Resting state analysis with SPM

Hamburg SPM course 2012

Helmut Laufs Enzo Tagliazucchi nztglzcch@gmail.com

• Easy acquisition and experimental paradigm (for example, easier to study brain function for certain patients)

- Easy acquisition and experimental paradigm (for example, easier to study brain function for certain patients)
- Useful to obtain estimates of functional connectivity in the human brain, which in turn can reveal abnormalities in underlying structural connections

- Easy acquisition and experimental paradigm (for example, easier to study brain function for certain patients)
- Useful to obtain estimates of functional connectivity in the human brain, which in turn can reveal abnormalities in underlying structural connections
- Study brain activity in different brain states for which experimental paradigms requiring subject participation are not possible (i.e. Sleep, anesthesia, coma, certain seizures)

- Easy acquisition and experimental paradigm (for example, easier to study brain function for certain patients)
- Useful to obtain estimates of functional connectivity in the human brain, which in turn can reveal abnormalities in underlying structural connections
- Study brain activity in different brain states for which experimental paradigms requiring subject participation are not possible (i.e. Sleep, anesthesia, coma, certain seizures)
- Gain insight on haemodynamic correlates of certain brain rhythms (for example, spontaneously fluctuations of alpha power)

- Easy acquisition and experimental paradigm (for example, easier to study brain function for certain patients)
- Useful to obtain estimates of functional connectivity in the human brain, which in turn can reveal abnormalities in underlying structural connections
- Study brain activity in different brain states for which experimental paradigms requiring subject participation are not possible (i.e. Sleep, anesthesia, coma, certain seizures)
- Gain insight on haemodynamic correlates of certain brain rhythms (for example, spontaneously fluctuations of alpha power)
- Resting state activity is interesting *per se*

Aims

• To learn how to adapt SPM for the analysis of resting state data, especially seed correlation

Aims

- To learn how to adapt SPM for the analysis of resting state data, especially seed correlation
- To know what SPM cannot easily do and apply self-made MATLAB scripts to do it

Aims

- To learn how to adapt SPM for the analysis of resting state data, especially seed correlation
- To know what SPM cannot easily do and apply self-made MATLAB scripts to do it
- To extend SPM using the Brain Connectivity Toolbox (<u>http://www.brain-connectivity-</u> <u>toolbox.net</u>), which allows graph theoretical analysis of functional connectivity networks

First part: seed correlation

Methods I: Seed correlation

• Functional connectivity between a BOLD timeseries from a given location and the rest of the brain is assessed

Methods I: Seed correlation

• Functional connectivity between a BOLD timeseries from a given location and the rest of the brain is assessed

Fox et al. 2007 Nat Rev Neurosci

Methods I: Seed correlation

- Functional connectivity between a BOLD timeseries from a given location and the rest of the brain is assessed
- It is common to apply it individually for each subject (*first level analysis*) and the perform analysis at the group level or inter-group comparisons between different populations (*second level analysis*)

 First, extract a BOLD time course from a voxel or a ROI (tools/extract_BOLD_regressor.m)

- First, extract a BOLD time course from a voxel or a ROI (tools/extract_BOLD_regressor.m)
- This can be done from a voxel a from a region in a given template, in this case we use the AAL template
- Y = spm_vol('aal_atlas.img'); aal = spm_read_vols(Y);

Code to open an fMRI volume using SPM

90 cortical and subcortical regions + 26 cerebellar regions

- First, extract a BOLD time course from a voxel or a ROI (tools/extract_BOLD_regressor.m)
- This can be done from a voxel a from a region in a given template, in this case we use the AAL template
- Then, construct any other regressors you might want to include in the analysis: motion time series, derivatives of motion time series, cardiac and respiratory nosie.

RETROICOR

- First, extract a BOLD time course from a voxel or a ROI (tools/extract_BOLD_regressor.m)
- This can be done from a voxel a from a region in a given template, in this case we use the AAL template
- Then, construct any other regressors you might want to include in the analysis: motion time series, derivatives of motion time series, cardiac and respiratory nosie.
- Put the BOLD regressor in the design matrix, together with the other regressors, and run a first level analysis for each subject you want in the analysis

SPM pipeline

SPM pipeline Statistical parametric map (SPM) Image time-series Kernel Design matrix Reinstead of using a - General linear model regressor based on the Gaussian field theory Statistical model, we use one (or Normalisation inference more) regressors which are **BOLD** time series extracted from certain p < 0.05 **ROIs** Parameter estimates

 $y = X\beta + e \quad e \sim N(0, \sigma^2 I)$

 $y = X\beta + e \quad e \sim N(0, \sigma^2 I)$

Dataset

• Five subjects in two groups (50 volumes, 79 x 95 x 68 voxels)

Dataset

- Five subjects in two groups (50 volumes, 79 x 95 x 68 voxels)
- First group has increased connectivity between left thalamus and both left and right pre-frontal cortex

Dataset

- Five subjects in two groups (50 volumes, 79 x 95 x 68 voxels)
- First group has increased connectivity between left thalamus and both left and right pre-frontal cortex
- Second group has increaased connectivity between left thalamus and left left pre-frontal cortex only

Steps (first level)

- Load the AAL atlas, which will be necessary to extract the thalamus BOLD timecourse
- Y = spm_vol('aal_atlas.img'); aal = spm_read_vols(Y);

Steps (first level)

• Load the AAL atlas, which will be necessary to extract the thalamus BOLD timecourse

Y = spm_vol('aal_atlas.img'); aal = spm_read_vols(Y);

 Create BOLD regressors running the *extract_BOLD_regressor.m* script (Check path!). This will create a .mat file in each subject directory with the corresponding regressor

Steps (first level)

• Load the AAL atlas, which will be necessary to extract the thalamus BOLD timecourse

Y = spm_vol('aal_atlas.img'); aal = spm_read_vols(Y);

- Create BOLD regressors running the *extract_BOLD_regressor.m* script (Check path!). This will create a .mat file in each subject directory with the corresponding regressor
- In each subject file there is a file with noise regressors (noise_regressors.mat). These can be combined to form all the regressors to be included in the design matrix using the *create_all_regressors.m* script (Check path!).

SPM8 (Enzo): Menu	
Realign (V Slice Coregister V Normali	timing Smooth se
Specify 1st-level Specify 2nd-level	Review Estimate
Res	ults
Dynamic Cau	sal Modelling

<mark>≆</mark> ∎ odule VRI I

SPM8 (Enzo): Menu	
Realign (🔻 Slice t Coregister 💌 Normalis	timing Smooth se 🔻 Segment
Specify 1st-level	Review
Specify 2nd-level	Estimate
Resu	Ilts
Dynamic Cau	sal Modelling

List	Current modure. Imit model specification		
nodel spe 📤	Help on: fMRI model specification		
	Directory	<-X	
	Timing parameters		
	. Units for design	<-X	
	. Interscan interval	<-X	
	. Microtime resolution	16	
	. Microtime onset	1	
	Data & Design	<-X	
	Factorial design		
	Basis Functions		
	. Canonical HRF		
	Model derivatives	No derivatives	
	Model Interactions (Volterra) Current Item: Directory	Unteractions	

Click Data & Design, add volumes (careful! Check file order!!) and add regressors using the Multiple Regressors option.

Select TR (2.08 s.) and select directory. **Model details do not concern us** (we defined our regressor)

SPM8 (Enzo): Menu 📃 🔲 🗙	
Realign (V Slice timing Smooth Coregister V Normalise V Segment	
Specify 1st-level Review	
Specify 2nd-level Estimate	
Results	
Dynamic Causal Modelling	

Use the batch script first_level_analysis_job.m for all subjects. Change directory paths in the file!!

	Current Module: fMRI model specification	ı
del spe 🔺	Help on: fMRI model specificat	ion
	Directory	<-X
	Timing parameters	
	. Units for design	<-X
	. Interscan interval	<-X
	. Microtime resolution	16
	. Microtime onset	1
	Data & Design	<-X
	Factorial design	
	Basis Functions	
	. Canonical HRF	
	Model derivatives	No derivatives
	Model Interactions (Volterra)	Unteractions
	Current Item: Directory	

Click Data & Design, add volumes (careful! Check file order!!) and add regressors using the Multiple Regressors option.

Select TR (2.08 s.) and select directory. **Model details do not concern us** (we defined our regressor)

Design matrix (example)

Statistical analysis: Design

parameters

Design matrix (example)

parameters

Design matrix (example)

parameters

Estimate model (first level)

SPM8 (Enzo): Menu		
Realign (Slice Coregister Normal	timing Smooth ise	
Specify 1st-level	Review	
Specify 2nd-level	Estimate	
Res Dynamic Cau	ults Isal Modelling	

Estimate model (first level)

SPM8 (Enzo): Menu		
Realign (💌 Slice Coregister 💌 Normal	timing Smooth ise	
Specify 1st-level	Review	
Specify 2nd-level	Estimate	
Res	sults	
Dynamic Ca	usal Modelling	

Use the batch script *estimate_model_first_level_job.m* for all subjects. Change directory paths in the file!!

Results (first level)

Thalamic BOLD regressor

Results (first level)

Thalamic BOLD regressor

Cardiac regressor

Second level analysis

🕗 SPM8 (Enzo): Menu		
Realign (V Slice timing Smooth		
Coregister Vormalise Vormalise		
Specify 1st-level Review		
Specify 2nd-level Estimate		
Results		
Dynamic Causal Modelling		
SPM for functional MRI		
Display Check Reg Render 🔻 FMRI 💌		
Toolbox: PPIs ImCalc DICOM Imp		
Help Utils 🔻 Batch Quit		

Second level analysis

ipalial pre-proces	sing]	
Realign (Slice t	iming	Smooth	
Coregister.	. 🔻 Normalis	se 🔻	Segment	
ladel specificatio	n, review and estimation			
Specif	fy 1st-level	Revi	ew	
Specif	y 2nd-level	Estim	ate	
	Resu	Its		
Novence	Resu Dynamic Caus	alts		4
	Resu Dynamic Caus	alts		-
	Resu Dynamic Caus SPM for fun	al Modelling		
Display	Resu Dynamic Caus SPM for fun Check Reg	Its sal Modelling ctional MRI Render 💌	FMRI V	}
Display oolbox: 💌	Resu Dynamic Caus SPM for fun Check Reg PPIs	alts sal Modelling octional MRI Render V ImCalc	FMRI V DICOM Imp	

Select two-sample t-test and the Beta_0001.img as "scans" for each subject in group1 and group 2

sign 🔺	Help on: Factorial design specification	
Joight	Directory	<-X
	Design . One-sample t-test Scans Covariates Masking . Threshold masking . None	<-X
	. Implicit Mask . Explicit Mask Global calculation	Yes
	Current Item: Directory	
•	Select Files	

Results (second level)

group 1 > group 2

 Seed correlation can be performed in SPM by introducing a BOLD regressor in the Design Matrix, together with other physiological and motion confounds

- Seed correlation can be performed in SPM by introducing a BOLD regressor in the Design Matrix, together with other physiological and motion confounds
- At the group level, seed correlation can be used to detect functional connectivity between populations (increasingly used as a candidate "biomarker" for disease)

- Seed correlation can be performed in SPM by introducing a BOLD regressor in the Design Matrix, together with other physiological and motion confounds
- At the group level, seed correlation can be used to detect functional connectivity between populations (increasingly used as a candidate "biomarker" for disease)
- When used that way, it is very important to account for all possible confounds specific to each populations (e.g., drugs? Depression? Motion? Vigilance????)

What else to do...

- Play with seed correlation in this dataset (for example, using different seeds)
- Play with a longer (200 vols) single subject data set (single_subj/) using different seeds
- This subject also has EEG regressors, which can be added to the design matrix to study BOLD correlates of different rhythms.

Second part: graph analysis

Graph analysis of functional connectivity networks

Is it possible to cross all bridges without crossing one more than once?

Graph analysis of functional connectivity networks

• Graphs are simply a representation of **objects** and the **connections** between them

The language of interactions

A graph is a group of **nodes** (persons, brain regions, soccer players, actors, etc) and a group of **edges** representing relationships (love, hate, neuronal coordination, movie co-starring, etc)

More interactions gradually destroys the identity of separed modules

From BOLD time series to graphs

From BOLD time series to graphs

(see Bullmore and Sporns , Nat Rev Neurosci 2009 for a review)

• Average path length (L) : mean distance between each pair of nodes

- Average path length (L) : mean distance between each pair of nodes
- Clustering coefficient (C) : number of triangles in the network

- Average path length (L) : mean distance between each pair of nodes
- Clustering coefficient (C) : number of triangles in the network
- Modularity (Q) : How well can the network be separated into subsets of nodes which interact more strongly between them than with the rest of the network?

- Average path length (L) : mean distance between each pair of nodes
- Clustering coefficient (C) : number of triangles in the network
- Modularity (Q) : How well can the network be separated into subsets of nodes which interact more strongly between them than with the rest of the network?
- Degree: what is the number of connections each node has?

- Average path length (L) : mean distance between each pair of nodes
- Clustering coefficient (C) : number of triangles in the network
- Modularity (Q) : How well can the network be separated into subsets of nodes which interact more strongly between them than with the rest of the network?
- Degree: what is the number of connections each node has?
- Betweeness: what is the number of shortest path going through each node?

(see Bullmore and Sporns , Nat Rev Neurosci 2009 for a review)

- Average path length (L) : mean distance between each pair of nodes
- Clustering coefficient (C) : number of triangles in the network
- Modularity (Q) : How well can the network be separated into subsets of nodes which interact more strongly between them than with the rest of the network?
- Degree: what is the number of connections each node has?
- Betweeness: what is the number of shortest path going through each node?

The arbitrary threshold in FC used to define a connection is selected to match a given density of links. Properties are studied along a range of density of links!!

How to do it? First level

• Add the Brain Connectivity Toolbox (BCT) to the path

How to do it? First level

- Add the Brain Connectivity Toolbox (BCT) to the path
- Run *network_analysis_first_level_script.m.* This will create in each subject folder a .mat file (network_analysis.mat) containing the results of the first level. (open AAL template!)

How to do it? First level

- Add the Brain Connectivity Toolbox (BCT) to the path
- Run *network_analysis_first_level_script.m.* This will create in each subject folder a .mat file (network_analysis.mat) containing the results of the first level. (open AAL template!)
- Note that this scripts invokes a function (*network_measures_aal.m*) which uses the BCT and gives all the network metrics provided the BOLD time courses in all ROI (in this case, the AAL template)

How to do it? Second level

 Run the script *network_analysis_second_level_script.m,* which computes statistics (using Students t-test and Bonferroni corrections).

How to do it? Second level

- Run the script *network_analysis_second_level_script.m,* which computes statistics (using Students t-test and Bonferroni corrections).
- Plots are produced automatically

Results - I

Results - II

• Graph methods allows the study of interactions between *all* pairs of regions

- Graph methods allows the study of interactions between *all* pairs of regions
- They provide indexes summarizing the large-scale organization of functional networks

- Graph methods allows the study of interactions between *all* pairs of regions
- They provide indexes summarizing the large-scale organization of functional networks
- They constitute an exploratory, multivariate method, as opposed to the seed-based, mass univariate approach of seed correlation.

- Graph methods allows the study of interactions between *all* pairs of regions
- They provide indexes summarizing the large-scale organization of functional networks
- They constitute an exploratory, multivariate method, as opposed to the seed-based, mass univariate approach of seed correlation.
- In other words, if we did not know a priori that there was something different in pre-frontal areas between both populations, graph methods allow us to explore and find the difference.