Compositionality and Ontological Commitment

Thomas Ede Zimmermann, Goethe University, Frankfurt SPE 5, University of Turin, July 25-27, 2012

- I. The compositional enterprise
- 2. External extensions
- **3. Internal Extensions**
- 4. Intensions and Fregean compositionality
- 5. Outro

To be is to be the value of a (bound) variable.

To be is to be the value of a (bound) variable.

Quine (1961)

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman.

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. Non-compositional analysis (formalisation)

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$

ranging over...

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman.

Non-compositional analysis (formalisation)

 $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals

ranging over...

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals

ranging over...

Compositional analysis (indirect interpretation)

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals

ranging over...

<u>Compositional analysis (indirect interpretation)</u> ($\lambda Y. \lambda X. Y \subseteq X$)(M)($\lambda x. (\lambda Y. \lambda X. Y \times X)$ (W) ({y| xLy}))

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. <u>Non-compositional analysis (formalisation)</u> $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals

ranging over...

<u>Compositional analysis (indirect interpretation)</u> $(\lambda Y) \lambda X \subseteq X)(M)(\lambda x. (\lambda Y) \lambda X Y \times X) (W) (\{y \mid xLy\}))$

To be is to be the value of a (bound) variable.

Quine (1961)

Ontological overkill:

Every man loves a woman. Non-compositional analysis (formalisation) $[M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals ranging over... sets of individuals Compositional analysis (indirect interpretation) $X \subseteq X(M)(\lambda x. (\lambda Y) \lambda X.Y \times X) (W) ({y| xLy}))$

To be is to be the value of a (bound) variable.

Ontological overkill:

Every man loves a woman. Non-compositional analysis (formalisation) $[M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ individuals ranging over... sets of individuals Compositional analysis (indirect interpretation) $X \subseteq X$ (M)(λx . (λY , λX . Y × X) (W) ({y| xLy}))

To be is to be the referent of a term.

Ontological overkill:

To be is to be the referent of a term.

Ontological overkill:

Every man seeks a woman. Non-compositional analysis (formalisation) $(\forall x) [M(x) \rightarrow (\exists y) [W(y) \& L(x,y)]]$ ≈individuals ranging over... sets of individuals Compositional analysis (indirect interpretation) $(\lambda Y. \lambda X. Y \subseteq X)(M)(\lambda x. (\lambda Y. \lambda X. Y \times X) (W) (\{y \mid xLy\}))$

To be is to be the referent of a term.

Ontological overkill:

Every man seeks a woman. Non-compositional analysis (formalisation) $(\forall x) [M(x) \rightarrow \Box_x (\exists y) [W(y) \& L(x,y)]]$ set of worlds (proposition) denoting ... sets of individuals Compositional analysis (indirect interpretation) $(\lambda Y. \lambda X. Y \subseteq X)(M)(\lambda x. (\lambda Y. \lambda X. Y \times X) (W) (\{y | xLy\}))$

To be is to be the referent of a term.

Ontological overkill:

Every man seeks a woman. Non-compositional analysis (formalisation) $(\forall x) [M(x) \rightarrow \Box_x (\exists y) [W(y) \& L(x,y)]]$ set of worlds (proposition) denoting ... function from worlds to sets of sets of individuals <u>Compositional analysis (indirect interpretation)</u> $(\lambda Y. \lambda X. Y \subseteq X)(M)(\lambda x. S(x, (\lambda Y. \lambda X. Y \times X)(V)))$

- I. The compositional enterprise
- 2. External extensions
- 3. Internal extensions
- Intensions and Fregean compositionality
 Outro

I. The compositional enterprise

- 2. External extensions
- 3. Internal extensions
- Intensions and Fregean compositionality
 Outro

EXPRESSIONS

EXPRESSIONS

EXPRESSIONS have

semantic values $\langle X \rangle$, $\langle X \rangle$,...

EXPRESSIONS have

semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to their (communicative,...) functions: reference (potential), informational content,...

Some

EXPRESSIONS have

external semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to their (communicative,...) functions: reference (potential), informational content,...

Some

EXPRESSIONS have

external semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to their (communicative,...) functions: reference (potential), informational content,... **GOAL**

Some

EXPRESSIONS have

semantic values $\langle X \rangle$, $\langle X \rangle$,... external corresponding to their (communicative,...) functions: reference (potential), informational content,... GOAL **EXPRESSIONS** have external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions they make to) the functions of expressions in which they occur

Some

- **EXPRESSIONS** have
- externalsemantic values $\langle X \rangle$, $\langle X \rangle$,...corresponding to their (communicative,...) functions:reference (potential), informational content,...**GOAL**All
 - EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,...

corresponding to (the contributions they make to) the functions of expressions in which they occur

I. The compositional enterprise GOAL

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions they make to) the functions of expressions in which they occur

I. The compositional enterprise GOAL

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

* that are compositional:
All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\begin{array}{c} X + Y \\ \hline X & Y \\ \hline \Delta & \Delta \end{array}$$

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\begin{array}{c} X + Y \\ \hline X & Y \\ \hline \Delta & \Delta \end{array}$$

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\left\langle \begin{array}{c} X + Y \\ X & Y \\ \Delta & \Delta \end{array} \right\rangle$$

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\left\langle \begin{array}{c} X + Y \\ X & Y \\ \Delta & \Delta \end{array} \right\rangle$$

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\left\langle \begin{array}{c} X + Y \\ X & Y \\ \Delta & \Delta \end{array} \right\rangle =$$

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions^{*}they make to) the functions of expressions in which they occur

$$\left\langle \begin{array}{c} X + Y \\ X & Y \\ \overline{\Delta} \end{array} \right\rangle = \left\langle \begin{array}{c} X \\ \overline{\Delta} \end{array} \right\rangle \oplus \left\langle \begin{array}{c} Y \\ \overline{\Delta} \end{array} \right\rangle$$

0. Intro

I. The compositional enterprise

- 2. External extensions
- 3. Internal extensions
- Intensions and Fregean compositionality
 Outro

0. Intro

I. The compositional enterprise

2. External extensions

3. Internal extensions

Intensions and Fregean compositionality Outro

<u>Ist approach</u>

Frege (1892)

<u>Ist approach</u> **START**

Frege (1892)

<u>lst approach</u> **START**

Frege (1892)

EXPRESSIONS haveexternalsemantic values $\langle X \rangle$, $\langle X \rangle$,...corresponding to their (communicative,...) functions:reference (potential), informational content,...

<u>lst approach</u> **START**

EXPRESSIONS have

external semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to their (communicative,...) functions: reference (potential), informational content,...

Frege (1892)

<u>Ist approach</u> Frege (1892) **START** with REFERENTIAL **EXPRESSIONS** have semantic values $\langle X \rangle$, $\langle X \rangle$ external corresponding to their (communicative,...) functions: reference (potential), informational content,...

 Ist approach
 Frege (1892)

 START
 REFERENTIAL

 EXPRESSIONSget their referents as
 external

 semantic values
 $\langle X \rangle$

 corresponding to their referential function

Ist approachFrege (1892)STARTREFERENTIALEXPRESSIONSget their referents asexternalsemantic values $\langle X \rangle$ corresponding to their referential function

Ist approachFrege (1892)STARTREFERENTIALEXPRESSIONSget their referents asexternalsemantic values $\langle X \rangle$ corresponding to their referential function

 Ist approach
 Frege (1892)

 START
 REFERENTIAL

 EXPRESSIONS get their referents as
 external

 semantic values
 $\langle X \rangle$

 corresponding to their referential
 function

<u>Ist approach</u> Frege (1892) START REFERENTIAL **EXPRESSIONS** get their **referents** as semantic values $\langle X \rangle$ external corresponding to their **referential** function

$$\left\langle \begin{array}{c} NP \\ Elvis \end{array} \right\rangle = Elvis$$

Ist approachFrege (1892)STARTREFERENTIALEXPRESSIONS get their referents asexternalsemantic valuesorresponding to their referentialfunction

$$\left\langle \begin{array}{c} NP \\ Elvis \end{array} \right\rangle = Elvis$$

+ (somewhat mysteriously)

Frege (1892)

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATESget their satisfiers asexternalsemantic values $\langle P \rangle$ corresponding to theirmultiple reference

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATESget their satisfiers asexternalsemantic values $\langle P \rangle$ corresponding to theirmultiple reference

 $\langle is dead \rangle$

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATES get their satisfiers asexternalsemantic values (P)corresponding to their multiple reference

$$\langle is \ dead \rangle = \{(x) | x \ is \ dead \}$$

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATES get their satisfiers asexternalsemantic values $\langle P \rangle$ corresponding to their multiple reference

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATES get their satisfiers asexternalsemantic values $\langle P \rangle$ corresponding to their multiple reference

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATES get their satisfiers asexternalsemantic values $\langle P \rangle$ corresponding to their multiple reference

(is dead)
(is watching)
(is showing)

=
$$\{(x)| x \text{ is dead}\}$$

= $\{(x,y)| x \text{ is watching }y\}$

2nd approachCarnap (1947)STARTTERMS (= Names + Descriptions): as beforePREDICATES get their satisfiers asexternalsemantic values < P >corresponding to their multiple reference

= {(x)| x is dead}
= {(x,y)| x is watching y}
= {(x,y,z)| x is showing y to z}

2nd approach Carnap (1947) **START** TERMS (= Names + Descriptions): as before **PREDICATES** get their **satisfiers** as semantic values $\langle P \rangle$ external corresponding to their multiple reference valency

- I (is dead)
 2 (is watching)
 3 (is showing)
 - = {(x)| x is dead} = {(x,y)| x is watching y}
 - = $\{(x,y,z) | x \text{ is showing y to } z\}$

2nd approach Carnap (1947) **START** TERMS (= Names + Descriptions): as before **PREDICATES** get their **satisfiers** as semantic values $\langle P \rangle$ external corresponding to their **multiple reference** valency

- I (is dead)
 2 (is watching)
 3 (is showing)
 - = $\{(x)| x \text{ is dead}\}$ = $\{(x,y)| x \text{ is watching }y\}$ = $\{(x,y)| x \text{ is watching }y\}$

2nd approach Carnap (1947) **START** TERMS (= Names + Descriptions): as before **PREDICATES** get their **satisfiers** as semantic values $\langle P \rangle$ external corresponding to their **multiple reference** valency -arity $\langle is \ dead \rangle$ $= \{(x) | x \text{ is dead} \}$ 2 (is watching) = $\{(x,y) | x \text{ is watching } y\}$ $3 \langle is showing \rangle$ = $\{(x,y,z) | x \text{ is showing y to } z\}$

2nd approach Carnap (1947) **START** TERMS (= Names + Descriptions): as before **PREDICATES** get their **satisfiers** as semantic values $\langle P \rangle$ external corresponding to their **multiple reference** valency -arity $\langle Elvis is dead \rangle$ $\langle is dead \rangle$ $= \{(x) | x \text{ is dead} \}$ 2 (is watching) = $\{(x,y) | x \text{ is watching } y\}$ $3 \langle is showing \rangle$ = $\{(x,y,z) | x \text{ is showing y to } z\}$

	2nd approach Carnap		7)			
	START					
	TERMS (= Names + Descriptions): as before					
	PREDICATES get their satisfiers as					
	external	semantic values $\langle P \rangle$				
corresponding to their multiple reference						
valency			-arity			
0	$\langle Elvis is dead \rangle$					
I	<is dead=""></is>	$= \{(x) x is dead\}$	I			
2	$\langle is watching \rangle$	= {(x,y) x is watching y}	2			
3	<is showing=""></is>	= {(x,y,z) x is showing y to z}	3			
• • •						
<u>2nd approach</u>		Carnap (194)	7)			
---	---	----------------------------------	--------	--	--	--
	START					
	TERMS (= Names + Descriptions): as before					
	PREDICATES get their satisfiers as					
	external	semantic values 〈P〉				
corresponding to their multiple reference						
valency			-arity			
0	$\langle Elvis is dead \rangle$		0			
I	<is dead=""></is>	$= \{(x) x is dead\}$	I			
2	<is watching=""></is>	= {(x,y) x is watching y}	2			
3	<is showing=""></is>	= {(x,y,z) x is showing y to z}	3			
	• • •					

Mittwoch, 11. Juli 12

<u>2nd approach</u>		Carnap (194	17)		
	START				
	TERMS (= Names + Descriptions): as before				
	PREDICATES get their satisfiers as				
	external	semantic values 〈P〉			
corresponding to their multiple reference					
valency			-arity		
0	〈Elvis is dead〉	= {() Elvis is dead}	0		
Ι	<is dead=""></is>	$= \{(x) x is dead\}$	I		
2	<is watching=""></is>	= {(x,y) x is watching y}	2		
3	<is showing=""></is>	= {(x,y,z) x is showing y to z}	3		

Mittwoch, 11. Juli 12

Comparison

Comparison

Names Descriptions

Nouns

Verbs

Sentences

Determiners

• • •

Comparison

Comparison

	Frege	Carnap
Names Descriptions	individuals individuals	individuals individuals
Nouns		sets
Verbs		relations
Sentences	truth values	truth values
Determiners		
• • •		_

0. Intro

I. The compositional enterprise

2. External extensions

3. Internal extensions

Intensions and Fregean compositionality Outro

0. Intro

- I. The compositional enterprise
- 2. External extensions
- 3. Internal extensions
- Intensions and Fregean compositionality
 Outro

GOAL

All

EXPRESSIONS have

external (or internal) semantic values $\langle X \rangle$, $\langle X \rangle$,... corresponding to (the contributions they make to) the functions of expressions in which they occur

GOAL

All

EXPRESSIONS have

external or internal extensions $\langle X \rangle$ corresponding to the contributions they make to the external extensions of expressions in which they occur

Frege (1891)

Construction of internal extensions: standard method

Frege (1891)

Cofinality assumption

Every expression occurs in some sentence.

Construction of internal extensions: standard method

Frege (1891)

Cofinality assumption

Hodges (2001)

Every expression occurs in some sentence.

Frege (1891)

Cofinality assumption

Hodges (2001)

Every expression occurs in some sentence.

Strategy

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

• + is completed by X

Frege (1891)

Cofinality assumption

Hodges (2001)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

• + is completed by X

Frege (1891)

Cofinality assumption

Hodges (2001)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

• + is completed by X

... i.e.: all values $\langle X_i + Y_j \rangle$ and $\langle Y_j \rangle$ have already been determined (externally, by previous applications of the standard method, or otherwise).

Construction of internal extensions: standard method

Cofinality assumption

Hodges (2001)

Frege (1891)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X

Construction of internal extensions: standard method

Cofinality assumption

Every expression occurs in some sentence.

Strategy

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

- + is completed by X
- + is compositional in X
- ... i.e.: whenever $\langle Y_j \rangle = \langle Y_k \rangle$, then:

 $\langle X_i + Y_j \rangle = \langle X_i + Y_k \rangle$.

e.

cf. Zimmermann (2011; 2012) for details

Frege (1891)

Hodges (2001)

Mittwoch, 11. Juli 12

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption

Hodges (2001)

Frege (1891)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Frege (1891)

Cofinality assumption

Hodges (2001)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

... i.e.: whenever $\langle X_i + Y_k \rangle = \langle X_j + Y_k \rangle$, for all Y_k , then:

 $\langle Z[X_i] = Z[X_i] \rangle$, for all Z[] already evaluated.

Mittwoch, 11. Juli 12

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption

Hodges (2001)

Frege (1891)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of internal extensions: standard method

Cofinality assumption

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a *suitable* construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of $\langle X_i \rangle$

Hodges (2001)

Frege (1891)

Strategy

• + is completed by X

- + is compositional in X
- + is representative for X

Construction of $\langle X_i \rangle$ $\langle X_i \rangle := \lambda \langle Y_i \rangle \cdot \langle X_i + Y_i \rangle$

Mittwoch, 11. Juli 12

3. Internal extensions

Cofinality assumption

Construction of internal extensions: standard method

Every expression occurs in some sentence.

Frege (1891)

Hodges (2001)

cf. Zimmermann (2011; 2012) for details

- To extend the evaluation to a class X of (valueless)
- expressions, choose a suitable construction +:

Mittwoch, 11. Juli 12

3. Internal extensions

Construction of internal extensions: standard method

Cofinality assumption

Hodges (2001)

Frege (1891)

Every expression occurs in some sentence.

Strategy

cf. Zimmermann (2011; 2012) for details

To extend the evaluation to a class X of (valueless) expressions, choose a suitable construction +:

- + is completed by X
- + is compositional in X
- + is representative for X

Construction of $\langle X_i \rangle$ $\langle X_i \rangle := \lambda \langle Y_i \rangle \cdot \langle X_i + Y_i \rangle$

 \dots and \oplus is functional application.

Frege (1891)

Example I (based on 1st approach to external extensions)

Frege (1891)

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle$. $\langle \text{NP} + \text{ is dead} \rangle$

Frege (1891)

Example I (based on 1st approach to external extensions)

$$\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle . \langle \text{NP + is dead} \rangle$$

(characteristic function of) set of individuals

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle$. $\langle \text{NP} + \text{ is dead} \rangle$

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle . \langle \text{NP} + \text{ is dead} \rangle$

 \cong external extension according to 2nd approach

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle . \langle \text{NP} + \text{ is dead} \rangle$

 \cong external extension according to 2nd approach

Example 2 (applicable after Ex. I according to 1st approach and immediately according to 2nd approach)

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle . \langle \text{NP} + \text{ is dead} \rangle$

 \cong external extension according to 2nd approach

Example 2 (applicable after Ex. I according to 1 st approach and immediately according to 2nd approach)

 $\langle everybody \rangle = \lambda \langle VP \rangle$. $\langle everybody + VP \rangle$
3. Internal extensions Construction of internal extensions: standard method

Frege (1891)

Example I (based on 1st approach to external extensions)

 $\langle \text{ is dead} \rangle = \lambda \langle \text{NP} \rangle . \langle \text{NP} + \text{ is dead} \rangle$

 \cong external extension according to 2nd approach

Example 2 (applicable after Ex. I according to 1 st approach and immediately according to 2nd approach)

$$\langle \text{everybody} \rangle = \lambda \langle \langle \mathsf{VP} \rangle \rangle$$
. $\langle \text{everybody} + \mathsf{VP} \rangle$
bound set variable!

4 problems with standard method of constructing extensions

3. Internal extensions

Problem I: Indeterminacy

3. Internal extensions

Problem 1: Indeterminacy

Extensions (and other values) depend on choice of +.

4 problems with standard method of constructing extensions

Problem 1: Indeterminacy

Extensions (and other values) depend on choice of +.

However, the resulting value assignments (after completion) will always be isomorphic.

4 problems with standard method of constructing extensions

Problem 1: Indeterminacy

Extensions (and other values) depend on choice of +.

However, the resulting value assignments (after completion) will always be isomorphic.

Hodges (2001)

4 problems with standard method of constructing extensions

Problem 1: Indeterminacy

Extensions (and other values) depend on choice of +.

However, the resulting value assignments (after completion) will always be isomorphic.

Hodges (2001)

Solution:

Zimmermann (forthcoming)

Isomorphic theories should be declared notational variants of one another – provided they agree on the external extensions (and their 'interpretation').

3. Internal extensions

Problem 2: Laziness

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.

E.g., it is not obvious from

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.

E.g., it is not obvious from

 $\langle \, \text{everybody} \rangle = \lambda \, \left< \text{VP} \right> \, . \, \left< \text{everybody} + \text{VP} \right>$

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.

E.g., it is not obvious from $\langle everybody \rangle = \lambda \langle VP \rangle$. $\langle everybody + VP \rangle$ that $\langle everybody \rangle$ characterizes the supersets of $\langle person \rangle$.

4 problems with standard method of constructing extensions

Problem 2: Laziness

Internal extensions (and other values!) may still be in need of specification.

E.g., it is not obvious from

 $\langle \text{ everybody} \rangle = \lambda \ \langle \mathsf{VP} \rangle \ . \ \langle \text{everybody} + \mathsf{VP} \rangle$

that $\langle everybody \rangle$ characterizes the supersets of $\langle person \rangle$.

Solution: Background theory for characterizations of functional values.

3. Internal extensions

Problem 3: Overdetermination

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

3. Internal extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

3. Internal extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

$$\langle V + everybody \rangle =$$

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

$$\langle V + everybody \rangle = ???$$

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

Heim & Kratzer (1998)

$$\langle V + everybody \rangle = ???$$

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

Heim & Kratzer (1998)

$$\langle V + everybody \rangle = ???$$

Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

Heim & Kratzer (1998)

$$\langle V + everybody \rangle =$$

Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.

4 problems with standard method of constructing extensions

Problem 3: Overdetermination

After internal extensions (...) have been constructed they may still appear in other constructions.

Example

Heim & Kratzer (1998)

$$\langle V + everybody \rangle = (\lambda x. \langle everybody \rangle (\lambda y. \langle V \rangle (y)(x))$$

Solution: No principled compositionality problems can arise (due to representativity of +); however standards for specifying (functional) values are needed.

3. Internal extensions

Problem 4: No suitable + exists

3. Internal extensions

Problem 4: No suitable + exists Standard example

3. Internal extensions

Problem 4: No suitable + exists

Standard example

Frege (1892)

3. Internal extensions

Problem 4: No suitable + exists Standard example

Frege (1892)

Attitude verbs V; e.g. no \oplus can satisfy:

$$\langle V + S \rangle \neq \langle V \rangle \oplus \langle S \rangle$$

because + is not compositional in V.

0. Intro

- I. The compositional enterprise
- 2. External extensions
- **3. Internal Extensions**
- Intensions and Fregean compositionality
 Outro

0. Intro

- I. The compositional enterprise
- 2. External extensions
- **3. Internal Extensions**
- 4. Intensions and Fregean compositionality5. Outro

Solution strategy (for Problem 4): Local repair

Solution strategy (for Problem 4): Local repair

Frege (1892)

Solution strategy (for Problem 4): Local repair

Frege (1892)

If + is not compositional in X, find alternative values $\langle Y \rangle$ and put:

Solution strategy (for Problem 4): Local repair

Frege (1892)

If + is not compositional in X, find alternative values $\langle Y \rangle$ and put:

$$\langle X_i \rangle := \lambda \langle \langle Y_j \rangle$$
. $\langle X_i + Y_j \rangle$

Solution strategy (for Problem 4): Local repair

Frege (1892)

If + is not compositional in X, find alternative values $\langle Y \rangle$ and put:

$$\langle X_i \rangle := \lambda \langle \langle Y_j \rangle$$
. $\langle X_i + Y_j \rangle$

Attitude reports:

$$\langle believe \rangle := \lambda \langle \langle S_j \rangle \rangle \langle believe + S_j \rangle$$

... where (e.g.) $\langle S \rangle$ is the intension of S
4. Intensions and Fregean compositionality External intensions

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

Identify informational content with **sets of possible worlds** ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

Identify informational content with **sets of possible worlds** ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

Observation

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

Identify informational content with **sets of possible worlds** ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

Observation

(!)
$$\langle\!\langle S \rangle\!\rangle \simeq \lambda w. \langle S \rangle_w$$

External intensions

Carnap (1947), inspired by Wittgenstein (1922)

Identify informational content with **sets of possible worlds** ('regions in Logical Space'), thereby obtaining intensions of (declarative sentences).

Observation

(!)
$$\langle\!\langle S \rangle\!\rangle \simeq \lambda w. \langle S \rangle_w$$

where $\langle S \rangle_{w}$ is the extension of S according to w.

Internal intensions

Carnap (1947)

Generalize (!) from S to arbitrary expressions.

Intensional compositionality

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

for any construction +

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

for any construction +

e.g. Kaplan (1989), pace Montague (1970)

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Fregean compositionality implies, but is not implied by, intensional compositionality.

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Sternefeld & Zimmermann (forthcoming)

Fregean compositionality implies, but is not implied by, intensional compositionality.

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Sternefeld & Zimmermann (forthcoming)

Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Sternefeld & Zimmermann (forthcoming)

Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality.

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Sternefeld & Zimmermann (forthcoming)

Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),...

Intensional compositionality

It is generally assumed that: $\langle \langle X + Y \rangle = \langle \langle X \rangle \oplus \langle \langle Y \rangle$

e.g. Kaplan (1989), *pace* Montague (1970)

for any construction +

Remark

Sternefeld & Zimmermann (forthcoming)

Fregean compositionality implies, but is not implied by, intensional compositionality.

Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),...

4. Intensions and Fregean compositionality Fregean Laziness

Laziness is particularly popular when it comes to applying Fregean compositionality. Zimmermann (1999), Larson (2002),...

However

- Relational analyses of referentially opaque transitive verbs are not the result of Fregean Laziness.
- The compositional analysis

 $(\lambda Y. \lambda X. Y \subseteq X)(M)(\lambda x. S(x, ^(\lambda Y. \lambda X. Y \times X)(W)))$

of Every man seeks a woman.

can be obtained from the non-compositional modal paraphrase:

$$(\forall x) [M(x) \rightarrow \Box_x (\exists y) [W(y) \& L(x,y)]]$$

by the standard method of constructing extensions.

0. Intro

- I. The compositional enterprise
- 2. External extensions
- **3. Internal Extensions**
- 4. Intensions and Fregean compositionality5. Outro

0. Intro

- I. The compositional enterprise
- 2. External extensions
- **3. Internal Extensions**
- Intensions and Fregean compositionality
 Outro

5. Outro

5. Outro

5. Outro

Thank you for your attention!

References

Carnap, Rudolf: *Meaning and Necessity*. Chicago/London 1947.

Frege, Gottlob: Function und Begriff. Jena 1891.

Frege, Gottlob: 'Über Sinn und Bedeutung'. Zeitschrift für Philosophie und philosophische Kritik NF 100 (1892), 25–50.

Heim, Irene; Kratzer, Angelika: Semantics in Generative Grammar. Oxford 1998.

Hodges, Wilfrid: 'Formal Features of Compositionality'. *Journal of Logic, Language and Information* **10** (2001), 7–28.

Kaplan, David: 'Demonstratives. An Essay on the Semantics, Logic, Metaphysics and Epistemology of Demonstratives and Other Indexicals'. In: J. Almog *et al.* (eds.), *Themes from Kaplan*. Oxford 1989. 481–563.

Larson, Richard: 'The Grammar of Intensionality'. In: G. Preyer & G. Peter (eds.), *Logical Form and Language* Oxford 2002.

Montague, Richard: 'Universal Grammar'. Theoria 36 (1970), 373-398.

Quine, Willard Van Orman: 'Quantifiers and Propositional Attitudes'. *Journal of Philosophy* **53** (1956), 177–187.

-: 'On what there is'. In: W. V. O. Quine, *From a Logical Point of View*. New York 1961. 1–19.

Sternefeld, Wolfgang; Zimmermann, Thomas Ede: *Semantics. A Gentle Introducion to Compositional Meaning*. Berlin, forthcoming.

Wittgenstein, Ludwig: Tractatus logico-philosophicus. Logisch-philosophische Abhandlung. London 1933.

Zimmermann, Thomas Ede: 'Meaning Postulates and the Model-Theoretic Approach to Natural Language Semantics'. *Linguistics and Philosophy* **22** (1999), 529–561.

-: 'Model-theoretic semantics'. In: C. Maienborn *et al.* (eds.), *Semantics. An International Handbook of Natural Language Meaning.* Berlin 2011. 762-801.

-: 'Equivalence of Semantic Theories'. In: R. Schantz (ed.), Prospects for Meaning. Berlin, forthcoming.

Mittwoch, 11. Juli 12