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Abstract. Two-dimensional, Cartesian finite
difference models of compressible convection with
constant and variable viscosity and fixed bottom
temperature are presented. Density variations
according to the Adams Williamson equation of
state are included. In the case of constant
viscosity convection, viscous and adiabatic
heating damp the flow. Compressible density
variations hardly influence geoid undulations;
however, the lower thermal boundary layer becomes
thinner, and the mean cell temperature increases.
In the case of variable viscosity, the nonlinear
coupling between compression, adiabatic and
viscous heating, and a temperature-, pressure-,
and stress-dependent rheology leads to important
consequences: The upwelling flow broadens and
plumes are retarded. The flow strongly concen-
trates toward the downwelling region and becomes
mechanically decoupled from the interior of the
cell by a low-viscosity region. This mechanism
seems to be important for the formation of
subducting slabs. Extrapolated to mantle condi-
tions, two low-viscosity regions are predicted
flanking the slab on either side and inhibiting
an early dispersal and mixing of slab material
into the mantle. This process might be aided by
an increase of negative buoyancy forces with
depth as observed in the models. Further results
are as follows: Increasing the dissipation number
in variable viscosity convection may either damp
or speed up convection, depending on the rheo-
logv. Models with internal heating and a fixed
bottom temperature show that the threshold to
time-dependent variable viscosity convection is
drastically reduced 1f the anelastic liquid
zprroximation is applied instead of the extended
Boussinesq approximation.

1. Introduction

Although great advances have been made in
exploring the three-dimensional structure of the
Earth mantle (e.g., Dziewonski, 1984; Morelli and
Dziewonski, 1987), we are far from completely
uncerstanding the dynamics of mantle convection.
A major unresolved question is the role of the
lithosphere (e.g., Davies, 1988) and its fate
after subduction (e.g., Craeger and Jordan, 19863
Kinceid and Olsomn, 1987). It is well known that
one of the keys to this question might be the
non-Newtonian, temperature- (T) and pressure-
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(P)dependent rheology appropriate to silicates at
moderate to high stresses (e.g., Ranalli, 1987).
Recently, it has been recognized that thermal and
mechanical effects arising from compression in
the mantle also strongly influence the behavior
of convection due to interaction with a (T,P)-
dependent rheology (e.g., Yuen et al., 1987). The
main purpose of this paper is to explore such
interaction more in detail assuming also non-
Newtonian rheology and examining the flow fields.

There have been several attempts to simulate
mantle convection including moving lithospheric
plates. Laboratory models using parafin (Jacoby,
1976; Jacoby and Schmeling, 1981) and glucose
solutions (Kincaid and Olson, 1987) successfully
simulated the subduction of a cold stiff sheet
but never reached a steady state, in which new
lithosphere is continuously formed by cooling at
the surface. In numerical simulations, steady
state convection with lithosphere formation and
subduction was obtained by artificially in-
troducing stiff lids with local weak zomnes
(Kopitzke, 1979; Jacoby and Schmeling, 1982).
Other modellers assumed complex rheological laws
in order to allow the "lithosphere" to subduct
without being retarded and dispersed by the high
viscosities associated with cold downwelling
material (Schmeling and Jacoby, 1981; Cserepes,
1982; Christensen and Yuen, 1984). Schmeling and
Jacoby (1981) observed that moderate viscous
dissipation and adiabatic heating may aid the
subduction of "slabs". It will be demonstrated in
this study, that strong viscous and adiabatic
heating appropriate for compressible mantle
convection in connection with a simple tempera—
ture-, pressure-, and stress-dependent rheology
will mechanically decouple the downwelling flow
from the ambient mantle, leading to the formation
of flow structures similar to subducting slabs.

Among the enormous amount of mantle convection
models carried out in the last 25 years, only few
have assumed a non-Newtonian, (T,P)-dependent
rheology. Often the use of Newtonian rather than
non-Newtonian rheology was justified by an
empirical law found by Christensen (1983). For
incompressible fluids he showed that the proper-
ties of non-Newtonian convection can be closely
imitated by a Newtonian fluid with a reduced
value of the activation enthalpy of the tempera-
ture- and pressure-dependent viscosity. In this
study it will be tested if this correspondence
holds if the effects of compression are included.

It has long been recognized that compression
within a convective mantle leads to the combined
effect of adiabatic and viscous heating (Turcotte
et al., 1974), both of which are measured by the
same nondimensional number, the Dissipation
number Di
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where h is the thickness of the convecting layer,
g the gravity acceleration, & the thermal coeffi-
cient of volumetric expansion, and ¢, the speci-
fic heat at constant pressure. Increasing Di
establishes an adiabatic temperature gradient and
decreases the vigor of constant viscosity convec-
tion. However, the coupling of adiabatic and
viscous heating with a temperature-dependent
rheology leads to a more complex behavior. For
example, Zhao and Yuen (1987) found a decrease in
the vigor of penetrative convection with in-
creasing Di, while Quareni and Yuen (1988)
presented mean field solutions with increasing
convective vigor., Obviously, such differences are
due to different modes of heating and rheological
parameters.

In addition to the thermal effect, compressi-
bility influences the dynamics of convection
mechanically due to varying density according to
the equation of state. In the case of whole
mantle convection, fluid particles undergo
compressible density changes of up to 607 of the
surface density (cf. PREM (Dziewonski and
Anderson, 1981)). Jarvis and McKenzie (1980)
first included the Adams Williamson equation of
state in the equations of convection. The mecha-
nical effect of compressibility can be measured
by the parameter combination Di/yY, where the
Griineisen parameter Y (which can be regarded as a
nondimensional incompressibility) is defined as

- 9Kg _ aKT
Y < oo, bee (2)

where p is the density and K is the incompressi-
bility; subscripts S and T denote constant
entropy and temperature, respectively.

It took a number of years until the compress-
ible approach was adopted by other convection
modellers (e.g., Bercovici et al,, 1988; Solheim
and Peltier, 1988; Machetel and Yuen, 1988;
Machetel and Yuen, in press, 1989). However, only
few have focused on the role of y (Quareni and
Yuen, 1987). In such calculations it turned out
that not only increasing Di but also decreasing Y
(i.e., increasing compressibility) increases the
mean mantle temperature. The coupling between the
thermodynamic parameters of the equation of state
and the rheology in a convecting mantle were used
by Yuen et al. (1987) and Yuen and Zhang (1989)
to determine upper bounds of the activation
energy and volume in the mantle.

The objective of this work is to study the
role of compression in a convecting mantle with
special attention to variable viscosity. Rather
than choosing Di and Y as close to the realistic
value as possible, a whole range of values will
be explored (in one case, far beyond the geo-
physically reasonable value). With respect to
other assumptions, it seems permissible to choose
the models as simple as possible. The assumptions
include two dimensionality, a square box, and
rheology laws yielging effective Rayleigh numbers
of the order of 10 .

Since compressibility leads to density varia-
tions, one might expect that the geoid of a
convecting mantle is influenced by Di and Y. In
section 3.1, constant viscosity convection models
will, however, demonstrate that there is only a
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weak dependence on Di and virtual no dependence
on Y. While the above mentioned compressible,
variable viscosity calculations all used the mean
field approach, which gives only vertical pro-
files of the interesting parameters, two-dimen-
sional models will be presented in section 3.2.
Special emphasis will be placed on flow geometry,
magnitude, and slab formation. The effect of
localized adiabatic and viscous heating on a
temperature—dependent viscosity will be studied.
Further points of interest will be the thickness
of the thermal boundary layer and the time
dependence of compressible convection.

2. Mathematical Formulation

The equations of mass, momentum, and energy
are given (e.g. Schmeling and Jacoby, 1981):

dp -
I =0 (3
3t © VPV
. 3 o
o [fv * (vv)v} = VP g Ty v oF (4)

bep [aT _ alT+Tg) 3P | =(yp (VT)S%

5? pcp at
= UKVT + 1i: 2Yi 4+ oH (5)
i} 13wy TP

where t is the time, v the flow velocity, P the
pressure, Ti, the deviatoric stress tensor, T the
absolute temﬂerature minus the temperature T _ at
the top of the convecting layer, k is the thermal
conductivity, and H is the rate of internal
heating per mass. The stress is related to the
velocity field by the constitutive equation

ovi v 2 -

;s Jidh 5 ..

i SEETIE T BAAREES b

np (V9) 81 (6)

where n is the dynamic (shear) viscosity, n, the
bulk viscosity, 6., the Kronecker delta. Fo?low—
ing Jarvis and McKenzie (1980), the equation of
state can be written as a linear Taylor expansion
of p about a reference density pr

o(T,P) = pr(1 = al(T-Tg) + K;1(P-Ph)) (7

where T_ is the adiabatic temperature distribu-
tion ang P, is the hydrostatic pressure. The
reference Bensity can then be derived as the
solution of the Adams Williamson equation

lA

3pr ger 1 Di
= = - 1 Dbz 8

kel

z is the vertical coordinate pointing upward.
Assuming Di and y as constant in the convecting
layer, equation (8) can be integrated:

pr = po exp ((h-z) Di/v) (9)

with p_being the density at the surface., In the
following the equations are nondimensionalized
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according to (primes denote nondimensional
quantities)

(x,z) = (x'",z")h v =73' «o/h

t = t'h?/xe T = T'AT (10)
H = H'cpATkg/h2 n = n'ng

with k_ being the thermal diffusivity at the

surface (k = k/p c¢,) and AT being the tempe-
rature difference between top and bottom of the
convecting layer; n_ is (1) the constant vis-
cosity, (2) the sur%ace viscosity in the New-
tonian models, or (3) a scaling viscosity in the
non-Newtonian models. In the following the primes
are dropped. The equations are simplified as
follows: Inertial forces are neglected (left-hand
side of (4) is dropped). The anelastic liquid
approximation is applied (time derivative in (3),
pressure derivative in (5), and n_ term in (6)
are neglected). The thermal conductivity k is
assumed constant., The hydrostatic pressure P, =
P-P. (where P, is the nonhydrostatic pressure) is
eliminated by taking the curl of (4). The result-
ing system of equations in terms of the stream-
function ¥ is then given by

Q2

b4

52 ZDi/y 3%y
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X
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pr[%% + (JVT + Di(T+To)Vz} = V2T
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+ 2 Ra ﬂ(elJ + 3(V\) ) +pH (12)
= _ _zDi/y |9Y¥/3z
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pr = exp[(1—z)Di/Y] (14)

% 1,3v] 3v g 1o
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3
Ra = pogalATh (17)
KoNg
Here e*,, is the deviatoric strain rate and Ra

is the Rayiéigh number. It can be seen that the
thermal effect of compressibility enters through
the terms containing Di alone (equation (12)),
while the mechanical effect (i.e., the variation
of p) enters through the terms with Di/y (equa-
tions (11) and (13)-(16)).

It is convenient to define an effective
Rayleigh number Ra* by

- ;Z_)gOLAT*ha (18)

Ra* =
Kno
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where the overbar denotes vertical means and AT*
is the overadiabatic temperature difference
between top and bottom

AT* = AT(1-Di(T+T,) /AT) (19)

The vertical means

= _ Y (DY (20)

p = Po Di<e 1

z = K Po 21
pocCP p

can be inserted into (18). In case of Di/y <1,
(18) can be expanded into a Taylor series

Ra* = Ra(1-Di(T+Tg)/AT) (1+ 3}+ o) (22)

N =

We note that the adiabatic temperature gradient
decreases Ra*, while compressibility (Di/y)
increases Ra¥*,

Equation (11) and (12) are solved by finite
differences (FD) on an equidistant grid in a
rectangular aspect ratio 1 box. The nonsymmetric
system of the FD equations of (1) is solved by
Gaussian elimination with partial pivoting. If
Di/y = 0, Cholesky decomposition of the symmetric
matrix can be applied. The heat equation is
solved by an ADI method in combination with
Spalding's (1972) upwind scheme. For steady state
solutions an underrelaxation technique was used
(Christensen, 1984). The incompressible version
of the code reproduced all cases of the convec-
tion benchmark test (Blankenbach et al., 1989).
The compressible version was tested by a few
cases of Jarvis and McKenzie (1980). Checking the
energy balance of the models gave imbalances of
less than 2-37% for the constant viscosity models
with up to 61x61 grids (except for y = 0.2, where
the imbalance was 8%). In some of the models with
variable viscosity the grid was relatively coarse
(see Table 1) because of economic reasons.
Resolution checks with grid spacings up to 61x61
have been carried out for some of the models
marked by a (Table 1). The shapes of the flow,
temperature, and viscosity fields are well
resolved, and global parameters like the mean
velocity or temperature are correct to within a
few percent. The thermal boundary layers some-
times reached the resolution of the grid. Energy
imbalances up to 20% and an underestimation of
the Nusselt number by at most 10% were the
consequence. The differences between the mean
viscous heating and adiabatic heating and cool-
ing, which globally should be balanced, were less
than 27 for the Newtonian models and about 77 for
the non-Newtonian models.

As top and bottom boundary conditiomns, free
slip and constant temperature (T=0 at the top and
1 at the bottom in nondimensional units) were
chosen. T was kept at 0.273 for all models. The
side walls were reflective. Di is varied between
0 and 1 (0.58 in the constant viscosity models).
In the constant viscosity models the Griineisen
parameter Y is varied between infinity (incom-
pressible) and 0.2, while in the variable visco-
sity models, Y is chosen to be either infinite or
0.8. Taking possible thermodynamic values for the
mantle (Stacey, 1977; Knittle et al., 1986), Di
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lies between 0.3 and 1.0, while Y varies between
0.75 and 1.

Three different rheologies were chosen: (1)
constant viscosity, (2) temperature dependent
viscosity:

n = exp(- aTl) (23)

10
ex—

(3) temperature—, pressure-, and stress—dependent
viscosity:

1-n E + v(1-2)
n = A ’[II exp —T—m’_ (24)

9,
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Figure
: free slip on all sides, constant temperature at the

.
b

where T is the second invariant of the viscous
%I E d v tivation ener and

stress tensor, an are activati e g8y
volume, respectively, and © is a constant, which
was chosen different from T for practical
reasons (if © =T , then the upper part of the
convective layer would become a stagnant 1id).

Different approximations can be chosen when
solving equations (11)-(16). For the case Di=0
the equations reduce to the Boussinesq approxima-
tion (with variable viscosity). The case Di=0,
but Di/Y+0 is referred to as the "extended
Boussinesq approximation" (EBA). Only the thermal
effect of compression is accounted for. For both
Di%#0 and Di/Y#0, the equations represent the
"anelastic liquid approximation' (ALA). For Y not
too small (y>0.8), computation time is saved if
the pressure induced buoyancy term on the right-
hand side of equation (ll) is neglected (ALA
truncated). For a comparison of the different
approximations with the mean field approach, the
reader is referred to Quareni and Yuen (1988).

The geoid is calculated by the Fourier ap-
proach; that is, the deflections of the surface
and bottom and the density variations due to
temperature and pressure are approximated by thin
horizontal mass sheets. The mass distribution on
each sheet is decomposed into a Fourier series,
whose components give directly the corresponding
geoid contributions (see Marquart and Schmeling,
(1989) for details).

Grid
41x41
41x412
41x412
41x412
s1x412
31x312
51x51
Lixb4l

ALA tr.
ALA
EBA, ALA tr.
EBA, ALA tr.
EBA, ALA tr.
EBA, ALA tr.
EBA, ALA tr.

ALA

Approximation

Summary of Models
Di
0-0.58
0-0.
0-0.7
1
ALA, anelastic liquid approximation; tr., truncated

TABLE 1.

Ra

103
105
10°
104
105
10°
10°

Boundary conditions in all models

3, Results

3.1. Constant Viscosity Convection

ional. Approximations:

checks with grids upoto 61x61 have been carried out.

E,
6.91
38.48

76.91

Figure 1 shows the flow and temperature fields
of constant viscosity convection (model 1, see
Table 1). Increasing Di and Di/y from O (Figure
la, Boussinesq approximation) to Di=0.58 and
y=1.1 (Figure 1b, ALA) essentially leads to the
establishment of an adiabatic temperature gra-
dient and a decrease in flow velocity. A decrease
of Yy (Figure lc) leads to a slight concentration
of the flow downward. This behavior stems from
the dependence of the buoyancy term in the
equation of motion (11) on the density increase
with depth.

Figure 2 shows the effect of increasing Di
(y=1.1 in the ALA) on the horizontally averaged
temperature (Figure 2a), the Nusselt number Nu,
the mean flow velocity v S? and the overall
dissipation ¢ (Figure 2b§¥ the topography (Figure
2¢), and the geoid undulation (Figure 2d). For
the determination of the dimensional topography
and geoid the following parameters have been
chosen: h=10% m, AT=1000K, n =102% Pa s,
po=4x103 kg m 3, a=2,5x10 ° R 1, g=10 m 5_2,

76.91
76.91

A
1
10716
0.58x10 2

1078
0.58x10 °

ion

[E=TaN S I S S ANV

Rheology
9

(Equation)
const
const
const

Resolut
H=5.

bottom. T =0.273 in all models, © =2.09 in models 5-8.

Rheology parameters are nondimens
tended Boussinesq approximation.

Model
Set

— N M N O

a
b
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y 0.050 0.050 0.050
0.950 5T 0.930 0.930
0.050 0.050 0.039
0.5
T: 0.6
01
7.753 4.086 2.384
77,53 40.86 23.84
7.753 4.088 2.384

0.58 0.58
Y: o 1.1 0.4
a) b) C)

Fig. 1. Constant viscosity convection with Ra=10% and fixed temperature at the bottom
(model set 1, see Table 1). Top row shows isotherms; bottom row shows streamlines. The
lowest and highest values of the nondimensional temperature and stream function and
their increments are given beside the boxes, respectively. (1) Dissipation number=0,
i.e., Boussinesq approximation. (b) and (c) Fully compressible solutions (ALA) for
Di=0.58 and y=1.1 and 0.4, respectively. Note the establishment of an adiabatic
temperature gradient and the asymmetry between the upwelling and downwelling flows in

the compressible cases.

|<0=10—6 m? s !, We note that increasing Di
decreases the overadiabatic temperature dif-
ference, i.e., Ra*, thereby decreasing the vigor
of convection as well as topography and geoid.
The bottom topography has a similar peak to peak
amplitude as the top topography if a density
contrast of Ap=p0 is assumed at the bottom (not
shown) .

The effect of variation of Yy for constant Di
is shown in Figure 3. The extreme case of y=0.2
implies an increase in density with depth by a
factor of 18. Note that the mass flow near the
bottom is accomplished by a much smaller velocity
than in the less dense upper region. Decreasing Y
increases Ra* and consequently Nu by a small
amount (not shown) as well as T(z) (Figure 3b).
An increase in T(z) with the adiabatic gradient
remaining approximately constant leads to a
decrease in the thickness of the lower thermal
boundary layer. It is noteworthy, that the slight
increase in convective vigor (or Nu) can take
place with a decrease in the mean flow velocity
(Figure 3a)! Figures 3c-3e show that even a
strongly compressible mantle does not change the
geoid undulation significantly. To understand
this, Figure 3e shows the contributions from
topography (N ), temperature (N ), and
pressure inducgﬁodensity variations
which lead (together with the deflectiggeg§ the
convective bottom, whose contribution is not

shown) to the total geoid amplitude (Ntotal)' An

increasing N is compensated by a decreasing

Press
N ; thus any lateral density variation pro-

dEgBS by compression is dynamically compensated
by topography changes and does not lead to a
significant geoid signal.

3.2. Variable Viscosity Models

A set of models has been calculated with
purely temperature dependent viscosity according
to (23) (model 4, see Table 1). For Di=0, this
model was identical to the benchmark model 2a of
Blankenbach et al. (1989). The effects of in-
creasing Di on the temperature, viscosity,
Nusselt number, mean velocity, and mean dissipa-
tion are shown in Figure 4. Since there is no
pressure dependence in the viscosity, there
develops a thick stagnant 1id which keeps the
temperature of the interior of the cell well
above 0.5 (=mean between top and bottom) (Figure
4a, Di=0). The establishment of an adiabatic
temperature gradient with increasing Di decreases
the temperature within the most parts of the
cell., As a consequence, n(T) increases everywhere
except near the bottom (Figure 4b). Both the
increasing mean viscosity and the decreasing
overadiabatic temperature difference (or Ra¥*)
slows down the mean velocity v and Nu (Figure
4c). In contrast to the consta§¥ viscosity case,
the bottom topography is smaller than the top
topography by a factor of approximately 3 for
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1 = const
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Fig. 2.

profiles (horizontally averaged).
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Y=1.1
T =const

w
85 200
\

Ve

Nu, m,\
& 6f ‘\\\\\: 4150
Vems
ok 1100
R
2t _,,/”/’ {0
%0z s 08
)
b) ‘
[m]
Y=
3 % o0z Geoid T =const
20
04% o5
0f
oD
_10h
~20}
_30k
0 02 0k 06 08 10
X
d)

Effect of varying Di in constant viscosity convection with Ra=10%, y=1.1, and
fixed bottom temperature (model set 2). The ALA was used.
(b) Nusselt number Nu, root mean square average

(a) Vertical temperature

velocity VRMS? and mean viscous dissipation ¢ as functions of Di. All in nondimensional

units.,

(c) and (d) Surface topography and geoid undulation profiles, The upwelling is

on the left side., Note that increasing Di generally decreases convective vigor.

Di=0, A further decrease of the viscosity near
the bottom at higher Di reduces the bottom
topography even more to less than 500 m peak to
peak amplitude if scaled in the same way as the
constant viscosity models (not shown).

In the next model set (number 5, see Table 1),
a rheology law according to equation (24) is
chosen, assuming Newtonian behavior (n=1) (see
also Christensen, 1984). The unrealistic high
value of © =2.09 is taken to avoid extremely high
viscosities near the surface, i.e., to mimic
weakening processes near the surface which aid
spreading and subduction. By this assumption and
due to the pressure dependence of the viscosity
the flow now becomes concentrated near the
surface, The flow lines, temperature, and visco-
sity of model 5 are shown in Figure 5 for differ-
ent dissipation numbers. Steady state solutions
are obtained for Di values up to 0.75, oscilla-
tory behavior is observed for Di=! using the
extended Boussinesq approximation (EBA), while
the flow becomes chaotic for Di=1 in the trun-
cated anelastic liquid approximation (ALA) (see
the flow at different arbitrarily taken times t
and t, in Figure 5).. In contrast to the previous
model™4, increasing Di increases the mean cell

temperature, thereby decreases the mean viscosity
and increases the convective vigor. For high Di
the flow tries to fill the whole box, the down-
welling flow region narrows and the upwelling
plume becomes weaker.

Figure 6 shows the next set of models assuming
a non-Newtonian (n=3) rheology (see Table 1,
model 6). According to Christensen's (1983)
empirical law, the activation energy and volume
are chosen to be twice as high as in the previous
model to obtain a similar flow field (for Di=0).
Steady state solutions of the EBA for Di in-
creasing from 0 to 1 and an ALA-truncated solu-
tion for Di=1 and Y=0.8 are shown. The main
effect of increasing Di and Di/Yy is a concentra-
tion of the downwelling flow (i.e., the formation
of a "slab") and a broadening of the upwelling
flow. (This occurred also in the previous New-
tonian models, but to a lesser extent.) This
behavior is partly caused by the upwarpings of
the isotherms near the downwelling limb and
partly by the strain rate softening effect of the
power law rheology. Both effects locally reduce
the viscosity and decouple the cold descending
flow from the center of the cell. The decoupling
zone 1s dashed for the case Di=1 (Figure 6). It
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1.0 1.0
Di =0.58
0.8 [|m =const 0.8F
T(2)
0.6} 0.6t
0.2
Z 7 0.4
Vy (2) =
. X 0.6t Yiog
) 0.2}
1 I 1 It 1 1 o n L I 'y 1 " 2 1
-0.6-0.4-02 0 02 04 0.6 08 0 0.2 0.4 0.6 0.8 10
a) 9 b) T

[m]
1000

Topography
500
0
-500+
-1000 F
0 0z 0L 06 08 10 0o 0z 04 06 08 10
X
c) X d)
[m]
LO} NfOpO /-
o/.
N
30F oﬁa_l./.\
Z Npress
° —— .
3 o — e ———
LD F
20¢ Ntemp
40}
0.1 1.0 10
e) logY

Fig. 3. Effect of varying the compressibility or v in constant viscosity convection,
Ra=105, Di=0.58 (model set 3). (a) Horizontal velocity as a function of depth (hori-
zontally averaged and normalized by the maximum vertical velocity, which lies between
288 and 393). (b) Temperature profiles (horizontally averaged, nondimensional). Note
the increase in mean temperature and the decrease in the thickness of the lower thermal
boundary layer with increasing compressibility. (c) and (d) Surface topography and
geoid undulations above the convection cell. The geold is virtually independent of the
compressibility despite demsity variations as high as by a factor of 18! (e) Single
contributions to the total geoid, produced by pressure- and temperature-induced density
variations and topography. Total amplitudes are shown. Note that variations in N

and NPr cancel, leaving N constant. Topo

ess total
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1.0

0.8

Depth
0.4 0.6
-l

0.0 0.2

a) 30 -25 -20 -15 -1.0 0.5 0.0
Log. Viscosity

Depth
0.4

0.0 0.2

) o¢ 02 04 08 08 10
Temperature

10

¢ h_\\\\ygfé ’ 1400
F . 1300
\, VRMS

2k . 4200
. §i‘
i Dissipation ¢ 1100
0 s . L ) . ) L .
0 0.2 0.4 0.6 08
c) Dl
Fig. 4. Results for convection models (model set

4) with temperature-dependent viscosity for
different dissipation numbers Di. The Griineisen
parameter was fixed at 0.8. (a) Nondimensional
temperature profiles, horizontally averaged. The
EBA was used for all Di values. In addition, the
truncated ALA was used for Di=0.75. Note the
decreasing mean temperature as Di is increased.
(b) Logarithmic nondimensional viscosity pro-
files, horizontally averaged. Again, the Di=0.75
case was repeated using the truncated ALA, else
the EBA was used. (c) The Nusselt number, mean
nondimensional velocity, and dissipation as
functions of Di. Note the decrease in convective
vigor as Di increases.

is this viscosity contrast between the highly
viscous descending flow and its soft surrounding,
which leads to the "slab"-like behavior of the
downwelling region. The soft decoupling zone
extends to the upper right corner, where beside
efficient strain rate softening, the viscosity is
also reduced by strong viscous dissipation., See
also section 4 for a further discussion of this
nonlinear coupling between variable viscosity and
adiabatic and viscous heating.

Another interesting feature is the difference
between the EBA and the ALA with y=0.8. The flow
geometry changes significantly 1if vertical
density variations are accounted for in the
equation of motion (4 or 11) which is propor-
tional to p , while the viscous forces are
independentrof p (equation (6)). Thus the lower
part of the "slab" of the ALA case (Figure 6) has
a stronger negative buoyancy than it has in the
EBA case. As a result, the ALA concentrates the
downwelling flow even more; the maximum vertical
velocity increases from 670 (EBA) to about 1000
(ALA) in nondimensional units.

Another remarkable effect is shown in Figure 7
(and did, in fact, already occur in model 5,
Figure 5). For incompressible convection the cell
temperature is as low as 0.2 and increases as
adiabatic heating is included. The opposite
behavior was observed for model 4 (Figure 4), in
which the mean cell temperature was above 0.5 as
a consequence of a stagnant 1lid. As shown in
Figure 7b, an increasing cell temperature de-
creases the cell viscosity. The vigor of convec-
tion first increases with increasing Di, followed
by a decrease for very high Di-values (Figure 6c)
as the overadiabatic temperature difference
approaches 0.

Topography and geoid undulations could not be
evaluated because the resolution of the grid
needed for integration of the pressure field was
insufficient.

To see if the development of a decoupling zone
is a conseyuence of the high activation energy of
model 6, a model with the same activation energy
and volume but Newtonian rheology was calculated
(model 7, Figure 8). A considerable narrowing of
the descending plume is observed, which is,
however, not as strong as in model 6. Further-
more, the low-viscosity decoupling zone bounding
the descending flow ("slab") in the non-Newtonian
model is missing in the Newtonian case.

In the following set of models, internal
heating was considered so as to keep the bottom
temperature constant. A nondimensional value of
H=5 was chosen, corresponding to a potassium-
depleted chondritic mantle with a radioactive
heat generation of 3x10712 W/kg. According to the
nondimensionalization (10), the nondimensional H
is identical to the quotient Ra_/Ra with Ra
=Rayleigh number based on internal heating %see,
e.g., Machetel and Yuen, submitted manuscript,
1988).

Figure 9 shows the effect of increasing Di in
the EBA. For Di=0 approximately half of the total
surface flow is provided by bottom heating, which
leads to a fairly narrow rising plume. For higher
Di the cell temperature increases, reducing the
viscosity but also the heat influx from the
bottom. For Di=0,75, only 57 of the total heat
flux is entering through the bottom; the rising
plume is completely dispersed. Concentration of
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Fig. 5. Convection with a temperature- and pressure-dependent rheology (model set 5).
Steady state solutions are shown in the top part of the Figure, where the dissipation
number is varied from 0 to 0.75 toward the right. The EBA is used. For Di=1 time-
dependent solutions were found (lower part of the figure, where also the flow direc-
tions are reversed). Two arbitrary stages are shown using the EBA (t, and t, on the
left) and using the truncated ALA (t, and t2 on the right). The EBA-solution shows
oscillatory behavior, the truncated ALA—solution shows chaotic behavior. The Griineisen-
parameter was 0.8 in this case. (Top) Contour lines of the logarithmic, nondimensional
viscosity fields. Note the change from a strong vertical stratification to a more
evenly distributed viscosity field. (Center) Temperature fields. (Bottom) Streamlines.
The lowest, highest, and incremental value of the nondimensional stream function is
given near the upper right corner of each box.
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Fig. 7. (a) Temperature, (b) logarithmic visco-

sity, and (c) Nu, v , and dissipation for
temperature-, pressure-, and stress-dependent
rheology convection (model set 6). Otherwise like
Figure 4. Note that the convective vigor is first
increasing with Di in contrast to the model 4
(Figure 4).

the downwelling flow, which is a common feature
of internally heated convection, is enhanced due
to the nonlinear coupling between the temperature
dependent rheology and adiabatic and viscous
heating as described above.

For Di=0.75 a model was calculated with a
finite y=0.8 using the truncated ALA and taking
the EBA solution for Di=0.75 (Figure 9) as
initial condition. It was not possible to obtain
a steady state solution even with a strong
underrelaxation. The cell broke up into two cells
(Figure 10, t.). Continuing with a time-dependent
calculation showed a periodic behavior. The root

mean square velocity v s is shown in Figure 11
for a few cycles, the ggages t, and t, of Figure
10 represent instances of minimum and maximum

v . At t, dense blobs of material are forming
a%Mgoth edges of the box, which sink with maximum
velocity at instance t,. The time-dependent
behavior can be described as an episodic release
of cold material from the upper boundary. The
vigor of such an event is aided by two nonlinear
effects: (1) the viscous decoupling of cold
sinking material from the mantle (see above) and
(2) the power law rheology, which reduces the
overall viscosity by more than half a magnitude
(compare the viscosity fields at t, and t.).

It should be moted that the totdl intefnal
heat production in the ALA case was 607 larger
compared to the EBA case, since the mean density
was higher by the same amount. A ALA run with
H=3.02 was carried out which yields the same
total heat production as the EBA case with H=5.
No steady state solution could be found, sug-
gesting that this case also shows time-dependent
behavior.

4., Discussion

In this section the physical effects intro-
duced by adiabatic and viscous heating and an
increasing compression with depth will be dis-
cussed with emphasis on the nonlinear coupling
with a variable viscosity.

4.1, '"Slab" Formation by Nonlinear Coupling

Between Compression and Rheology

Any vertical flow component lead to adiabatic
heating or cooling. This produces an adiabatic
temperature gradient which is given in nondimen-
sional form as

9T

Gz

(£5)g = Di(T+T,) (25)

The dependence of the adiabatic gradient on
temperature has important consequences for
variable viscosity convection. The temperature
field of incompressible, high Rayleigh number
convection can usually be divided into three
regions: (1) an isothermal core of the cell, (2)
cold and hot thermal boundary layers with their
corresponding vertical plumes, and (3) overshoot
temperature layers adjacent to the regions of 2
(Figure 12b). These overshoot regions, which are
advected remnants of the vertical plumes, are
broadening due to thermal diffusion (see, e.g.,
the incompressible model in Figure 1 or the
horizontal temperature profiles across the
convection cells of Jarvis and Peltier (1988)).
In the case of adiabatic heating, the dif-
ferences in temperature of the vertically moving
regions 1, 2, 3 (Figure 12b) lead to different
vertical adiabatic temperature gradients accord-
ing to (25). In particular, in a downwelling
overshoot region 3 the adiabatic temperature
gradient is highest (Figure 12a); thus the
adiabatic heating counteracts the lateral diffu-
sion, thereby prolonging the lifetime of region
3. In contrast, adiabatic cooling in the upwell-
ing flow leads to temperature profiles in regions
1, 2, and 3 approaching each other (Figure 12c¢).
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Fig. 10. Convection with internal heating (H=5), fixed bottom temperature, and Di=0.75
(model set 8). In contrast to the model in Figure 9, the truncated ALA is used result-
ing in time-dependent behavior. The Di=0.75 model of Figure 9 was taken as initial
condition. The cell split up (t.) into two cells which showed oscillatory behavior. The
stages t2 and t, represent instances of minimum and maximum root mean square velocity.
Note the” two coid plumes of different penetration depths at the instance t3.

L 1 1

0.01 0.02 0.03

Time (non.dim)

Fig. 11. Root mean square velocity (nondimensional) versus nondimensional time of the
internally heated model 8 shown in Figure 10.
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Fig. 12. Sketch of the three thermal regimes in

high Rayleigh number convection heated from
below, together with their adiabatic temperature
distributions (qualitatively). (a) Adiabatic
temperatures in the downwelling regions 1, 2, 3.
(b) Region 1, adiabatic cell core; 2, horizontal
boundary layers and corresponding vertical
plumes; 3, temperature overshoot regions, which
are remnants of regions 2. (c) Adiabatic tempera-
tures in the upwelling regions 1, 2, 3. Note that
the temperature profiles in the downwelling
region diverge during descent, while the profiles
in the upwelling region converge during ascent.
This is a consequence of different adiabatic
temperature gradients, which depend on the
absolute temperature.

These differences between upwelling and downwell-
ing flows lead to a concentration of buoyancy
forces toward the downwelling region and thus a
narrowing of that part of the flow. Furthermore,
an increasing temperature difference with depth
between the downwelling plume and adjacent fluid
leads to still significant or even increasing
buoyancy forces at the lower part of the down-
welling region despite of lateral diffusion of
heat. This effect could counteract the dispersal
of subducted slabs in the mantle.

The above mechanism is dramatically enhanced
if the viscosity is temperature- and stress-
dependent: Due to the increasing temperature (and
thus viscosity) difference the downgoing flow
becomes mechanically decoupled from the overshoot
region 3 and resembles a stiff slab (cf. Figures
6, 9, and 10). A non-Newtonian rheology strongly
enhances this effect (¢f. Figures 6 and 8). On
the other hand, narrow upwelling plumes, which
are often regarded as a consequence of a strongly
temperature dependent viscosity (e.g., Loper and
Stacey, 1983), are broadened by the decrease of
lateral temperature (and viscosity) variations.

In addition to adiabatic and viscous heating a
vertically increasing density has several impor-
tant effects (cf. equations (11) and (12)):

1. The thermal buoyancy term in (11) is
proportional to p_; thus the convective driving
forces increase with depth.

2. Keeping k_ constant, kK(=k /p c_) decreases

. 0 0 P
with depth.

Both effects concentrate the flow downward,
which is clearly seen in all models with ALA, It
should, however, be noted, that additional
effects, not accounted for in this study, might
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work in the opposite direction. In particular, a
thermal expansivity @ decreasing with p and a
thermal conductivity k increasing with p
(Anderson, 1987) would decrease buoyancy forces
with depth.

The downward concentration of the flow and the
higher density near the bottom as investigated in
this study have some more important consequences.,

4.2. Bottom Topography

The bottom topography increases with in-
creasing compressibility (decreasing Y). For
example, decreasing Y from 1.1 to 0.4 in the
constant viscosity models increases the bottom
topography by about 50% (Di=0.58). A similar
increase was observed in the n(T) models if Y is
decreased from « to 0.8 (Di=0.75). Similar
increases of core-mantle boundary distortions
were observed in the mean field solutions of
Zhang and Yuen (1987), who also showed that such
undulations decrease with increasing Ra. For the
case of a depth-dependent @ and k (with Di=0.6,
Y=1.25) Zhang and Yuen (1988) found a decrease in
the amplitude of the core-mantle boundary topo-
graphy between 30 and 807 compared to constant o
and k models., However, at least a part of this
decrease would be compensated if Y would range
between 0.75 and 1 as suggested by Stacey (1977).

4.3. Thermal Boundary Layer and
Cell Temperature

The relative increase of the vigor in the
lower part of the convective cell at decreasing
Y values leads to a thinning of the lower thermal
boundary layer (TBL) and, consequently, to an
increase of the mean cell temperature (see Figure
3b). From the models discussed in section 3 one
can estimate that the TBL thins by about 20 to
50% if Y is decreased from infinity to about 0.8.
A relatively thin lower TBL is required if low
seismic velocities in the lowermost 50-100 km of
the mantle are interpreted as resulting from an
increase in temperature (Doornbos and Mondt,
1979; Doornbos, 1983). The narrowing of the TBL
thickness ht can be accomplished by an increase
in horizontaE mass flow along the bottom of the
cell due to an increase in convective vigor. This
follows from the proportionality h hw\/K?v s
which gives, together with k~1/p t x

hep v (ppvx) ™3 (26)

Thus even though the flow velocities might be
slower in the lower mantle than in the upper
mantle (see, e.g., Figure 3a), they still can
produce a thin TBL.

The increase in cell temperature is thus a
consequence of the thinning of the lower TBL due
to an increase of horizontal mass flow, or
downward migration of the relative vigor of
convective flow, keeping the temperature gradient
constant. This is an alternative explanation to
that of Yuen et al. (1987) and Quareni and Yuen
(1988), who attributed the increase in tempera-
ture to an increase in shear heating due to
viscous bulk compression (i.e., the term 4/3 Di
(V;)Z/Ra n in equation (12)).
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4.4. 1Independence of the Geoid
on Compression

In the constant viscosity convection models it
was found that lateral density variations induced
by compression lead to geoid contributions

and a change in N , see Figure 3e)
whggﬁsﬁearly cancel out. %ggg is a consequence of
lateral density variations having their maximum
amplitude near the upper and lower surfaces. They
cause deflections of these surfaces, which result
in local compensation of the gravity or geoid
signal. This local compensation is a consequence
of the gravity and geoid kermels approaching zero
near the top and bottom of convection cells
(Parsons and Daly, 1983; Ricard et al., 1984).
Any mechanism shifting lateral pressure varia-
tions toward the midplane of the cell would lead
to an enhanced geoid signal due to such varia-
tions. However, since such mechanisms (like
viscosity stratification) would alter the stress
and temperature fields by a larger amount, it can
be concluded that the effect of compressible
density changes on the geoid can be neglected in
most cases.

4,5. Applicability to the Earth

First, the dimensionless quantities charac-
teristic for convection in the Earth's mantle
will be discussed briefly. Then the nondimen-
sional model results will be scaled and extra-
polated to the Earth.

The physical properties and quantities con-
trolling mantle convection can be summarized as
follows (see, e.g., Bott, 19825 Stacey, 1977;
Knittle et al., 1986; Anderson, 1987; Hager and
Gurnis, 1987; Ranalli, 1987; Williams et al.,
1987; Heinz and Jeanloz 1987): h=2900 km,
p=3300-5500 (4000) kg/m’, a=1-4x10"° (2.5x
10°5)k7Y, ¢ =1250 J/K kg, g=10 m/s?, k=10°
-2.5x107° (1.5x10°8) m?/s, AT=3000-4000 (3500) K,
and n=1021-1023 (1022) Pa s. Preferred values
used in this discussion are given in parentheses.
The most uncertain quantity is the viscosity,
which might also show the greatest variation with
depth, The high viscosity estimates have been
suggested to represent the lower mantle (Hager,
1984; Hager and Gurnis, 1987), while the upper
mantle might have (at least regionally) a low-
viscosity asthenosphere with viscosities even
less than the minimum value given above.

Inserting the numbers given above into Di
gives a range of Di from 0.3 to almost 1 with a
preferred value of 0.58. From equation (19) the
overadiabatic temperature difference AT* can now
be estimated to be roughly equal to the total AT
minus approximately 1000K. Casting the above
values into the Rayleigh number (18), the effec-
tive Ra of the mantle is expected to lie between
10° and 108, with 4x10% being the preferred
estimate. Of course, this is only an order of
magnitude estimate since the definition of a
truely effective Rayleigh number with variable
viscosity is complicated (Christensen, 1984),
prohibiting an exact determination of Ra of the
mantle.

The Nusselt number was defined as the ratio of
the surface heat flow to k AT/h, k being the
thermal conductivity (=x p c,). Taking an average
surface heat flow of the Eargh of 80 mW/m?
(Sclater et al., 1981), the above values result
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in a Nusselt number between 3 and 20, with a
typical value near 9. The surface velocities of
the lithospheric plates are of the order of 3
cm/yr, or 1800 in nondimensional units, if scaled
by equation (10) and the above preferred values.

Since virtually nothing is known about the
rheological law and particularly its temperature
dependence in the deep mantle, one might tenta-
tively consider the well-studied olivine rheolo-
gy. Assuming an activation energy of about
5.6x10° J/mol and an activation volume of
1.7x107% m3/mol (Kirby, 1983), the viscosity will
change by one order of magnitude if the tempera-
ture is changing by only 60K at midmantle levels.

The rheologies and Rayleigh numbers of the
models have been chosen in a way that still
steady state (or at most oscillatory) solutions
could be obtained. The Rayleigh number of the
constant viscosity models (models 1-3) are
clearly too low compared to the Earth. If Ra is
increased (e.g., by decreasing the viscosity),
the topography and geoid undulations for the
incompressible case will decrease proportionally
to Ra 0+!% and Ra U.31, respectively. These
proportionalities follow from the models of
Blankenbach et al. (1989). The main result of the
constant viscosity models in this study, namely,
the independence of the geoid on compression, can
thus safely be extrapolated to higher Rayleigh
numbers.

The Rayleigh numbers used to scale the vari-
able viscosity models 4-8 (Table 1) imply scaling
viscosities as high as 5.7x10%% Pa s (model 4)
and 5.7x10%2 Pa s (models 5-8). These viscosities
have to be used for dimensionalization of the
nondimensional viscosities in Figures 4-10.
Inspecting these figures typical model visco-
sities range between 10Zé and 102" Pa s. Aver-
aging the viscosity by weighing it with the
square of the strain rate (Parmentier et al.,
1976), effective Rayleigh numbers could be
calculated, which range about 10° (£ a factor of
2) for all models shown. These effective Rayleigh
numbers, together with Nusselt numbers ranging
about 8, and subducting velocities of about 1
cm/yr (e.g., obtained in model 5 for Di>0) show
that the vigor of the convective models is only
slightly less than that expected in the Earth
mantle. However, even in the case of a much
higher effective Rayleigh number, the promotion
of slab formation, as found in this study, will
persist: the overshoot (i.e., the decoupling)
regions will be thinner, while the overshoot
temperatures do not change significantly (see,
e.g., the horizontal temperature profiles by
Peltier (1980) or the overshoot temperatures of
the models of Blankenbach et al. (1989)).

The temperature dependence of the rheology of
the models had to be assumed to be considerably
weaker than that of olivine because of numerical
constraints. For instance, in model 5 a change in
viscosity by one order of magnitude can be
accomplished by a temperature change of 0.16
(nondimensional), i.e., 500K. (Note that a direct
comparison of the activation energy used in the
models with that of olivine is not reasomable
because of the artificially high value of Oo’ see
section 3.2 for a discussion of this choice.)
Thus, in nature a much smaller horizontal change
in temperature is sufficient to form a decoupling
low-viscosity zone adjacent to the slab. With the
same argument it can be anticipated, that this



Schmeling: Compressible Convection With Variable Viscosity

decoupling will already take place for smaller
dissipation numbers than in this study (possibly
about 0.5). The decoupling zone also might extend
to deeper levels than observed here. The argument
is as follows: Any lateral temperature difference
near the surface, 8T , 1s amplified during
adiabatic descent totgﬁe value 6T exp(Di z),
neglecting lateral diffusion (z 15°Bondimensional
depth). Lateral diffusion is proportional to the
absolute value of 8T. If the natural temperature
dependence of the rheology is significantly
stronger than assumed in this study, then a
smaller lateral T difference is sufficient to
form a decoupling zone. Lateral diffusion and
dispersion will become less effective and the
(smaller, but more effective) temperature dif-
ference will survive and may even increase down
to greater depths.

With a stronger temperature dependence, a
non-Newtonian rheology might not be necessary for
the formation of the decoupling zone adjacent to
the slab, contrary to the results of this study.
However, such rheology might strongly promote
slab formation and, still, is essential for the
formation of the subduction zone.

It is clear that the above models are highly
idealized:

1. Chemical and phase boundaries have not
been considered; thus whole mantle convection was
implied. However, in the case of upper mantle
convection, adiabatic and viscous heating (with
Di=0.19) in connection with olivine rheology also
show a very strong tendency to concentrate the
downwelling flow (H. Schmeling and G. Marquart,
unpublished results on sublithospheric convec-
tion, 1989).

2. Accounting for spherical geometry would
increase the temperature jump across the upper
TBL on the expense of the temperature increase
across the lower TBL (Zebib et al., 1980; Olson,
1981). Three-dimensional calculations on a
spherical Earth (Bercovici et al., 1988) show
that the downwelling takes place along long
linear sheets, while the upwelling occurs in
isolated broad regions. These findings justify a
two-dimensional treatment of the slab problem as
addressed in this study.

3. While in this study downwelling is symmet-
ric with respect to the side boundary, all
subduction zones in nature are asymmetric.
Asymmetric subduction may lead to two decoupling
zones adjacent to the slab of different viscos-
ity, producing pressure fields which deflect the
slab toward the low-viscosity side.

5. Conclusions

The convection calculations of this study
revealed a strong interaction between a variable
rheology, compression, and, in particular,
adiabatic and viscous heating: upwelling plumes
show a strong tendency of broadening, while the
downwelling flow concentrates, being mechanically
decoupled from the interior of the convection
cell. This mechanism is strongest for non-New-
tonian rheology. Extrapolating the results to a
stronger temperature dependence of the rheology
and a higher Rayleigh number, appropriate for the
Earth, the decoupling is expected to occur at
even smaller dissipation numbers than observed
here, This kind of decoupling seems to be neces-
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sary for the formation of subducting slabs. The
models predict subducting slabs to be flanked by
two low-viscosity zones. These inhibit an early
dispersal of downwelling material and mixing into
the mantle. The increase of negative buoyancy
forces with depth observed in the models may help
the slabs to penetrate into the lower mantle. A
concentrated downwelling and a broad, slow
upwelling flow (except in mantle plumes) would
also explain the long-term persistence of differ-
ent chemical reservoirs in the mantle because of
a low mixing rate (Loper, 1985).

Compression in the lower mantle reduces the
thickness of the lower thermal boundary layer by
20-50% compared to incompressible convection,
thereby increasing the mean temperature. In-
creasing the dissipation number in variable
viscosity convection may either damp or speed up
convection depending on the rheology, while
constant viscosity convection is only damped by
increasing Di. Geoid undulations in constant
viscosity convection are virtually independent of
compression for constant Di. The threshold to
time-dependent variable viscosity convection is
drastically reduced for internally heated convec-
tion if the anelastic liquid approximation is
applied.
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