Compositionality

and

Ontological Commitment

Thomas Ede Zimmermann, Goethe University, Frankfurt SPE 5, University of Turin, July 25-27, 2012
0. Intro
I. The compositional enterprise
2. External extensions
3. Internal Extensions
4. Intensions and Fregean compositionality
5. Outro

0. Intro

0. Intro

To be is to be the value of a (bound) variable.

0. Intro

To be is to be the value of a (bound) variable.
Quine (1961)

0. Intro

To be is to be the value of a (bound) variable.
Quine (1961)
Ontological overkill:

0. Intro

To be is to be the value of a (bound) variable.
Quine (1961)
Ontological overkill:
Every man loves a woman.

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)

0. Intro

To be is to be the value of a (bound) variable. Quine (196I)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$

0. Intro

To be is to be the value of a (bound) variable. Quine (196I)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$

0. Intro

To be is to be the value of a (bound) variable. Quine (196I)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$
ranging over...

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ ranging over...

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$
individuals
ranging over...

Compositional analysis (indirect interpretation)

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$
individuals
ranging over...

Compositional analysis (indirect interpretation)
$(\lambda Y . \lambda X . Y \subseteq X)(M)(\lambda x .(\lambda Y . \lambda X . Y \notin X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\nexists x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ $\xrightarrow{ }$ individuals ranging over...

Compositional analysis (indirect interpretation)
$(\lambda M) X . Y \subseteq X)(M)(\lambda x .(X Y) X X . Y \nsubseteq X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the value of a (bound) variable. Quine (1961)
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ individuals ranging over...

Compositional sets of individuals
$(\lambda Y) \lambda X . Y \subseteq X)(M)(\lambda \times \cdot(\lambda Y), X X) \times X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the value of a (bound) variable.
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\notin x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ $\xrightarrow{ }$ individuals ranging over...

Compositional sets of individuals
$(\lambda M) X X . Y \subseteq X)(M)(\lambda x .(X Y) X X . Y \nVdash X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the referent of a term.
Ontological overkill:
Every man loves a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ ranging over...
sets of individuals
Compositional (indirect interpretation)
$(\lambda Y . \lambda X . Y \subseteq X)(M)(\lambda x .(\lambda Y . \lambda X . Y \notin X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the referent of a term.
Ontological overkill:
Every man seeks a woman.
Non-compositional analysis (formalisation)
$(\forall x)[M(x) \rightarrow(\exists y)[W(y) \& L(x, y)]]$ ranging over...
sets of individuals
Compositional (indirect interpretation)
$(\lambda Y . \lambda X . Y \subseteq X)(M)(\lambda x .(\lambda Y . \lambda X . Y \notin X)(W)(\{y \mid x L y\}))$

0. Intro

To be is to be the referent of a term.
Ontological overkill:
Every man seeks a woman.
Non-compositional analysis (formalisation)

$$
(\forall x)[M(x) \rightarrow \square_{x} \underbrace{(\exists y)}_{\text {set of worlds (proposition) }}[W(y) \& L(x, y)]]
$$

denoting ...
$\frac{\text { Compositional sets of individuals }}{(\lambda Y . \lambda X . Y \subseteq X)(M)(\lambda \times .(\lambda Y . \lambda X . Y \propto X)(W)(\{y \mid x L y\}))}$

0. Intro

To be is to be the referent of a term.
Ontological overkill:
Every man seeks a woman.
Non-compositional analysis (formalisation)

$$
(\forall x)[M(x) \rightarrow \Phi_{x} \underbrace{(\exists y)}_{\text {set of worlds (proposition) }}[W(y) \& L(x, y)]]
$$

denoting ...
function from worlds to sets of sets of individuals
Compositional analysis (indirect interpretation)
$(\lambda Y . \lambda X . Y \subseteq X)(M)\left(\lambda x . S\left(x,^{\wedge}(\lambda Y . \lambda X . Y \nless X)(W)\right)\right)$

0. Intro

I. The compositional enterprise
2. External extensions
3. Internal extensions
4. Intensions and Fregean compositionality
5. Outro
0. Intro
I. The compositional enterprise
2. External extensions
3. Internal extensions
4. Intensions and Fregean compositionality
5. Outro

I. The compositional enterprise

I. The compositional enterprise

I. The compositional enterprise

START

I. The compositional enterprise

START

EXPRESSIONS

I. The compositional enterprise

START

EXPRESSIONS

I. The compositional enterprise

START

EXPRESSIONS have

$$
\text { semantic values }\langle X\rangle, 《 X\rangle, \ldots
$$

I. The compositional enterprise

START

EXPRESSIONS have
semantic values $\langle X\rangle, 《 X\rangle, \ldots$
corresponding to their (communicative,...) functions: reference (potential), informational content,...

I. The compositional enterprise

START

Some
EXPRESSIONS have external semantic values $\langle X\rangle, 《 X\rangle, \ldots$ corresponding to their (communicative,...) functions: reference (potential), informational content,...

I. The compositional enterprise

START

Some
EXPRESSIONS have
external
semantic values $\langle X\rangle, 《 X\rangle, \ldots$ corresponding to their (communicative,...) functions: reference (potential), informational content,...
GOAL

I．The compositional enterprise

START

Some

EXPRESSIONS have external semantic values $\langle X\rangle, 《 X\rangle, \ldots$ corresponding to their（communicative，．．．）functions： reference（potential），informational content，．．．

GOAL

All
EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions they make to） the functions of expressions in which they occur

I．The compositional enterprise

START

Some

EXPRESSIONS have external semantic values $\langle X\rangle, 《 X\rangle, \ldots$ corresponding to their（communicative，．．．）functions： reference（potential），informational content，．．．

GOAL

All
EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions they make to） the functions of expressions in which they occur

I. The compositional enterprise GOAL
 All

EXPRESSIONS have
external (or internal) semantic values $\langle\mathrm{X}\rangle, 《 \mathrm{X}\rangle, \ldots$ corresponding to (the contributions they make to) the functions of expressions in which they occur

I．The compositional enterprise GOAL
 All

EXPRESSIONS have
external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions ${ }^{*}$ they make to） the functions of expressions in which they occur
＊that are compositional：

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

$$
\left\langle\begin{array}{ll}
X+Y \\
X & Y \\
\Delta & \Delta
\end{array}\right\rangle=
$$

I．The compositional enterprise GOAL
 All

EXPRESSIONS have external（or internal）semantic values 〈X〉，《X》，．．． corresponding to（the contributions＊they make to） the functions of expressions in which they occur
＊that are compositional：

$$
\left\langle\begin{array}{cc}
X+Y \\
X & Y \\
\Delta & \Delta
\end{array}\right\rangle=\left\langle\begin{array}{c}
X \\
\Delta
\end{array}\right\rangle \oplus\left\langle\begin{array}{l}
Y \\
\Delta
\end{array}\right\rangle
$$

0. Intro
I. The compositional enterprise
1. External extensions
2. Internal extensions
3. Intensions and Fregean compositionality
4. Outro
5. Intro
I. The compositional enterprise
6. External extensions
7. Internal extensions
8. Intensions and Fregean compositionality
9. Outro

2. External extensions

2. External extensions

2. External extensions

|st approach

2. External extensions

Ist approach
Frege (1892)

2. External extensions

Ist approach
Frege (1892)
START

2. External extensions

Ist approach
START

EXPRESSIONS have external
semantic values $\langle X\rangle, 《 X\rangle, \ldots$ corresponding to their (communicative,...) functions: reference (potential), informational content,...

2. External extensions

Ist approach
START

EXPRESSIONS have
external
semantic values $\langle X\rangle, 《 X\rangle, \ldots$
corresponding to their (communicative,...) functions: reference (potential), informational content,...

2. External extensions

Ist approach
START with
REFERENTIAL
EXPRESSIONS have
external
semantic values $\langle X\rangle, 《 X\rangle, \ldots$
corresponding to their (communicative,...) functions: reference (potential), informational content,...

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

$\left\langle\right.$| NP | |
| :---: | :---: |
| Det | N |
| the | King |\rangle

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

$\left\langle\right.$| $N P$ | |
| :---: | :---: |
| Det | N |
| the | King |$\rangle=$

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

$\left\langle\right.$| $N P$ | |
| :---: | :---: |
| Det | N |
| the | King |$\rangle=$ Elvis

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function $\left\langle\begin{array}{c}\mathrm{NP} \\ \text { Elvis }\end{array}\right\rangle=$ Elvis

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function
$\left\langle\begin{array}{c}\mathrm{NP} \\ \text { Elvis }\end{array}\right\rangle=$ Elvis

+ (somewhat mysteriously)

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

2. External extensions

Ist approach
START
REFERENTIAL
EXPRESSIONSget their referents as external semantic values $\langle\mathrm{X}\rangle$ corresponding to their referential function

$=1$

2. External extensions

2nd approach
START
TERMS (= Names + Descriptions): as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference

2. External extensions

2nd approach
START
TERMS (= Names + Descriptions): as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference

〈is dead〉

2. External extensions

2nd approach
START
TERMS (= Names + Descriptions): as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference

〈is dead> $\quad=\{(\mathrm{x}) \mid \mathrm{x}$ is dead $\}$

2．External extensions

2nd approach
START
TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values 〈P〉 corresponding to their multiple reference

〈is dead〉

$$
=\{(x) \mid x \text { is dead }\}
$$

〈is watching〉

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values 〈 P\rangle corresponding to their multiple reference

〈is dead〉 $\quad=\{(x) \mid x$ is dead $\}$
〈is watching〉 $\quad=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}$ is watching y$\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values 〈P〉 corresponding to their multiple reference

〈is dead〉 $\quad=\{(\mathrm{x}) \mid \mathrm{x}$ is dead $\}$
〈is watching〉 $=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}$ is watching y$\}$
〈is showing〉

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference

〈is dead〉 $\quad=\{(\mathrm{x}) \mid \mathrm{x}$ is dead $\}$
〈is watching〉 $=\{(x, y) \mid x$ is watching $y\}$
〈is showing〉
$=\{(x, y, z) \mid x$ is showing y to $z\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference valency

```
| 〈is dead\rangle = {(x)| }\textrm{x}\mathrm{ is dead}
2 〈is watching\rangle = {(x,y)| x is watching y}
3〈is showing\rangle ={(x,y,z)|x}\mathrm{ is showing }\textrm{y}\mathrm{ to z}
```


2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference valency ＝

I 〈is dead〉 $\quad=\{(x) \mid x$ is dead $\}$
2 〈is watching〉 $=\{(x, y) \mid x$ is watching $y\}$
3 〈is showing〉 $\quad=\{(x, y, z) \mid x$ is showing y to $z\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfiers as external semantic values $\langle P\rangle$ corresponding to their multiple reference
$=\{(x, y) \mid x$ is watching $y\}$
3 〈is showing〉
$=\{(x, y, z) \mid x$ is showing y to $z\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfies as external semantic values $\langle P\rangle$ corresponding to their multiple reference

〈Elvis is dead
I 〈 is dead 〉 $\quad=\{(x) \mid x$ is dead $\}$
2 〈is watching
$=\{(x, y) \mid x$ is watching $y\}$
3 〈is showing
$=\{(x, y, z) \mid x$ is showing y to $z\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfies as external semantic values $\langle P\rangle$ corresponding to their multiple reference

0 〈Elvis is dead
I 〈 is dead 〉 $\quad=\{(x) \mid x$ is dead $\}$
2 〈is watching
$=\{(x, y) \mid x$ is watching $y\}$
3 〈is showing
$=\{(x, y, z) \mid x$ is showing y to $z\}$

2．External extensions

2nd approach

TERMS（＝Names＋Descriptions）：as before PREDICATES get their satisfies as external semantic values $\langle P\rangle$ corresponding to their multiple reference
valency
$=$
0 〈Elvis is dead
I 〈 is dead 〉 $\quad=\{(x) \mid x$ is dead $\}$
2 〈is watching
$=\{(x, y) \mid x$ is watching $y\}$
$=\{(x, y, z) \mid x$ is showing y to $z\}$
－arity

3 〈is showing

2. External extensions

2nd approach

TERMS (= Names + Descriptions): as before PREDICATES get their satisfies as external semantic values $\langle P\rangle$ corresponding to their multiple reference
$0\langle$ Elvis is dead $\quad=\{() \mid$ Elvis is dead $\}$
$=\{(x) \mid x$ is dead $\}$
$=\{(x, y) \mid x$ is watching $y\}$
3 〈is showing
$=\{(x, y, z) \mid x$ is showing y to $z\}$

2. External extensions

Comparison

2. External extensions

Comparison

Names
Descriptions
Nouns

Verbs

Sentences
Determiners

2. External extensions

Comparison
Frege
Carnap

Names
Descriptions
Nouns
Verbs
Sentences
Determiners

2. External extensions

Comparison

Frege

Names
Descriptions individuals
Nouns
Verbs
Sentences
Determiners
individuals
—
-
truth values
-
\qquad

Carnap

individuals individuals sets relations
truth values -
0. Intro
I. The compositional enterprise
2. External extensions
3. Internal extensions
4. Intensions and Fregean compositionality
5. Outro
0. Intro
I. The compositional enterprise
2. External extensions

3. Internal extensions

4. Intensions and Fregean compositionality
5. Outro

3. Internal extensions

3. Internal extensions

3. Internal extensions

GOAL

All
EXPRESSIONS have
external (or internal) semantic values $\langle\mathrm{X}\rangle, 《 \mathrm{X}\rangle, \ldots$ corresponding to (the contributions they make to) the functions of expressions in which they occur

3. Internal extensions

GOAL

All
EXPRESSIONS have external or internal extensions 〈X〉 corresponding to the contributions they make to the external extensions of expressions in which they occur

3. Internal extensions

3. Internal extensions

Construction of internal extensions: standard method
3. Internal extensions

Construction of internal extensions:
standard method
3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmermann (201I; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmermann (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
... i.e.: all values $\left\langle X_{i}+Y_{j}\right\rangle$ and $\left\langle Y_{j}\right\rangle$ have already been determined (externally, by previous applications of the standard method, or otherwise).

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmermann (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmerman (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
... ie.: whenever $\left\langle Y_{j}\right\rangle=\left\langle Y_{k}\right\rangle$, then:

$$
\left\langle X_{i}+Y_{j}\right\rangle=\left\langle X_{i}+Y_{k}\right\rangle .
$$

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmermann (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.

Strategy

cf. Zimmermann (201I; 20I2) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X
... i.e.: whenever $\left\langle X_{i}+Y_{k}\right\rangle=\left\langle X_{j}+Y_{k}\right\rangle$, for all Y_{k}, then:
$\left\langle Z\left[X_{i}\right]=Z\left[X_{i}\right]\right\rangle$, for all $Z[]$ already evaluated.

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmermann (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy cf. Zimmermann (201I; 20I2) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of $\left\langle X_{i}\right\rangle$

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.

Strategy

 cf. Zimmerman (201I; 20I2) for detailsTo extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of $\left\langle X_{i}\right\rangle$
$\left\langle X_{i}\right\rangle:=\lambda\left\langle Y_{j}\right\rangle .\left\langle X_{i}+Y_{j}\right\rangle$

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption
Every expression occurs in some sentence.
Strategy
cf. Zimmerman (2011; 2012) for details
To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of $\left\langle\mathrm{X}_{\mathrm{i}}\right\rangle$
$\left\langle\mathrm{X}_{\mathrm{i}}\right\rangle:=\lambda\left\langle\mathrm{Y}_{\mathrm{j}}\right\rangle .\left\langle\mathrm{X}_{i}+\mathrm{Y}_{\mathrm{j}}\right\rangle \quad \ldots$ and \oplus is functional application.
3. Internal extensions

Construction of internal extensions:
standard method
3. Internal extensions

Construction of internal extensions: standard method

Example I (based on Ist approach to external extensions)
3. Internal extensions

Construction of internal extensions: standard method

Example I (based on Ist approach to external extensions)
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+$ is dead \rangle

3. Internal extensions

Construction of internal extensions: standard method

Example I (based on Ist approach to external extensions)
\langle is dead $\rangle=\lambda\langle N P\rangle .\langle N P+$ is dead \rangle
(characteristic function of) set of individuals
3. Internal extensions

Construction of internal extensions: standard method

Example I (based on Ist approach to external extensions)
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+$ is dead \rangle

3. Internal extensions

Construction of internal extensions: standard method

Example I (based on Ist approach to external extensions)
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+$ is dead \rangle
\cong external extension according to 2nd approach

3. Internal extensions

 Construction of internal extensions: standard methodExample I (based on Ist approach to external extensions)
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+$ is dead \rangle
\cong external extension according to 2 nd approach
Example 2 (applicable after Ex. I according to Ist approach and immediately according to 2nd approach)

3．Internal extensions

 Construction of internal extensions： standard methodExample I（based on Ist approach to external extensions）
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+i s$ dead \rangle
\cong external extension according to 2nd approach
Example 2 （applicable after Ex．I according to Ist approach and immediately according to 2nd approach）
\langle everybody〉 $=\lambda\langle V P\rangle$ ．〈everybody＋VP〉

3．Internal extensions

 Construction of internal extensions： standard methodExample I（based on Ist approach to external extensions）
\langle is dead〉 $=\lambda\langle N P\rangle .\langle N P+i s$ dead \rangle
\cong external extension according to 2 nd approach
Example 2 （applicable after Ex．I according to Ist approach and immediately according to 2nd approach）
\langle everybody $=\lambda$ VP＞．〈everybody＋VP〉
bound set variable！

3. Internal extensions

4 problems with standard method of constructing extensions
3. Internal extensions

4 problems with standard method of constructing extensions

Problem I: Indeterminacy

3. Internal extensions

4 problems with standard method of constructing extensions

Problem I: Indeterminacy

Extensions (and other values) depend on choice of + .
3. Internal extensions

4 problems with standard method of constructing extensions

Problem I: Indeterminacy

Extensions (and other values) depend on choice of + .
However, the resulting value assignments (after completion) will always be isomorphic.
3. Internal extensions

4 problems with standard method of constructing extensions

Problem I: Indeterminacy

Extensions (and other values) depend on choice of + .
However, the resulting value assignments (after completion) will always be isomorphic.

3. Internal extensions

4 problems with standard method of constructing extensions

Problem I: Indeterminacy

Extensions (and other values) depend on choice of + .
However, the resulting value assignments (after completion) will always be isomorphic.

Solution:
Isomorphic theories should be declared notational variants of one another - provided they agree on the external extensions (and their 'interpretation').
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 2: Laziness

3. Internal extensions 4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.
3. Internal extensions 4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.
E.g., it is not obvious from
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.
E.g., it is not obvious from
\langle everybody〉 $=\lambda\langle\mathrm{VP}\rangle$. 〈everybody +VP$\rangle$

3．Internal extensions
4 problems with standard method of constructing extensions

Problem 2：Laziness

Internal extensions（and other values！）may still be in need of specification．
E．g．，it is not obvious from
\langle everybody〉 $=\lambda\langle V P\rangle$ ．〈everybody +VP\rangle
that 〈 everybody〉 characterizes the supersets of〈person〉．

3．Internal extensions
4 problems with standard method of
constructing extensions

Problem 2：Laziness

Internal extensions（and other values！）may still be in need of specification．
E．g．，it is not obvious from
\langle everybody〉 $=\lambda\langle V P\rangle$ ．〈everybody +VP\rangle that 〈everybody〉 characterizes the supersets of〈person〉．
Solution：Background theory for characterizations of functional values．
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
$\langle V+$ everybody $\rangle=$
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
$\langle V+$ everybody〉= ???
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
Heim \& Kratzer (1998)
$\langle V+$ everybody〉=???
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
Heim \& Kratzer (1998)
$\langle V+$ everybody〉= ???
Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example
Heim \& Kratzer (1998)
$\langle V+$ everybody $\rangle=$
Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 3: Overdetermination
After internal extensions (...) have been constructed they may still appear in other constructions.

Example

Heim \& Kratzer (1998)

$$
\langle V+\text { everybody }\rangle=(\lambda x .\langle e v e r y b o d y\rangle(\lambda y .\langle V\rangle(y)(x))
$$

Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 4: No suitable + exists

3. Internal extensions

4 problems with standard method of constructing extensions

Problem 4: No suitable + exists
Standard example
3. Internal extensions 4 problems with standard method of constructing extensions

Problem 4: No suitable + exists

Standard example
3. Internal extensions

4 problems with standard method of constructing extensions

Problem 4: No suitable + exists
Standard example
Attitude verbs \vee; e.g. no \oplus can satisfy:

$$
\langle V+S\rangle \neq\langle V\rangle \oplus\langle S\rangle
$$

because + is not compositional in V .
0. Intro
I. The compositional enterprise
2. External extensions

3. Internal Extensions

4. Intensions and Fregean compositionality
5. Outro
6. Intro
I. The compositional enterprise
7. External extensions
8. Internal Extensions
9. Intensions and Fregean compositionality
10. Outro

4. Intensions and Fregean compositionality

4. Intensions and Fregean compositionality

4. Intensions and Fregean compositionality

Solution strategy (for Problem 4): Local repair

4. Intensions and Fregean compositionality

Solution strategy (for Problem 4): Local repair
Frege (1892)

4. Intensions and Fregean compositionality

Solution strategy (for Problem 4): Local repair
Frege (I892)
If + is not compositional in X, find alternative
values 《Y》and put:

4. Intensions and Fregean compositionality

Solution strategy (for Problem 4): Local repair
Frege (1892)
If + is not compositional in X, find alternative values 《Y》) and put:

$$
\left\langle X_{i}\right\rangle:=\lambda\left\langle Y_{j}\right\rangle .\left\langle X_{i}+Y_{j}\right\rangle
$$

4．Intensions and Fregean compositionality

Solution strategy（for Problem 4）：Local repair
Frege（1892）
If + is not compositional in X ，find alternative values 《Y》）and put：

$$
\left.\left\langle X_{i}\right\rangle:=\lambda 《 Y_{j}\right\rangle .\left\langle X_{i}+Y_{j}\right\rangle
$$

Attitude reports：
$\left\langle\right.$ believe：＝$\left.\lambda 《 S_{j}\right\rangle$ ．〈 believe $\left.+S_{j}\right\rangle$
．．．where（e．g．）《S》 is the intension of S

4. Intensions and Fregean compositionality

4. Intensions and Fregean compositionality

External intensions

4. Intensions and Fregean compositionality

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

4. Intensions and Fregean compositionality

External intensions

Identify informational content with sets of possible worlds ('regions in Logical Space’), thereby obtaining intensions of (declarative sentences).

4. Intensions and Fregean compositionality

External intensions

Identify informational content with sets of possible worlds ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

Observation

4. Intensions and Fregean compositionality

External intensions

Identify informational content with sets of possible worlds ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

Observation
$(!) 《 S\rangle \cong \lambda w .\langle S\rangle w$

4．Intensions and Fregean compositionality

External intensions

Identify informational content with sets of possible worlds（＇regions in Logical Space’）， thereby obtaining intensions of（declarative sentences）．

Observation
$(!) 《 S\rangle \cong \lambda w$ ．〈S〉w
where $\langle S\rangle$ w is the extension of S according to w ．
Internal intensions
Generalize（！）from S to arbitrary expressions．

4. Intensions and Fregean compositionality

4. Intensions and Fregean compositionality

Intensional compositionality

4．Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that：

$$
《 X+Y 》=《 X\rangle \oplus \mathbb{Z}\rangle
$$

for any construction +

4. Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that:

$$
《 X+Y\rangle=《 X\rangle \oplus \mathbb{Z}\rangle
$$

for any construction +

4．Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that：
e．g．Kaplan（I989），pace Montague（I970）

$$
《 X+Y 》=《 X\rangle \oplus \mathbb{Y}\rangle
$$

for any construction＋
Remark
Fregean compositionality implies，but is not implied by， intensional compositionality．

4．Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that：
e．g．Kaplan（1989），pace Montague（1970）

$$
《 X+Y 》=《 X\rangle \oplus \mathbb{Y}\rangle
$$

for any construction＋
Remark
Sternefeld \＆Zimmermann（forthcoming）
Fregean compositionality implies，but is not implied by， intensional compositionality．

4．Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that：
e．g．Kaplan（I989），pace Montague（I970）

$$
《 X+Y 》=《 X\rangle \oplus \mathbb{Y}\rangle
$$

for any construction＋
Remark
Sternefeld \＆Zimmermann（forthcoming）
Fregean compositionality implies，but is not implied by， intensional compositionality．

Fregean Laziness

4．Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that：
e．g．Kaplan（I989），pace Montague（I970）

$$
《 X+Y 》=《 X\rangle \oplus \mathbb{Y}\rangle
$$

for any construction＋
Remark
Sternefeld \＆Zimmermann（forthcoming）
Fregean compositionality implies，but is not implied by， intensional compositionality．

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality．

4. Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that:
e.g. Kaplan (I989), pace Montague (I970)

$$
\| X+Y\rangle=\langle X\rangle \oplus\langle Y\rangle
$$

for any construction +
Remark
Sternefeld \& Zimmermann (forthcoming)
Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),...

4. Intensions and Fregean compositionality

Intensional compositionality

It is generally assumed that:
e.g. Kaplan (I989), pace Montague (I970)

$$
\| X+Y\rangle=\langle X\rangle \oplus\langle Y\rangle
$$

for any construction +
Remark
Sternefeld \& Zimmermann (forthcoming)
Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),...

4. Intensions and Fregean compositionality

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),... However

Relational analyses of referentially opaque transitive verbs are not the result of Fregean Laziness.
The compositional analysis
$(\lambda Y . \lambda X . Y \subseteq X)(M)\left(\lambda x . S\left(x,^{\wedge}(\lambda Y . \lambda X . Y \nless X)(W)\right)\right)$
of Every man seeks a woman.
can be obtained from the non-compositional modal paraphrase:
$(\forall x)\left[M(x) \rightarrow \square_{x}(\exists y)[W(y) \& L(x, y)]\right]$
by the standard method of constructing extensions.
0. Intro
I. The compositional enterprise
2. External extensions
3. Internal Extensions
4. Intensions and Fregean compositionality
5. Outro
0. Intro
I. The compositional enterprise
2. External extensions
3. Internal Extensions
4. Intensions and Fregean compositionality

5. Outro

5. Outro

5. Outro

5. Outro

Thank you for your attention!

References

Carnap, Rudolf: Meaning and Necessity. Chicago/London 1947.
Frege, Gottlob: Function und Begriff. Jena 1891.
Frege, Gottlob: ‘Über Sinn und Bedeutung’. Zeitschrift für Philosophie und philosophische Kritik NF 100 (1892), 25-50.
Heim, Irene; Kratzer, Angelika: Semantics in Generative Grammar. Oxford 1998.
Hodges, Wilfrid: ‘Formal Features of Compositionality’. Journal of Logic, Language and Information 10 (2001), 7-28.
Kaplan, David: 'Demonstratives. An Essay on the Semantics, Logic, Metaphysics and Epistemology of Demonstratives and Other Indexicals'. In: J. Almog et al. (eds.), Themes from Kaplan. Oxford 1989. 481-563.

Larson, Richard: ‘The Grammar of Intensionality’. In: G. Preyer \& G. Peter (eds.), Logical Form and Language Oxford 2002.

Montague, Richard: ‘Universal Grammar’. Theoria 36 (1970), 373-398.
Quine, Willard Van Orman: ‘Quantifiers and Propositional Attitudes'. Journal of Philosophy 53 (1956), 177-187.
-: ‘On what there is'. In: W. V. O. Quine, From a Logical Point of View. New York 1961. 1-19.
Sternefeld, Wolfgang; Zimmermann, Thomas Ede: Semantics. A Gentle Introducion to Compositional Meaning. Berlin, forthcoming.

Wittgenstein, Ludwig: Tractatus logico-philosophicus. Logisch-philosophische Abhandlung. London 1933.
Zimmermann, Thomas Ede: 'Meaning Postulates and the Model-Theoretic Approach to Natural Language Semantics'. Linguistics and Philosophy 22 (1999), 529-561.
-: 'Model-theoretic semantics'. In: C. Maienborn et al. (eds.), Semantics. An International Handbook of Natural Language Meaning. Berlin 2011. 762-801.
-: ‘Equivalence of Semantic Theories’. In: R. Schantz (ed.), Prospects for Meaning. Berlin, forthcoming.

