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Contents of this workshops

@ Hierarchical data structures: definition and examples

@ Multilevel linear regression:

@ Purpose and basic concepts

@ Regression equations on different levels

@ Multilevel regression coefficients and their meaning
o

i

Decomposing effects of a lower level predictor

@ Multilevel structural equation modeling

@ Basic idea of structural equation modeling
@ Decomposition of correlations on different levels
@ Separate models for each level
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Contents of this workshops

@ What is hierarchical / multilevel data?

@ Why should | bother using special methods to
analyze multilevel data?

@ What is multilevel linear regression?

@ What effects can be tested in multilevel linear
regression models?

@ What Is the basic idea of multilevel structural
equation modeling?
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Definition of
hierarchical data structures

@ Synonym: Multilevel structures

@ Structures with several hierarchically
ordered levels

@ Observable units can be defined within
each level (e.g. students on a lower,
classrooms on a higher hierarchical level)

@ Each unit on a lower level can
unambiguously be assigned to one and
only one unit on the higher level.

Analysis of hierarchical data Johannes Hartig, August 2005



Examples of
hierarchical d_ata structures

Level 2: Classes
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Examples of
hierarchical d_ata structures

Levﬂ 3: Schools
[ B\

000 0O

Level 2:
Classes

Level 1:
Students

i ierarchical data




Examples of
hierarchical d_ata structures

Level 2: Departments
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Examples of
hierarchical d_ata structures

Level 3: Companies

Level 2:
Departments

Level 1:
Employees
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Examples of
hierarchical data structures

Level 2: Flocks
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Level 1: Sheep
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Examples of

hierarchical data structures

| evel 2: Persons

Level 1. Time points




Statistical problems when analyzing
hierarchical data

@ Data of level 1 units within the same level 2 units are not
Independent: e.g. students within the same class are
more similar among each other than to students from
different classes.

@ The similarity between level 1 units within the same level
2 units Is expressed by the intra-class-correlation; it is a
measure for the proportion of variance between level 2
units.

@ Standard statistical analysis technigues like linear
regression or analysis of variance do not take into
account these dependencies, and results obtained by
these methods are biased.
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Dealing with hierarchical data structures:
aggregation and disaggregation

Disaggregation

9 level 2 data is “multiplied” by assigning each level 1 unit
the properties of its level 2 unit that were measured at a
higher level.

@ E.g. each student is assigned classroom variables such
as students per classroom, and all students in a given
class have the same value on these variable.
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Disaggregation of level 2 data

Analys

level 1 variable

Datei  Bearbeiten  Ansicht  Daten  Transformieren  Analysieren  Grafiken  Extras  Fensker  Hilfe
&S o L =k P BRI @
s
schule | form | grasse | status | tmathe | var
1 1 Gesamtschule 713 \
2 1! Gesamtschule 713
3 1! Gesamtschule 713
4 1! Gesamtschule F13
5 1! Gesamtschule 713
B 1! Gesamtschule 713
7 1! Gesamtschule F13
] 1! Gesamtschule 713
) 1! Gesamtschule 713
11 1! Gesamtschule F13 J
1485 3 Gymnasium 916 \ 1
1496 3 Gymnasium 2B 4 H3
1497 3 Gymnasium B 3 b5
1498 31 Gymnasium B 2 1
14593 3 Gymnasium 2B 1 11
1500 3 Gymnasidm B
1501 3 Gymnasium B 1
1802 3 Gymnasium 2B 3 4
1503 3 Gymnasidm B 3 5
1504 3 GEymnasium 2B 4
15605 3 Gymnasium 2B ) 4
ER52 11| Gesamtschule 72 \
BES3 11| Gesamtschule 792
ER54 11| Gesamtschule 742
5t 11| Gesamtschule 742
EBSE 11| Gesamtschule 792
BESY 11| Gesamtschule 742
5 atat 11| Gesamtschule 742
BESS 11| Gesamtschule 792
ERED 11| Gesamtschule 742 ~

each level 2 unit

Values of level-2-variables are
| 1 units within
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Disaggregation of level 2 data

Disaggregation
@ Standard statistical methods like linear regression

assume that all data is randomly drawn from one
homogeneous population.

@ In hierarchical data structures this Is not the case. For
example, schools may be sampled from the population
of schools, and then students are sampled from the
selected schools.

@ If level 2 units are heterogeneous with respect to the
dependent variable, standard statistical analysis with
disaggregated data will yield wrong standard errors —
giving significant results were they shouldn't.
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Dealing with hierarchical data structures:
aggregation and disaggregation

Aggregation

@ Level 1 data Iis aggregated on level 2, and level 2 units
are used as units of analysis.

@ E.g. student performance scores are averaged to the
class level and classes are used at the unit of analysis.

@ The sample size is reduced to the number of level 2
units.
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Analys

Aggregation of level 1 data

W m | L] =k o Fe BEES 9
1
schule | form | groesse | am_stat |am_mathe|

1 1 samtschule 713 1,70 02 87
2 2 GeXamtschule hoh 4 A0 7216
3 3 Gymnasium 916 1,71 HE 31
4 4 Gedamtschule b7 5 b4 H5 25
5 5 Gedamtschule k01 1 50 85 b
& b Gyrhnasium 4072 577 H3 29
F 7 Gedamtschule haZ 1 B0 42 97
& & Syrnasiur . .
5| o oypmesw 1 NE SAMpPIle Size IS
10 10 Gesyntscl
il 11 eesyem Feduced to the number of
12 12 Gegamtscl
13 13 Syrhnasiur Ievel 2 unl
51 cmieen |avel 1 variables are aggregated (e.g.
16 1k Gyrnasiun
7} 17 cepmeh gyeraged) within level 2 units
18 18 Gymnasiun , ,
19 19 nasium 1010 4 22 82,73
20 20 amtschule = [ata 3,83 82,11
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Aggregation of multilevel data:
“Ecological fallacy” or “Robinson-Effect”

@ Results from aggregated data cannot be interpreted In
terms of relations on an individual level.

@ Robinson (1950) examined the relation between
percentage of blacks and the level of illiteracy in different
US regions in 1930.

At an aggregated level, this correlation is .95 — at
iIndividual level, it's just .20! (cf. Hox, 2002).

@ Relations on an aggregated level (“ecological
correlations”) are of little use (or even misleading) If one
IS Interested In relations on an individual level.

(]
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Analyzing multilevel data

@ Within the last decades, statistical methods to analyze
relations between variables in hierarchical data
structures have been developed.
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Additional terms

@ Mixed models
@ contextual analysis
@ random coefficients models
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Software

Program price
HLM Raudenbush, Bryk & Congdon 395 € (Science Plus)
(2004) 470 $ (ssicentral.com)
MLA Busing, Van der freeware
Leeden & Meijer, E. (1995)
MIwWIN Rasbash, Browne, Goldstelin, 880 €
Yang et al. (2000)
mixor / mixreg / Hedeker & Gibbons (1996a,b) freeware
mixno / mixpreg
VARCL Longford (1990) 2509
MPLUS Muthen & Muthen (2004) 745%

Analysis of hierarchical data
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Multilevel Linear Regression
(Hierarchical Linear Models)



Multilevel Linear Regression

@ Multilevel linear regression:
@ Purpose and basic concepts
o Regression equations on different levels
@ Multilevel regression coefficients and their meaning

2

@ Decomposing effects of a lower level predictor
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Basic concepts of multilevel linear
regression

@ Multilevel regression analysis (“hierarchical linear
models”) are used to analyze effects of independent
Variables on different levels on one dependent variable
on the lowest level (“level 17).

@ For example, you want to predict students’ math
achievement by their individual socioeconomic status as
well as by the number of students in the class.
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Data structure for
multilevel regression analysis

@ Data Iin the dependent variable (Y) Is collected at the
lowest level (level 1).

@ Independent variables can be located at any level of the
hierarchy.

@ Units on a higher level can consist of a varying number
of lower-level units.

@ Statistical relations of DVs and IVs as well as relations
between the hierarchical levels are represented by
specific models for each level.
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Example of a hierarchical data structure
with one predictor on each level

Level 2: Classes IV Level 2. Z = Number of students
per class (clas sSize)

St et ot




Example of a hierarchical data structure
with one predictor on each level

Level 1: Students

DV: Y = mathematics achievement
IV Level 1: X = soclioeconomic status

Level 2: Classes

IV Level 2: Z = Class size
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In multilevel regression, effects are
modeled on two levels
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Regression equations

@ Standard linear regression:

Yi =P+ B Xt

Y. = dependent variable

X, = Independent variable

3, = Intercept (regression constant)
3, = slope (regression weight of X)
. =residual

Analysis of hierarchical data
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Standard linear regression equation

Yi=Bot BXi+ 1,
v

Intercept

0
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Regression equation for level 1

@ Standard linear regression:
Yi=Bo * PaX + 1

@ Multilevel regression equation for level 1:
Yij = Boy t ByXjj + 1

o By = Intercept (regression constant),

o 3, = slope,
o r; =residual error,
@ | = subscript for level 1-unit (student),

@ | = subscript for level 2-unit (class).
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Regression equation for level 1

@ Each class (level 2-unit) has its unigue level 1 regression
constant By;

@ Each class (level 2-unit) has its unigue level 1 regression
slope B;;;

=2 Bo; and p,; vary between level 2 units.
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Unique regression equations for each
level 2 unit

= Boj and B,; vary between level 2 units

Y class 1
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Unique regression equations for each
level 2 unit

= Boj and B,; vary between level 2 units

Y class 2

Analysis of hierarchical data Johannes Hartig, August 2005



Unique regression equations for each
level 2 unit

= Boj and B,; vary between level 2 units

Y class 3
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Level 2 regression equations

9 Level 1 regression parameters are modeled as outcome
variables in level 2 regression equations:

Level 1 equation:  Y;i= By + ByX; + T

Level 2 equations: By = vog * Y012 + U,

31 = Y10 T Y124 T Uy

o v are the level 2 regression coefficients

o ZIs alevel 2 independent variable (e.g. class size as
a variable measured at class level)
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Level 2 regression equations

9 Level 1 regression parameters are modeled as outcome
variables in level 2 regression equations:

Level 1 equation:  Y;i= By + ByX; + T

Level 2 equations: By = vog * Y012 + U,

31 = Y10 T Y124 T Uy

@ For each level 1 regression coefficient, there is one level
2 eqguation in a multilevel regression model.

@ Level 2 regression coefficients do not vary across level 2
units (therefore they have no subscript j).
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Fixed and random effects In
multilevel regression

@ Since level 1 regression coefficients () can vary across
level 2 units, these effects are called random effects
(= “random coefficient models”)

9@ Level 2 regression coefficients (y) do not vary and are
referred to as fixed effects.

@ In the statistical analysis of multilevel data, only fixed
effects and random variances are actually estimated.
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Level 2 regression equations:
Level 2 regression constants y,,

Level 1 equation: Yi = Boj + By Xy + 1
Level 2 equations: Boj = Yoo T Yo1£1j * Uy,
B1j = Y10 T Y1244 T Uy

Yoo = Level 2 regression constant of 3.
Expectation of level 1 intercept B for Z;being zero

V10 = Level 2 regression constant of [3;:
Expectation of level 1 regression slope B,; for Z; being
Zero
- the average effect of the level 1 predictor, e.g. the
“overall” effect of individual SES on student
performance.

Analysis of hierarchical data Johannes Hartig, August 2005



Level 2 regression equations:
Level 2 regression slopes y,,

Level 1 equation: Yii = Boj + ByXyi T 1

Level 2 equations: B0 = Yoo T Y01£1j T Uo;

315 = Y10 t V12445 T Uy

In multilevel regression, variation between level 1 intercept
and slopes can me predicted by level 2 independent

variables Z:
o yo1 = effect of Z; on B,

o vy, = effect of Z, on B,
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Level 2 regression equations:
Level 2 regression slopes y,,

Level 1 equation: Yi = Boj t B1Xyj T 1
Level 2 equations: By = Yoo + Y0124 * Ug,
Byj = Y10 + Y114y t Uy

Yo1 = €ffect of Z, on B
The effect of Z on the regression constant Is the main effect
of a level 2 predictor, e.g. the effect of class size on
average student performance In classes; e.g. do students
In smaller classes perform higher in average?

Y11 = effect of Z, on B
The effect of a level 2 predictor on a level 1 regression
slope is called cross level interaction; e.g. Is the effect of
SES on achievement higher in larger classes?
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Level 2 regression equations:
Level 2 residuals u;

Level 1 equation: Yii = Boj T ByiXyi * T

Level 2 equations: By = Yoo + Yo1Zy; + Ug,

B1j = Y10 * Y1144 t Uy;

@ Random variation of By und B,; between level 2 units is

expressed by unigue effects for each class with an
expectation of zero:

@ Uy = Unique effect of class | on the mean
achievement ;, controlling for Z,

o uy; = Unique effect of class ] on the regression slope
B4, controlling for Z,;
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Variance components in multilevel
regression

Var (r;) = o4 E(r;) = 0

var (Ug) = to0; E(Ugy) =0
Var (up) = ty5; E(uy) =0

Var

|
—
|
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Estimating variance between classes:
the intercept only model

@ (also null model, baseline model)

The intercept only model contains only the level 2
regression constant y,, and residuals for level 1 and 2:

Level 1 equation: Y;= ¢ +T;
Level 2 equation: By =749 + Uy,
2 Yi= Yoo T Uit T;
The Intercept only model allows to separate variance
within level 2 units from variance between level 2 units.

@ Calculation of the intraclass correlation p:

O

© © © ¢

variance between level 2 units 1,
total variance T, +G°

Analysis of hierarchical data Johannes Hartig, August 2005
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HLI\/_I 6.0 exam__ples

I x
File Basic Settings Other Settings  Run Analysis  Help
Outcome LEVEL 1 MODEL (bold: group-mean certering, bald italic: grand-mean centering) =
Level-1 —
> Level 2 << MATHAZH = |3-|,_:I + |3,I,|:5E5:| + ¥
INTRCHT LEVEL 2 MODEL rbold talic: grand-mean centering)
1 Pl -
SECTOR Ba = Yoo T Vo (PECTOR] +u,
FRACAD i G
OIS C Ly
HIMIMTY
MEAMNSES
Mixed| ~|
MATHACH = Yoo T ?G?*SEETDH + 'I"m*SES +u, - f :

Analysis of hierarchical data
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Data structure for analysis with HLM

@ For analysis with HLM, two separate data files are
needed.

@ The first (level 1) contains all data collected at student
level, and one ID variable indicating the belonging of
each level 1 unit to a specific level 2 unit (e.g. a class ID
for each student.

@ The second (level 2) data set contains all data collected
at class level. It consists of one “case” per class and an
ID variable that is unique for each class.
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Example of two level data structure for
analysis with HLM

Level 2 data file Level 1 data file
File Edit “iew Data Transform  Analy: File Edit Miew Data Transform Analvze Graphs  Ukilities
= |8| B || =B =|@|3| B| o] =|k| #l Ee=| Bl
aE | 6 |
IDclass - |Dclass gender SES mathach
103 0 111224 1 26 5876
2]125¢ 24 B S —
3]1236 26 4[1224 0 40 5751
411308 2= 5]1224 0 48 17.898
2| 1417 20 51224 ] SIEE
B) 1356 27 7[1224 1 A0 2832
711374 23 g 1224 0 35 523
] 1433 24 af1224 1 35 1,627
91436 19 10[1224 0 43 21.521
10]1461 19 11[1224 1 28 0.475
111462 20 121224 1 40 16.057
1211477 19 15[ 1224 I 43 21178
13l1499 I5 1411224 1 35 20178
121637 o0 15[1224 0 5 20.349
15[1505 T 16[1224 1 40 20.508
16| 09 30 o — -
L] 142 2 19[1224 1 51 2927
i) 1946 21 \ 20]1224 0 49 16.405
192030 27 21| 1288 1 e 7 857
0] 2208 15 22| 1288 0 15| 10171
Analys M| 22TT 19 ~3]12885 0 57 15 B9 ohannes Hartig, August 2005




HLM 6 output: intercept only model

Example

@ “High school and beyond” data (example included in the
free HLM 6.0 student version).

@ Data Is from students drawn from schools.
@ Independent variable: math achievement.

@ Intercept only model (null model) without independent
variables on level 1 or 2
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HLM 6 output: intercept only model

Summary of the model specified (In equation format)

Level-1 Model
Y = BO + R

Level-2 Model
BO = GOO + UO

LEVEL 1 MODEL (hold: group-mean centering; bold talic: grand-mean centering)
FTHEAD = o+t

LEVEL 2 MODEL (bold talic: grand-mean centering)
K Error term for currently selected level-2 eguation

X Bo = top Y

Analysis of hierarchical data



HLM 6 output: intercept only model
Fixed effects (y-coefficients)

The outcome variable 1s MATHACH

Final estimation of fixed effects
(with robust standard errors)

Standard Approx.
Fixed Effect Coefficient Error T-ratio d.f. P-value
For INTRCPT1, BO
INTRCPT2, GOO 12.636972 0.243628 51.870 159 0.000

The only fixed effect Is the level 2 regression
constant y,,, which is typically not very interesting...
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HLM 6 output: intercept only model
variance components

Final estimation of variance component | evel 1 residual variance

Random Effect Standard Variar df Chi-square
P-value
Deviation Compd
INTRCPT1, uo 2.93501 8.61431 159 1660.23259
0.000
39.14831

18% of the variance in math | -
achievement is between iL—/IZ\ ol var
schools, I.e. can be explained by Vel £ Tesidual variance

differences between schools ,\\

Analysis of hierarcrmcaruata

Var(u,) 861

= =0.18
Var(u,)+Var(r) 39.15+8.61

ICC =

ust 2005



HLM 6 output:
complete model

Example
@ “High school and beyond” data.

2

.

W

J

Independent variable Y: math achievement.

One level 1 predictor:

Q9

Student SES (SES)

One level 2 predictor:

o type of school (sector = catholic vs. public)

One cross level interaction
o The type of school moderates the relation between

SES and math achievement.

Analysis of hierarchical data
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HLM 6 output:
complete model

Summary of the model specified (In equation format)

Level-1 Model
Y = BO + B1*(SES) + R

Level-2 Model
BO = GOO + GO1*(SECTOR) + UO

Bl = G10 + G11*(SECTOR) + U1
Outcome || FyEL 1 MODEL
LCVEEL | MATHACH = p, +p,(SES) +
33 Level-2 << = By T By (SES) +7
EEECF'TE LEVEL 2 MODEL
=T ﬁ.ﬂ = T +r,.-m|:SEElTDH] + U,
Analysis of hierarchical data _ Eﬁ__l%ﬂlljﬁlli] _ El'i' = I}I'?I:' + ???[SEETDHJ + u'i'




HLM 6 output complete model:
fixed effects (y-coefficients)

The outcome variable 1s MATHACH

VOO average xed effects
- errors)
performancein _____ -~ ______
' Standard Approx.
pUbIIC SChOOlS Coefficient Error T-ratio d.f. P-value
For |N%§8/4ij_;;
INTRCPT2, GOO 11.750661 0.218684 53.733 158 0.000 ()
SECTOR, GO 2.128423 0.355700 5.984 158 0.000

For SES slopey
INTRCPT2, G10
SECTOR, G11

Q587" ——~—assmnn oo cau L AR
Vo, level 2 main effect for school

type (performance difference
catholic and public schools)
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HLM 6 output complete model:
fixed effects (y-coefficients)

The outcome variable 1s MATHACH

Final estimation of fixed effects
(with robust standard errors)

V1o, Main effect of SES In Approx.
Fixed Efi - _ b d.f P-value
____________ public schools (sector=0)
For INTRCPT1
INTRCPT2, GOO 11.750661 0.218684 53.733 158 0.000
SECTOR, GO1 2.128423 0.355700 5.984 158 0.000
For SES sloy (¢ Bl
INTRCPT2, G10 2.958798 0.144092 20.534 158 0.000 FS
SECTOR, G11 -1.313096 0.214271 -6.128 158 0.000 ].

v, change in SES effect if school
Is catholic (sector=1)
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HLM 6 output complete model: graphical
display of cross level interaction

15.567

SECTOR=0
SECTOR=1

13.84

12.12

MATHACH

10.40

.68 ¥—1+—o1""-—1"—-""""F"""-"—""-"-"-"7T5T"7""r—""T""TF"T""T1""""
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Compositional effects

@ , The statistical estimate of the additional effect obtained

by the aggregated variable at the school level over-and-
above the variable’s effect at the individual level”
(Harker & Tymmes, In press)

@ Multilevel regression allows the decomposition of the
effect of an independent on a dependent variable Into

o effects within level 2 units
o effects between level 2 units
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Effects of a level 1 predictor within and
between level 2 units

Y math achievement
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Graphical illustration of compositional
effects

@ Compositional effects occur if level 2 units are
heterogeneous with respect to the dependent as well to
the independent variable.

B, By.and B. can be
estimated separately
within multilevel
regressuion.

Analysis of hierarchical data X StUde nt S ES Johannes Hartig, August 2005
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Multilevel
structural equation modeling



Basic concepts of
structural equation modeling

@ In structural equation modeling, the observed
correlations between variables (e.g. test scores) are
explained by underlying latent variables.

@ These latent variables are theoretical constructs,
variables assumed to be inherently unobservable, but
which are supposed to be useful concepts to describe
and explain behavior in a specific range of observable
phenomena.
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Basic concepts of
structural equation modeling

@ Example: Two basic language skills for language
reception and language production underliy the observed
performance In tests for a foreign language.

Double-headed arrow: reading \kl 5 O
undirected effect. The 5 %
latent skills “reception” reception _ _ = 9
and “production” are istening | | @ Q
related in some way, but S &
we do not care why or > <
how. | wriing | |S &
Bubbles: — PR production »
Latent
- N /N
variables  f . oral
One-headed arrow: directional oficienc
relation. The observed variable P y

“reading” Is Influenced by the latent
skill “reception”
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Basic concepts of
structural equation modeling

@ [Information about latent variables is derived from the
empirical correlations of the observed variables.

@mpirical correlations N

read. listen. writing oral

reading 1.00

reading

listening 0.75

writing 1.00 | listening
oral prof. 075 1.00I¥
\_ . | writing
I | production

oral
proficiency
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Basic concepts of multilevel structural
eguation modeling

@ Structural equation models are based on empirical
correlations.

@ If the empirical data is collected in a multilevel structure,
the correlations are a mixture of within and between
group effects.

@ In this case, It Is advisable to separate these effects.

@ To do so, the correlations between the observed
variables are decomposed In correlations between and
within groups.

@ In multilevel structural equation modeling, separate

models are fitted to the within- and between group
correlations.
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Separating Correlations within and

between groups

observed correlations

read. listen.  wri
reading 1.00
listening 0.75 1.00
writing 0.30 0.30 i\
oral prof. 0.30 0.30 0.

between- group correlations

Analysis of hierarchical data

reading
listening

writing

1.00
0.88 1.00
0.88 0.88 1.00

within- group correlations

read. listen. writing oral
reading 1.00
listening 0.65 1.00
writing 0.25 0.25 1.00
oral prof. 0.25 0.25 0.65 1.00
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Separating Correlations within and
between groups

within- group correlations between- group correlations
read. listen. writing oral

reading 1.00 reading 1.00

listening 0.65 1.00 listening 0.88 1.00

writing 0.25 0.25 1.00 writing 0.88 0.88 1.00

oral prof. 0.25 0.25 0.65 1.00 w

- Correlations of student — Correlations between

performance within classes, average class performances

l.e. controlling for average across all classes.

class performance.
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Building separate models for each levels

within- group correlations

read. listen. writing oral

reading 1.00

listening 0.65 1.00
writing 0.25 0.25 1.00

oral prof. 0.25 0.25 0.65 1.00

reading
reception
P listening
writing
production
oral
proficiency

Analysis of hierarchical data

between- group correlations

reading 1.00
listening 0.88 1.00

writing 0.88 0.88 1.00

performance '
level

proficiency
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Building separate models for each levels

Level 1 model (within classes)

reception

reading

listening

writing

oral
proficiency

— Model for relations of
students’ individual skills.

Analysis of hierarchical data

Level 2 model (between classes)

reading

performance
level

proficiency

- Model for relations
between performance levels
of whole classes.
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Summary

@ Hierarchical data is a common phenomenon In
educational research

@ Conventional statistical analysis (e.g. linear regression,
ANOVA) of multilevel may lead to biased results.

@ Multilevel regression analysis allows to examine effects
of predictors on lower as well as higher data levels on
one single outcome variables.

@ In multilevel equation modeling, correlations between
observed variables are decomposed In correlations
within and between groups. For each level, a separate
latent variable model Is tested.
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Graphical illustration of a two level

regression model

T

Y01

class size

711

Y10

s B1j= Y10 T Y114 T Uy

| Boj= Yoo + Y014 t Uy

Y

) X.
Boj—> mathemaﬁ&%— socioeconomic

| —___ | achievement status

Yi= Boj + ByiXeij ¥ lij e




