EARLI 2005 JuRe preconference

Analysis of hierarchical data

Johannes Hartig

Deutsches Institut für Internationale Pädagogische Forschung German Institute for International Educational Research Mitglied der Leibniz-Gemeinschaft

Contents of this workshops

- Hierarchical data structures: definition and examples
- Multilevel linear regression:
 - Purpose and basic concepts
 - Regression equations on different levels
 - Multilevel regression coefficients and their meaning
 - An example using HLM 6.0
 - Decomposing effects of a lower level predictor
- Multilevel structural equation modeling
 - Basic idea of structural equation modeling
 - Decomposition of correlations on different levels
 - Separate models for each level

Contents of this workshops

- What is hierarchical / multilevel data?
- Why should I bother using special methods to analyze multilevel data?
- What is multilevel linear regression?
- What effects can be tested in multilevel linear regression models?
- What is the basic idea of multilevel structural equation modeling?

Definition of hierarchical data structures

- Synonym: Multilevel structures
- Structures with several hierarchically ordered levels
- Observable units can be defined within each level (e.g. students on a lower, classrooms on a higher hierarchical level)
- Each unit on a lower level can unambiguously be assigned to one and only one unit on the higher level.

Examples of hierarchical data structures

Level 2: Classes

Level 1: Students

Examples of hierarchical data structures

Examples of hierarchical data structures

Level 1: Employees

Examples of hierarchical data structures

Examples of hierarchical data structures

Level 2: Flocks

Level 1: Sheep

Examples of hierarchical data structures

Level 2: Persons * * * * * * 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 123456789 1 2 3 4 5 6 7 8 9 123456789 1 2 3 4 5 6 7 8 9 123456789 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 123456789 123456789 123456789 1 2 3 4 5 6 7 8 9 Level 1: Time points Analysis of hieral criteria uata

Johannes Hartig, August 2005

Statistical problems when analyzing hierarchical data

- Data of level 1 units within the same level 2 units are not independent: e.g. students within the same class are more similar among each other than to students from different classes.
- The similarity between level 1 units within the same level 2 units is expressed by the intra-class-correlation; it is a measure for the proportion of variance between level 2 units.
- Standard statistical analysis techniques like linear regression or analysis of variance do not take into account these dependencies, and results obtained by these methods are biased.

Dealing with hierarchical data structures: aggregation and disaggregation

Disaggregation

- level 2 data is "multiplied" by assigning each level 1 unit the properties of its level 2 unit that were measured at a higher level.
- E.g. each student is assigned classroom variables such as students per classroom, and all students in a given class have the same value on these variable.

Disaggregation of level 2 data

	3 m /			-1 💷 🖉	h Imi	RA				
56:	22									
	schule	form	grosse	status		mathe	var			
1	1	Gesamtschule	713	-	5	123				
2	1	Gesamtschule	713		4	93				
3	1	Gesamtschule	713		3	111				
4	1	Gesamtschule	713		2	95				
5	1	Gesamtschule	713		4	90				
6	1	Gesamtschule	713	~	4	1 04				
7	1	Gesamtschule	713		3	99				
8	1	Gesamtschule	713		5	17				
9	1	Gesamtschule	713		4	97				
10	1	Gesamtschule	713	<u> </u>	1	103				
()		I				· · · ·				
()		· · · ·	040							
1495	3	Gymnasium	916		1	90				
1496	3	Gymnasium	916		4	99				
1497	3	Gymnasium	916		3	56			values of lev	el-z-variables are
1498	3	Gymnasium	916		2	10.3				
1499	3	Gymnasium	916		1	118			1 voriable	J 1 unito within
1500	j	Gymnasium	916		-		_ It	ever		
1501	j	Gymnasium	916		1	<u> </u>				
1502	j	Gymnasium	916		3	64			arch laval 2	unit
1503	j	Gymnasium	916		3	1 15				unit
1504	j	Gymnasium	916		4	140				
1505	3	Gymnasium	916		4	35				
()										
6652	11	Gesamtschule	792		3	1 8				
6653	11	Gesamtschule	792		3	77				
6654	11	Gesamtschule	792		1	98				
6655	11	Gesamtschule	792		2	133				
6656	11	Gesamtschule	792	\succ	4	5				
6657	11	Gesamtschule	792		1	1 02				
6658	11	Gesamtschule	792		5	123				
6659	11	Gesamtschule	792		2	14				
6660	11	Gesamtschule	792		4	121				Johannes Hartig, August

Disaggregation of level 2 data

Disaggregation

- Standard statistical methods like linear regression assume that all data is randomly drawn from one homogeneous population.
- In hierarchical data structures this is not the case. For example, schools may be sampled from the population of schools, and then students are sampled from the selected schools.
- If level 2 units are heterogeneous with respect to the dependent variable, standard statistical analysis with disaggregated data will yield wrong standard errors – giving significant results were they shouldn't.

Dealing with hierarchical data structures: aggregation and disaggregation

Aggregation

- Level 1 data is aggregated on level 2, and level 2 units are used as units of analysis.
- E.g. student performance scores are averaged to the class level and classes are used at the unit of analysis.
- The sample size is reduced to the number of level 2 units.

Aggregation of level 1 data

Datei Bea	arbeiten Ans	icht Daten Transformiei	ren Analysiere	en Grafiken	Extras Fenste	er H	
1	a 🔍 🕨	o 🖙 🖾 📴 🕯	M 📲 📺	日本日	B		
12:							
	schule	form	groesse	am_stat	am_mathe		
1	1 •	Sesamtschule	713	1,70	82,87		
2	2	Gesamtschule	686	4,50	72,16		
3	3	Gymnasium	916	1,71	96,31		
4	4	Gesamtschule	677	5,64	95,25		
5	5	Gesamtschule	601	1,50	95,36		
6	6	Gyrnnasium	402	5,77	93,29		
7	7	Ges <mark>amtschule</mark>	682	1,60	92,97		
8	8	Gyrhnasiur Tho					
9	9	Gymnasiur INC	Samp				
10	10	Gesamtscl rodu	upped t	o tha	numh	or of	
11	11	Gesamtscl ICU	icea i		HUHK		
12	12	Gesamtscl	12 ur	ite			
13	13	Gymnasiur ICVC		III.S	Y		
14	14	Gesamtsch -			וסר בח		
15	15	Gesamtsch leve	el 1 va	ariable	es are	addre	aated (e.a
16	16	Gyrhnasium		1\			
17	17	Gesamtsch ave	ragec	1) With	nin lev	'el 2 ur	lits
18	18	Gyrhnasium		/			
19	19	Gyrhnasium	1010	4,22	82,73		
20	20	Gesamtschule	988	3,83	82,11		
s21							

Aggregation of multilevel data: "Ecological fallacy" or "Robinson-Effect"

- Results from aggregated data cannot be interpreted in terms of relations on an individual level.
- Robinson (1950) examined the relation between percentage of blacks and the level of illiteracy in different US regions in 1930.
- At an aggregated level, this correlation is .95 at individual level, it's just .20! (cf. Hox, 2002).
- Relations on an aggregated level ("ecological correlations") are of little use (or even misleading) if one is interested in relations on an individual level.

Analyzing multilevel data

 Within the last decades, statistical methods to analyze relations between variables in hierarchical data structures have been developed.

Additional terms

- Mixed models
- contextual analysis
- random coefficients models

Software

Program		price
HLM	Raudenbush, Bryk & Congdon (2004)	<pre>395 € (Science Plus) 470 \$ (ssicentral.com)</pre>
MLA	Busing, Van der Leeden & Meijer, E. (1995)	freeware
MIwiN	Rasbash, Browne, Goldstein, Yang et al. (2000)	880 €
mixor / mixreg / mixno / mixpreg	Hedeker & Gibbons (1996a,b)	freeware
VARCL	Longford (1990)	250\$
MPLUS	Muthen & Muthen (2004)	745\$

Multilevel Linear Regression (Hierarchical Linear Models)

Multilevel Linear Regression

- Multilevel linear regression:
 - Purpose and basic concepts
 - Regression equations on different levels
 - Multilevel regression coefficients and their meaning
 - An example using HLM 6.0
 - Decomposing effects of a lower level predictor

Basic concepts of multilevel linear regression

- Multilevel regression analysis ("hierarchical linear models") are used to analyze effects of independent Variables on different levels on one dependent variable on the lowest level ("level 1").
- For example, you want to predict students' math achievement by their individual socioeconomic status as well as by the number of students in the class.

Data structure for multilevel regression analysis

- Data in the dependent variable (Y) is collected at the lowest level (level 1).
- Independent variables can be located at any level of the hierarchy.
- Units on a higher level can consist of a varying number of lower-level units.
- Statistical relations of DVs and IVs as well as relations between the hierarchical levels are represented by specific models for each level.

Example of a hierarchical data structure with one predictor on each level

Example of a hierarchical data structure with one predictor on each level

Level 1: Students

DV: Y = mathematics achievement
IV Level 1: X = socioeconomic status

Level 2: Classes IV Level 2: Z = Class size

In multilevel regression, effects are modeled on two levels

Regression equations

- Standard linear regression: $Y_i = \beta_0 + \beta_1 X_i + r_i$
 - Y_i = dependent variable
 - X_i = independent variable
 - $\beta_0 = intercept$ (regression constant)
 - $\beta_1 =$ slope (regression weight of X)
 - r_i = residual

Standard linear regression equation

Analysis of hierarchical data

Regression equation for level 1

Standard linear regression:

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i} + \mathbf{r}_{ij}$$

Multilevel regression equation for level 1:

$$\mathbf{Y}_{ij} = \beta_{0j} + \beta_{1j} \mathbf{X}_{ij} + \mathbf{r}_{ij}$$

- β_{0j} = intercept (regression constant),
- $\beta_{1j} = slope$,
- r_{ii} = residual error,
- i = subscript for level 1-unit (student),
- j = subscript for level 2-unit (class).

Regression equation for level 1

- Each class (level 2-unit) has its unique level 1 regression constant β_{0i};
- Each class (level 2-unit) has its unique level 1 regression slope β_{1j};
- $\rightarrow \beta_{0j}$ and β_{1j} vary between level 2 units.

Unique regression equations for each level 2 unit

 $\rightarrow \beta_{0j}$ and β_{1j} vary between level 2 units

Unique regression equations for each level 2 unit

 $\rightarrow \beta_{0j}$ and β_{1j} vary between level 2 units

Unique regression equations for each level 2 unit

 $\rightarrow \beta_{0j}$ and β_{1j} vary between level 2 units

Level 2 regression equations

Level 1 regression parameters are modeled as outcome variables in level 2 regression equations:

Level 1 equation: $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}$

Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01}Z_j + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}Z_j + u_{1j}$

γ are the level 2 regression coefficients
 Z is a level 2 independent variable (e.g. class size as a variable measured at class level)

Level 2 regression equations

 Level 1 regression parameters are modeled as outcome variables in level 2 regression equations:

Level 1 equation: $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}$

- Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01}Z_j + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}Z_j + u_{1j}$
- For each level 1 regression coefficient, there is one level 2 equation in a multilevel regression model.
- Level 2 regression coefficients do not vary across level 2 units (therefore they have no subscript j).

Analysis of hierarchical data

Johannes Hartig, August 2005

Fixed and random effects in multilevel regression (2 levels)

- Since level 1 regression coefficients (β_j) can vary across level 2 units, these effects are called random effects
 (→ "random coefficient models")
- Level 2 regression coefficients (γ) do not vary and are referred to as fixed effects.
- In the statistical analysis of multilevel data, only fixed effects and random variances are actually estimated.

Level 2 regression equations: Level 2 regression constants γ_{k0}

Level 1 equation: Level 2 equations:

$$\begin{split} \mathbf{Y}_{ij} &= \beta_{0j} + \beta_{1j} X_{1ij} + r_{ij} \\ \beta_{0j} &= \mathbf{\gamma_{00}} + \gamma_{01} Z_{1j} + u_{0j} \\ \beta_{1j} &= \mathbf{\gamma_{10}} + \gamma_{11} Z_{1j} + u_{1j} \end{split}$$

 γ_{00} = Level 2 regression constant of β_0 : Expectation of level 1 intercept β_{0j} for Z_j being zero

 γ_{10} = Level 2 regression constant of β_1 : Expectation of level 1 regression slope β_{1j} for Z_j being zero

→ the average effect of the level 1 predictor, e.g. the "overall" effect of individual SES on student performance.

Level 2 regression equations: Level 2 regression slopes γ_{k1}

Level 1 equation: Level 2 equations:

$$\begin{split} \mathbf{Y}_{ij} &= \beta_{0j} + \beta_{1j} X_{1ij} + r_{ij} \\ \beta_{0j} &= \gamma_{00} + \gamma_{01} Z_{1j} + u_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11} Z_{1j} + u_{1j} \end{split}$$

In multilevel regression, variation between level 1 intercept and slopes can me predicted by level 2 independent variables Z:

•
$$\gamma_{01} = effect of Z_1 on \beta_0$$

• $\gamma_{11} = \text{effect of } Z_1 \text{ on } \beta_{1j}$

Level 2 regression equations: Level 2 regression slopes γ_{k1}

Level 1 equation: Level 2 equations:

$$\begin{aligned} \mathbf{Y}_{ij} &= \beta_{0j} + \beta_{1j} \mathbf{X}_{1ij} + \mathbf{r}_{ij} \\ \beta_{0j} &= \gamma_{00} + \mathbf{\gamma_{01}} \mathbf{Z}_{1j} + \mathbf{u}_{0j} \\ \beta_{1j} &= \gamma_{10} + \mathbf{\gamma_{11}} \mathbf{Z}_{1j} + \mathbf{u}_{1j} \end{aligned}$$

 $\gamma_{01} = effect of Z_1 on \beta_{0j}$

The effect of Z on the regression constant is the main effect of a level 2 predictor, e.g. the effect of class size on average student performance in classes; e.g. do students in smaller classes perform higher in average?

 $\gamma_{11} = effect of Z_1 on \beta_{1j}$

The effect of a level 2 predictor on a level 1 regression slope is called cross level interaction; e.g. is the effect of SES on achievement higher in larger classes?

Level 2 regression equations: Level 2 residuals u_{ki}

Level 1 equation: Level 2 equations:

$$\begin{split} \mathbf{Y}_{ij} &= \beta_{0j} + \beta_{1j} \mathbf{X}_{1ij} + \mathbf{r}_{ij} \\ \beta_{0j} &= \gamma_{00} + \gamma_{01} \mathbf{Z}_{1j} + \mathbf{U}_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11} \mathbf{Z}_{1j} + \mathbf{U}_{1j} \end{split}$$

- Random variation of β_{0j} und β_{1j} between level 2 units is expressed by unique effects for each class with an expectation of zero:
 - u_{0j} = Unique effect of class j on the mean achievement β_{0j}, controlling for Z₁
 - u_{1j} = Unique effect of class j on the regression slope β_{1j}, controlling for Z₁;

Variance components in multilevel regression

Var
$$(r_{ij}) = \sigma^2$$
; $E(r_{ij}) = 0$
Var $(u_0) = \tau_{00}$; $E(u_{0j}) = 0$
Var $(u_1) = \tau_{11}$; $E(u_{1j}) = 0$

$$\operatorname{Var} \begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} = T = \begin{pmatrix} \tau_{00} & \tau_{01} \\ \tau_{10} & \tau_{11} \end{pmatrix}$$

 $Cov(r_{ij},u_j) = 0$

Estimating variance between classes: the intercept only model

- (also null model, baseline model)
- The intercept only model contains only the level 2 regression constant γ₀₀ and residuals for level 1 and 2:
- Level 1 equation: $Y_{ij} = \beta_{0j} + r_{ij}$
- Level 2 equation: $\beta_{0j} = \gamma_{00} + u_{0j}$

$$Y_{ij} = \gamma_{00} + u_{0j} + r_{ij}$$

- The intercept only model allows to separate variance within level 2 units from variance between level 2 units.
- Calculation of the intraclass correlation ρ:

$$\rho = \frac{\text{variance between level 2 units}}{\text{total variance}} = \frac{\tau_{00}}{\tau_{00} + \sigma^2}$$

0

HLM 6.0 examples

🔡 WHLM: hlm2 Mi	DM File: HSB.mdm	
File Basic Settings	Other Settings Run Analysis Help	
Outcome Level-1 >> Level-2 <<	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) MATHACH = $\beta_0 + \beta_1 (SES) + r$	
SIZE	$\beta_0 = \gamma_{00} + \gamma_{01} (\text{SECTOR}) + u_0$	
PRACAD DISCLIM HIMINTY MEANSES	$\beta_1 = \gamma_{10} + u_1$	
		Mixed 🔻
Mixed Model		
MATHACH = γ	₀₀ + γ ₀₁ *SECTOR + γ ₁₀ * SES + u ₀ + r	

Data structure for analysis with HLM

- For analysis with HLM, two separate data files are needed.
- The first (level 1) contains all data collected at student level, and one ID variable indicating the belonging of each level 1 unit to a specific level 2 unit (e.g. a class ID for each student.
- The second (level 2) data set contains all data collected at class level. It consists of one "case" per class and an ID variable that is unique for each class.

Example of two level data structure for analysis with HLM

Lev	/el Z d		ie
🗮 Classe	s.sav - SPSS Da	ata Editor	
File Edit	View Data T	ransform And	aly:
2	a 🔍 🖂	~ 🟪 😰	[
21 :			
	IDclass	size	
1	1224	20	
2	1288	24	
3	1296	26	
4	1308	22	
5	1317	20	
6	1358	27	
7	1374	23	
8	1433	24	
9	1436	19	
10	1461	19	
11	1462	20	
12	1477	19	
13	1499	26	
14	1637	20	
15	1906	27	
16	1909	30	
17	1942	26	
18	1946	21	
19	2030	27	
20	2208	18	
21	2277	19	

Analy

val O data fila

Level 1 data file

📼 Students say - SPSS Data Editor

File Edit	View Data	a Transform	Analyze Graj	ohs Utilities				
2	a 🖳	n 🖓 🔚	i? 🚧 🎢					
6:								
	IDclass	gender	SES	mathach				
1	1224	1	26	5.878				
2	1224	1	41	19.708				
3	1224	0	42	20.349				
4	1224	0	40	8.781				
5	1224	0	48	17.898				
6	1224	0	50	4.583				
7	1224	1	40	-2.832				
8	1224	0	35	.523				
9	1224	1	36	1.527				
10	1224	0	43	21.521				
11	1224	1	28	9.475				
12	1224	1	40	16.057				
13	1224	0	43	21.178				
14	1224	1	35	20.178				
15	1224	0	55	20.349				
16	1224	1	40	20.508				
17	1224	0	45	19.338				
18	1224	0	26	4.145				
19	1224	1	51	2.927				
20	1224	0	49	16.405				
21	1288	1	38	7.857				
22	1288	0	45	10.171				
23	1288	0	57	15.699				

ohannes Hartig, August 2005

HLM 6 output: intercept only model

Example

- "High school and beyond" data (example included in the free HLM 6.0 student version).
- Data is from students drawn from schools.
- Independent variable: math achievement.
- Intercept only model (null model) without independent variables on level 1 or 2

HLM 6 output: intercept only model

Summary of the model specified (in equation format)

Level-1 Model

$$Y = BO + R$$

Level-2 Model B0 = G00 + U0

> **LEVEL 1 MODEL** (bold: group-mean centering; bold italic: grand-mean centering) PV1READ = $\beta_{\rho} + r$

LEVEL 2 MODEL (bold italic: grand-mean centering) \boxtimes Error term for currently selected level-2 equation $\boxtimes \beta_0 = \gamma_{00} + u_0$

HLM 6 output: intercept only model Fixed effects (γ-coefficients)

The outcome variable is MATHACH								
Final estimation of fixed effects (with robust standard errors)								
Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value			
For INTRCPT1, B0 INTRCPT2, G00	12.636972	0.243628	51.870	159	0.000			
					_			
The only fixed effect is the level 2 regression								
constant γ_{00} , which is typically not very interesting								

HLM 6 output: intercept only model variance components

HLM 6 output: complete model

Example

- "High school and beyond" data.
- Independent variable Y: math achievement.
- One level 1 predictor:
 - Student SES (SES)
- One level 2 predictor:
 - type of school (sector = catholic vs. public)
- One cross level interaction
 - The type of school moderates the relation between SES and math achievement.

HLM 6 output: complete model

Summary of the model specified (in equation format)

Level-1 Model

Y = BO + B1*(SES) + R

Level-2 Model B0 = G00 + G01*(SECTOR) + U0 B1 = G10 + G11*(SECTOR) + U1 Outcome Level-1 \rightarrow Level-2 <

INTRCPT2 LEVEL 2 MODEL

Level-1Level-2 <</th>Level-2 <</th>INTROPT2MATHACH = $\beta_0 + \beta_1(SES) + r$ SIZELEVEL 2 MODELSECTOR $\beta_0 = \gamma_{00} + \gamma_{01}(SECTOR) + u_0$ PRACAD $\beta_1 = \gamma_{10} + \gamma_{11}(SECTOR) + u_1$

Analysis of hierarchical data

HLM 6 output complete model: fixed effects (γ-coefficients)

HLM 6 output complete model: fixed effects (γ-coefficients)

The outcome variable is MATHACH								
Final estimation of fixed effects (with robust standard errors)								
Fixed Eff γ_{10} main effect of SES in public schools (sector=0) Approx.								
For INTRCPT1 INTRCPT2, G00 SECTOR, G01	11.750661 2.128423	0.218684 0.355700	53.733 5.984	158 158	0.000 0.000			
For SES slop, B1 INTRCPT2, G10 SECTOR, G11	2.958798 -1.313096	0.144092 0.214271	20.534 -6.128	158 158	0.000	β_1		
γ ₁₁ change in SES effect if school is catholic (sector=1)								

HLM 6 output complete model: graphical display of cross level interaction

Analysis of hierarchical data

Johannes Hartig, August 2005

Compositional effects

- "The statistical estimate of the additional effect obtained by the aggregated variable at the school level over-andabove the variable's effect at the individual level" (Harker & Tymms, in press)
- Multilevel regression allows the decomposition of the effect of an independent on a dependent variable into
 - effects within level 2 units
 - effects between level 2 units

Effects of a level 1 predictor within and between level 2 units

Johannes Hartig, August 2005

Graphical illustration of compositional effects

 Compositional effects occur if level 2 units are heterogeneous with respect to the dependent as well to the independent variable.

 β_w , β_b , and β_c can be estimated separately within multilevel regressuion.

Multilevel structural equation modeling

Basic concepts of structural equation modeling

- In structural equation modeling, the observed correlations between variables (e.g. test scores) are explained by underlying latent variables.
- These latent variables are theoretical constructs, variables assumed to be inherently unobservable, but which are supposed to be useful concepts to describe and explain behavior in a specific range of observable phenomena.

Basic concepts of structural equation modeling

 Example: Two basic language skills for language reception and language production underly the observed performance in tests for a foreign language.

Basic concepts of structural equation modeling

 Information about latent variables is derived from the empirical correlations of the observed variables.

Basic concepts of multilevel structural equation modeling

- Structural equation models are based on empirical correlations.
- If the empirical data is collected in a multilevel structure, the correlations are a mixture of within and between group effects.
- In this case, it is advisable to separate these effects.
- To do so, the correlations between the observed variables are decomposed in correlations between and within groups.
- In multilevel structural equation modeling, separate models are fitted to the within- and between group correlations.

Separating Correlations within and between groups

Analysis of hierarchical data

Johannes Hartig, August 2005

Separating Correlations within and between groups

within- group correlations

	read.	listen.	writing	oral
reading	1.00			
listening	0.65	1.00		
writing	0.25	0.25	1.00	
oral prof.	0.25	0.25	0.65	1.00

→ Correlations of student
 performance within classes,
 i.e. controlling for average
 class performance.

between- group correlations

	read.	listen.	writing	oral
reading	1.00			
listening	0.88	1.00		
writing	0.88	0.88	1.00	
oral prof.	0.88	0.88	0.88	1.00

→ Correlations between average class performances across all classes.

Building separate models for each levels

within- group correlations

	read.	listen.	writing	oral
reading	1.00			
listening	0.65	1.00		
writing	0.25	0.25	1.00	
oral prof.	0.25	0.25	0.65	1.00

between- group correlations

	read.	listen.	writing	oral
reading	1.00			
listening	0.88	1.00		
writing	0.88	0.88	1.00	
oral prof.	0.88	0.88	0.88	1.00

Building separate models for each levels

Model for relations of students' individual skills.

→ Model for relations between performance levels of whole classes.

Summary

- Hierarchical data is a common phenomenon in educational research
- Conventional statistical analysis (e.g. linear regression, ANOVA) of multilevel may lead to biased results.
- Multilevel regression analysis allows to examine effects of predictors on lower as well as higher data levels on one single outcome variables.
- In multilevel equation modeling, correlations between observed variables are decomposed in correlations within and between groups. For each level, a separate latent variable model is tested.

Graphical illustration of a two level regression model

