Th．E．Zimmermann \＆W．Sternefeld
 Introduction to Semantics
 An Essential Guide to the Composition of Meaning de Gruyter Mouton 2013

typos and errors

page

p． 10 line 3 from bottom
p． 10 footnote 5
p． 11 first line
p． 35 below（32）
p． 36 line 7
p． 37 line 5
p． 47 in（72）
p．66，6th line from bottom
p． 704 th line from bottom
p． 70 3rd line from bottom
p． 101 above（51）
p． 105 above（59）
p． 110 line 7
p．113，2nd－3rd line of 5．4．
p． 123 3rd line in（19）
p． 148 above（29）
p． 149 line 1
p． 153 above（43）
p．161，below（67）
p． 164 line 14
p． 165 above（80）
p． 165 above（80）
p． 166 line 5 from bottom
p． 175 above（12）
p． 188 Fn 18
p． 200 （58）a．
p． 200 （58）b．
p． 211 second paragraph
p． 215 Exercise 36
p． 221 first line
p． 223 line 3
p． 223 2nd line above（40）
p． 229 （58）
p． 230 （60）
p． 230 （61）
p． 230 （61）
p． 236 fn .4

correct

see Appendix 1
Cf． $\mathrm{http}: / / i$ itre．cis．upenn．edu／～myl／
languagelog／archives／000371．html and also I believe
（31－b）
（31）
operations
only if
red and orange
〈John，Mary〉
〈Mary，John〉
be the value that
of the corresponding logical
according
the definite
by（18）
all $\left[\mathrm{S}_{2} \rrbracket\right.$ worlds
＇ S_{2} but not S_{1}＇
［I S_{1} 】
white space in（65）
（＝＇ S_{1} because S_{2}＇）
${ }^{\prime} \mathrm{S}_{1}$ or S_{2}＇
to be 0
＇ S_{1} or S_{2}＇，but not
knows that S is the
［1929－2015］
t^{\prime} after t
t^{\prime} before t
（11）
of S_{1} and S_{1} is true for
at least one world w and
false for at least some world w^{\prime} ，then
understanding S_{1}
Euler diagram
incompatible with S
$C G+\mathrm{S}$
$C G+\mathrm{S}$
$\left(\left(C G+\mathrm{S}_{1}\right)+n o t\right.$
$\left(\left(C G+\mathrm{S}_{1}\right) \backslash\right.$
the meta－linguistic

wrong

get confused？
Cf．
［．．．］I believe
（31）
（32）
opertations
if and only if
red and green
〈Mary，John〉
〈John，Mary〉
be the singleton containing the value that
of logical the corresponding
accordng
the the definite
by（19）
all $\llbracket \mathrm{S}_{1} \rrbracket$ worlds
＇ S_{1} but not S_{2}＇
$\llbracket \mathrm{S}_{1} \rrbracket_{w}$
white space in（66）
（＝＇S1 because S2＇）
＇S1 or S_{2}＇
to be 1
＇ S_{1} or，but not
knows that S ）is the
（＊1929）
t＇after t
t＇before t
（12）［three times］
of S_{1} ，then
understanding S_{2}
Venn diagram
incompatible with $C G$
$C G+\llbracket \mathrm{S} \rrbracket$
$C G+\llbracket \mathrm{S} \rrbracket$
$\left(\left(C G+\mathrm{S}_{1}+n o t\right.\right.$
$\left(\left(C G+\mathrm{S}_{1} \backslash\right.\right.$
the the meta－linguistic

page

p. 246 (32-c)
p. 246 (32-e)
p. 247 (35-e)
p. 248 line 2
p. 248, (37-c)
p. 248 (38)
p. 249 (39)
p. 249 last line
p. 250 (42)
p. 250 (43)
p. 255 (51)
p. 255 (51)
p. 255 (54) p.
p. 255 second last
p. 256 (55)
p. 259 (66) a.
p. 259 last line in (70)
p. 260 line 3
p. 265 last but one line
p. 276 Proof of Th. 1
p. 276 (32)

correct

$\left\langle F \cup \ldots g\left(a_{n}\right)\right\rangle \in$
' x '-alternative
' x '-alternative
be
$\langle x, x\rangle$
' x '-alternative
(Qz)
away
and $\{\varphi, \psi\} \subseteq$
Let φ and ψ be formulas.
' x '-alternative
$g\left({ }^{\prime} x^{\prime}\right)=u$
' x '-alternative
' x '-alternative
' x '-alternative
$[\lambda P(\forall x)[B(x) \rightarrow P(x)]]$
$(\exists x)[H(x) \wedge W(j, x)]$
$\Phi([\lambda y \varphi])$
opaque verb want
If $\llbracket \operatorname{not} \mathrm{S}_{1} \rrbracket=\llbracket \mathrm{S}_{2} \rrbracket$
and are smoking

wrong

$\left(F \cup \ldots g\left(a_{n}\right)\right) \in$
x-alternative
x-alternative
be be
(x, x)
x-alternative
($Q x$)
aways
and $\Sigma \cup\{\varphi, \psi\} \subseteq$
Let L, Σ, φ, and ψ be as in (35).
' y '-alternative
$g\left({ }^{\prime} y '\right)=u$
x-alternative
x-alternative
x-alternative
$[\lambda P[(\forall x) B(x) \rightarrow P(x)]]$
$(\exists x)[H(x) \wedge W(j, x))$
$\Phi((\lambda y) \varphi)$
opaque verb marry
If $\llbracket \mathrm{S}_{1} \rrbracket=\llbracket \mathrm{S}_{1} \rrbracket$
and x is smoking

Appendix 1:
...get confused?
[end quotation. no indentation:]
Kai von Fintel answers (cited from http://www.kaivonfintel.org/no-head-injury/):
[begin quotation]
I would certainly ...

