics achievement
UV Level 1:UV Level 1: X = socioeconomic status (SES)X = socioeconomic status (SES)

IV Level 2: IV Level 2: Z =Z = Number of studentsNumber of students
per class (class size)per class (class size)



Analysis of hierarchical data Johannes Hartig, August 2005

Example of a hierarchical data structure 
with one predictor on each level

Level 2: ClassesLevel 2: Classes

Level 1: StudentsLevel 1: Students
DV:DV: Y = mathematics achievementY = mathematics achievement
IV Level 1:IV Level 1: X = socioeconomic statusX = socioeconomic status

IV Level 2:IV Level 2: Z = Class sizeZ = Class size
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In multilevel regression, effects are 
modeled on two levels

mathematics 
achievement

error components
level 2

socioeconomic
status

error level 1

class size
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Regression equations

Standard linear regression:
Yi = β0 + β1Xi + ri

Yi = dependent variable
Xi = independent variable
β0 = intercept (regression constant)
β1 = slope (regression weight of X)
ri = residual
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Standard linear regression equation

Yi = β0 + β1Xi + ri

intercept

slopeβ1

β0
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Regression equation for level 1

Standard linear regression:
Yi = β0 + β1Xi + rij

Multilevel regression equation for level 1:
Yij = β0j + β1jXij + rij

β0j = intercept (regression constant),
β1j = slope, 
rij = residual error,
i = subscript for level 1-unit (student),
j = subscript for level 2-unit (class).
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Regression equation for level 1

Each class (level 2-unit) has its unique level 1 regression 
constant β0j;
Each class (level 2-unit) has its unique level 1 regression 
slope β1j;
β0j and β1j vary between level 2 units.
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Unique regression equations for each 
level 2 unit

β0j and β1j vary between level 2 units

class 1

β11

β01
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Unique regression equations for each 
level 2 unit

β0j and β1j vary between level 2 units

class 2

β12

β02
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Unique regression equations for each 
level 2 unit

β0j and β1j vary between level 2 units

class 3

β13

β03
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Level 2 regression equations

Level 1 regression parameters are modeled as outcome Level 1 regression parameters are modeled as outcome 
variables in level 2 regression equations:variables in level 2 regression equations:

Level 1 equation: Yij = β0j + β1jXij + rij

Level 2 equations: β0j = γ00 + γ01Zj + u0j

β1j = γ10 + γ11Zj + u1j

γ are the level 2 regression coefficients
Z is a level 2 independent variable (e.g. class size as 
a variable measured at class level)
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Level 2 regression equations

Level 1 regression parameters are modeled as outcome Level 1 regression parameters are modeled as outcome 
variables in level 2 regression equations:variables in level 2 regression equations:

Level 1 equation: Yij = β0j + β1jXij + rij

Level 2 equations: β0j = γ00 + γ01Zj + u0j

β1j = γ10 + γ11Zj + u1j

For each level 1 regression coefficient, there is one level For each level 1 regression coefficient, there is one level 
2 equation in a multilevel regression model.2 equation in a multilevel regression model.
Level 2 regression coefficients do not vary across level 2 
units (therefore they have no subscript j).
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Fixed and random effects in
multilevel regression (2 levels)

Since level 1 regression coefficients (βj) can vary across 
level 2 units, these effects are called random effectsrandom effects
( “random coefficient models”)
Level 2 regression coefficients (γ) do not vary and are 
referred to as fixed effectsfixed effects.
In the statistical analysis of multilevel data, only fixed 
effects and random variances are actually estimated.
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Level 2 regression equations: 
Level 2 regression constants γk0

Level 1 equation: Yij = β0j + β1jX1ij + rij

Level 2 equations: β0j = γγ0000 + γ01Z1j + u0j
β1j = γγ1010 + γ11Z1j + u1j

γ00 = Level 2 regression constant of β0:
Expectation of level 1 intercept β0j for Zj being zero

γ10 = Level 2 regression constant of β1: 
Expectation of level 1 regression slope β1j for Zj being 
zero

the average effect of the level 1 predictor, e.g. the 
“overall” effect of individual SES on student 
performance.
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Level 2 regression equations: 
Level 2 regression slopes γk1

Level 1 equation: Yij = β0j + β1jX1ij + rij

Level 2 equations: β0j = γ00 + γγ0101Z1j + u0j
β1j = γ10 + γγ1111Z1j + u1j

In multilevel regression, variation between level 1 intercept 
and slopes can me predicted by level 2 independent 
variables Z:

γ01 = effect of Z1 on β0j

γ11 = effect of Z1 on β1j
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Level 2 regression equations: 
Level 2 regression slopes γk1

Level 1 equation: Yij = β0j + β1jX1ij + rij
Level 2 equations: β0j = γ00 + γγ0101Z1j + u0j

β1j = γ10 + γγ1111Z1j + u1j

γ01 = effect of Z1 on β0j
The effect of Z on the regression constant is the main effectmain effect
of a level 2 predictor, e.g. the effect of class size on 
average student performance in classes; e.g. do students 
in smaller classes perform higher in average?

γ11 = effect of Z1 on β1j
The effect of a level 2 predictor on a level 1 regression 
slope is called cross level interactioncross level interaction; e.g. is the effect of 
SES on achievement higher in larger classes?
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Level 2 regression equations:
Level 2 residuals ukj

Level 1 equation: Yij = β0j + β1jX1ij + rij

Level 2 equations: β0j = γ00 + γ01Z1j + uu0j0j
β1j = γ10 + γ11Z1j + uu1j1j

Random variation of β0j und β1j between level 2 units is 
expressed by unique effects for each class with an 
expectation of zero:

u0j = Unique effect of class j on the mean 
achievement β0j, controlling for Z1

u1j = Unique effect of class j on the regression slope 
β1j, controlling for Z1;
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Variance components in multilevel 
regression

Var (rij) = σ2; E(rij) = 0
Var (u0) = τ00; E(u0j) = 0
Var (u1) = τ11; E(u1j) = 0
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Var

Cov (rij,uj) = 0
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Estimating variance between classes:
the intercept only model 

(also null model, baseline model)
The intercept only model contains only the level 2 
regression constant γ00 and residuals for level 1 and 2:
Level 1 equation: Yij = β0j + rij

Level 2 equation: β0j = γ00 + u0j

Yij = γ00 + u0j + rij

The intercept only model allows to separate variance 
within level 2 units from variance between level 2 units. 
Calculation of the intraclass correlation ρ:

00
2

00

variance between level 2 units
total variance

τ
ρ = =

τ + σ
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HLM 6.0 examples
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Data structure for analysis with HLM

For analysis with HLM, two separate data files are 
needed.
The first (level 1) contains all data collected at student 
level, and one ID variable indicating the belonging of 
each level 1 unit to a specific level 2 unit (e.g. a class ID 
for each student.
The second (level 2) data set contains all data collected 
at class level. It consists of one “case” per class and an 
ID variable that is unique for each class.
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Example of two level data structure for 
analysis with HLM
Level 2 data file Level 1 data file
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HLM 6 output: intercept only model

ExampleExample
“High school and beyond” data (example included in the 
free HLM 6.0 student version).
Data is from students drawn from schools.
Independent variable: math achievement.
Intercept only model (null model) without independent 
variables on level 1 or 2
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HLM 6 output: intercept only model

Summary of the model specified (in equation format)
---------------------------------------------------

Level-1 Model

Y = B0 + R

Level-2 Model
B0 = G00 + U0



Analysis of hierarchical data Johannes Hartig, August 2005

HLM 6 output: intercept only model
Fixed effects (γ-coefficients)
The outcome variable is  MATHACH

Final estimation of fixed effects
(with robust standard errors)
----------------------------------------------------------------------------

Standard             Approx.
Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value

----------------------------------------------------------------------------
For       INTRCPT1, B0

INTRCPT2, G00          12.636972   0.243628    51.870       159    0.000
----------------------------------------------------------------------------

The only fixed effect is the level 2 regression 
constant γ00, which is typically not very interesting…
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HLM 6 output: intercept only model
variance components

Final estimation of variance components:
------------------------------------------------------------------

Random Effect           Standard      Variance     df    Chi-square  
P-value

Deviation     Component
------------------------------------------------------------------

INTRCPT1,       U0        2.93501       8.61431   159    1660.23259    
0.000

level-1,       R         6.25686      39.14831
------------------------------------------------------------------

Level 1 residual variance

Level 2 residual variance

( )
( ) ( )

0

0

Var u 8.61ICC 0.18
Var u Var r 39.15 8.61

= = =
+ +

18% of the variance in math 
achievement is between 
schools, i.e. can be explained by 
differences between schools
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HLM 6 output: 
complete model

ExampleExample
“High school and beyond” data.
Independent variable Y: math achievement.
One level 1 predictor:

Student SES (SES)
One level 2 predictor:

type of school (sector = catholic vs. public)
One cross level interaction

The type of school moderates the relation between 
SES and math achievement.
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HLM 6 output: 
complete model

Summary of the model specified (in equation format)
---------------------------------------------------

Level-1 Model

Y = B0 + B1*(SES) + R

Level-2 Model
B0 = G00 + G01*(SECTOR) + U0
B1 = G10 + G11*(SECTOR) + U1
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HLM 6 output complete model:
fixed effects (γ-coefficients)
The outcome variable is  MATHACH

Final estimation of fixed effects
(with robust standard errors)
-----------------------------------------------------------------------

Standard          Approx.
Fixed Effect        Coefficient   Error    T-ratio  d.f.    P-value

-----------------------------------------------------------------------
For       INTRCPT1, B0

INTRCPT2, G00         11.750661   0.218684  53.733      158 0.000
SECTOR, G01          2.128423   0.355700   5.984      158 0.000

For      SES slope, B1
INTRCPT2, G10          2.958798   0.144092  20.534      158 0.000
SECTOR, G11         -1.313096   0.214271  -6.128      158   0.000

-----------------------------------------------------------------------

β0

γ00 average 
performance in 
public schools

γ01 level 2 main effect for school 
type (performance difference 
catholic and public schools)
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HLM 6 output complete model:
fixed effects (γ-coefficients)
The outcome variable is  MATHACH

Final estimation of fixed effects
(with robust standard errors)
-----------------------------------------------------------------------

Standard          Approx.
Fixed Effect        Coefficient   Error    T-ratio  d.f.    P-value

-----------------------------------------------------------------------
For       INTRCPT1, B0

INTRCPT2, G00         11.750661   0.218684  53.733      158 0.000
SECTOR, G01          2.128423   0.355700   5.984      158 0.000

For      SES slope, B1
INTRCPT2, G10          2.958798   0.144092  20.534      158 0.000
SECTOR, G11         -1.313096   0.214271  -6.128      158   0.000

-----------------------------------------------------------------------

β1

γ10 main effect of SES in 
public schools (sector=0)

γ11 change in SES effect if school 
is catholic (sector=1)
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HLM 6 output complete model: graphical 
display of cross level interaction

-1.04 -0.52 -0.01 0.51 1.02
8.68

10.40

12.12

13.84

15.56

SES

M
A

TH
A

C
H

SECTOR = 0

SECTOR = 1
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Compositional effects

„The statistical estimate of the additional effect obtained 
by the aggregated variable at the school level over-and-
above the variable’s effect at the individual level”
(Harker & Tymms, in press)
Multilevel regression allows the decomposition of the 
effect of an independent on a dependent variable into

effects within level 2 units
effects between level 2 units
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Effects of a level 1 predictor within and 
between level 2 units
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Graphical illustration of compositional 
effects 

Compositional effects occur if level 2 units are 
heterogeneous with respect to the dependent as well to 
the independent variable.

βw, βb,and βc can be 
estimated separately 
within multilevel 
regressuion.



Multilevel
structural equation modeling
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Basic concepts of
structural equation modeling

In structural equation modeling, the observed 
correlations between variables (e.g. test scores) are 
explained by underlying latent variables.
These latent variables are theoretical constructs, 
variables assumed to be inherently unobservable, but 
which are supposed to be useful concepts to describe 
and explain behavior in a specific range of observable 
phenomena. 
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One-headed arrow: directional 
relation. The observed variable 
“reading” is influenced by the latent 
skill “reception”

Basic concepts of
structural equation modeling

Example: Two basic language skills for language 
reception and language production underliy the observed 
performance in tests for a foreign language.

B
oxes: O

bserved or 
“m

anifest”variables

Double-headed arrow: 
undirected effect. The 
latent skills “reception”
and “production” are 
related in some way, but 
we do not care why or 
how.

Bubbles: 
Latent 

variables
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Basic concepts of
structural equation modeling

Information about latent variables is derived from the 
empirical correlations of the observed variables.

1.000.750.300.30oral prof.

1.000.300.30writing

1.000.75listening

1.00reading

oralwritinglisten.read.

empirical correlations

model
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Basic concepts of multilevel structural 
equation modeling

Structural equation models are based on empirical 
correlations.
If the empirical data is collected in a multilevel structure, 
the correlations are a mixture of within and between 
group effects.
In this case, it is advisable to separate these effects.
To do so, the correlations between the observed 
variables are decomposed in correlations between and 
within groups.
In multilevel structural equation modeling, separate 
models are fitted to the within- and between group 
correlations.
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Separating Correlations within and 
between groups

1.000.750.300.30oral prof.

1.000.300.30writing

1.000.75listening

1.00reading

oralwritinglisten.read.
observed correlations

1.000.880.880.88oral prof.

1.000.880.88writing

1.000.88listening

1.00reading

oralwritinglisten.read.
between- group correlations

1.000.650.250.25oral prof.

1.000.250.25writing

1.000.65listening

1.00reading

oralwritinglisten.read.
within- group correlations
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Separating Correlations within and 
between groups

1.000.880.880.88oral prof.

1.000.880.88writing

1.000.88listening

1.00reading

oralwritinglisten.read.
between- group correlations

1.000.650.250.25oral prof.

1.000.250.25writing

1.000.65listening

1.00reading

oralwritinglisten.read.
within- group correlations

Correlations of student 
performance within classes, 
i.e. controlling for average 
class performance.

Correlations between 
average class performances 
across all classes.
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Building separate models for each levels

1.000.880.880.88oral prof.

1.000.880.88writing

1.000.88listening

1.00reading

oralwritinglisten.read.
between- group correlations

1.000.650.250.25oral prof.

1.000.250.25writing

1.000.65listening

1.00reading

oralwritinglisten.read.
within- group correlations
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Building separate models for each levels

Model for relations of 
students’ individual skills.

Model for relations 
between performance levels 
of whole classes.

Level 1 model (within classes) Level 2 model (between classes)
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Summary

Hierarchical data is a common phenomenon in 
educational research
Conventional statistical analysis (e.g. linear regression, 
ANOVA) of multilevel may lead to biased results.
Multilevel regression analysis allows to examine effects 
of predictors on lower as well as higher data levels on 
one single outcome variables.
In multilevel equation modeling, correlations between 
observed variables are decomposed in correlations 
within and between groups. For each level, a separate 
latent variable model is tested.
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1 Zj
class size

1
Yij

mathematics
achievement

Xij
socioeconomic

status

rij

u1ju0j

β0j β1j

γ00 γ11
γ01 γ10

Graphical illustration of a two level 
regression model

β0j = γ00 + γ01Zj + u0j

β1j = γ10 + γ11Zj + u1j

Yij = β0j + β1jX1ij + rij


