UCL INSTITUTE OF NEUROLOGY

Changes in network architecture in temporal lobe epilepsies

66th Annual Meeting of the American Epilepsy Society Tuesday, 4th of November 2012

helmut@laufs.com

Neuronale Koordination Forschungsschwerpunkt Frankfurt

Bundesministerium für Bildung und Forschung

Department of Neurology and Brain Imaging Centre Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

Special thanks to:

Enzo Tagliazucchi (BIC, Frankfurt) Roman Rodionov (UCL, London)

Outline:

- 1. background: example (connectivity) studies TLE
- 2. brief methodological excursion: graph analysis
- 3. Results
- 4. Implications

Two main clinical features of temporal lobe epilepsies:

interictally:

cognitive impairment (memory)

ictally: reduced

dyscognitive seizures with consciousness

Impairment of consciousne cognitive, affective sympto

Dreamy state; blank, vacant expression; déjà vu; jamais vu; or fear

group analysis of patients with (left) TLE

BOLD signal increases to interictal epileptic discharges (slice planes [x,y,z]=[-26,-35,1]).

group analysis of patients with (left) TLE

BOLD signal increases to interictal epileptic discharges (slice planes [x,y,z]=[-26,-35,1]).

BOLD signal decreases in response to interictal epileptic discharges.

Laurevs et al. 2004

Laufs et al. 2007

Gusnard and Raichle 2001

fMRI correlates of generalised spike-wave activity absence seizures: another example of impaired consciousness

reduced activity in DMN

increased activity in thalamus

z . 14mm

T vake

Laufs, Lengler et al. 2006 Hamandi et al. 2006 Gotman et al. 2005

Laurevs et al. 2004

Laufs et al. 2006, 2007

Gusnard and Raichle 2001

- networks are affected beyond the epileptogenic zone
- fMRI suitable to detect such networks
- we know pathology persists interictally

- networks are affected beyond the epileptogenic zone
- fMRI suitable to detect such networks
- we know pathology persists interictally

=> study networks with fMRI at rest (e.g. seed correlation)

• Holmes et al. • Hum Brain Mapping 2012

Figure I.

Resting state functional connectivity maps to the left hippocampus. (A) Control subject used in the study. (B) LTLE patient in the study.

- networks are affected beyond the epileptogenic zone
- fMRI suitable to detect activity changes in networks
- we know pathology persists interictally

=> link functional connectivity to (memory) function

• Holmes et al. • Hum Brain Mapping 2012

Figure 2.

Regions showing significant correlation between resting state connectivity to the LH and CVLT-II percentage retention score across group of 11 LTLE patients. (**A**) Cluster in the mid-right precuneus (magenta), right inferior parietal lobule (green), and right insula (yellow) showing positive correlation (decreased connectivity with decreased score). (**B**) Cluster in the left precuneus (yellow), left inferior parietal lobule (red), and left middle frontal gyrus (cyan) demonstrating a negative correlation (increased connectivity with decreased score. * Calif Verbal Learning Test

from seed correlation to full brain connectomics

Brain parcellation

١

Extracting functional modules by modularity (Q) optimization

Extracting functional modules by modularity (Q) optimization

modularity ~ extent of segregation <-> integration

centrality measure: node degree

node degree = number of ties a node has

"risk of a node for catching whatever is flowing through the network"

data:

controls = 20 left TLE = 7 right TLE = 14

20 minutes resting state eyes closed TR = 3 s 400 volumes

overall higher segregation in TLE

higher segregation (modularity) also in sleep vs. wakefulness

"risk of a node for catching whatever is flowing through the network"

"risk of a node for catching whatever is flowing through the network"

"risk of a node for catching whatever is flowing through the network" or: "potential of a node to influence what is going on in the network"

"risk of a node for catching whatever is flowing through the network" or: "potential of a node to influence what is going on in the network"

Where might extra links to posterior cingulate come from?

Functional connectivity with seed in "area tempestas"...

Functional connectivity with seed in "area tempestas"...

... in right TLE patients reveals higher functional connectivity to DMN regions than in controls.

What is "area tempestas"?

Group analysis of patients with focal epilepsies (non-TLE + TLE)

Clusters around the peak voxels for **spike-correlated EEG-fMRI** group analysis (yellow) and **correlation between flumazenil binding and seizure frequency** (blue) are superimposed on a T1 template. ce capsula externa; ci capsula interna; Cl claustrum; CN caudate nucleus; fPC frontal piriform cortex; GP globus pallidus; IC insular cortex; oc optic chiasm; Pu putamen; tPC temporal piriform cortex. Laufs, Richardson et al. 2011

Can we link back to the EEG? (interictal epileptic discharges)

correlation of node degree with # of IED (left TLE only)

right superior temporal gyrus (uncorrected)

correlation of modularity with # of IED

(the more links, the less reliable, i.e. small correlation value as threshold)

...are IED responsible after all?

- -> BOLD surrogate of "aberrant neuronal activity"
- -> assuming IED cause high BOLD amplitude changes
- -> look at BOLD signal variance

BOLD signal variance surrogate of aberrant neuronal activity

BOLD signal variance in TLE > controls (p<0.001 uncorrected)

BOLD signal variance surrogate of aberrant neuronal activity

BOLD signal variance in TLE > controls (p<0.001 uncorrected)

Correlation of BOLD variance with # of IED

BOLD signal variance surrogate of aberrant neuronal activity

BOLD signal variance in TLE > controls (p<0.001 uncorrected)

Correlation of BOLD variance with # of IED

decreased integration (Q) in TLE
 –> global network dysfunction?

decreased integration (Q) in TLE

 –> global network dysfunction?

 amygdala with fewer links (degree)

 -> dysfunctional memory encoding

decreased integration (Q) in TLE

 –> global network dysfunction?

 amygdala with fewer links (degree)

 -> dysfunctional memory encoding

posterior cingulate with more links (degree)

- -> increased susceptibility for "shut down" (DMN)?
- -> connections from crucial hubs like "area tempestas"
- -> compensatory "over connection" (memory retrieval)?

 decreased integration (Q) in TLE -> global network dysfunction? amygdala with fewer links (degree) -> dysfunctional memory encoding posterior cingulate with more links (degree) -> increased susceptibility for "shut down" (DMN)? -> connections from crucial hubs like "area tempestas" -> compensatory "over connection" (memory retrieval)? the more IED the fewer links in [contralateral] STG -> IED "causal"? Why contralateral? Work to do!

 decreased integration (Q) in TLE -> global network dysfunction? amygdala with fewer links (degree) -> dysfunctional memory encoding posterior cingulate with more links (degree) -> increased susceptibility for "shut down" (DMN)? -> connections from crucial hubs like "area tempestas" -> compensatory "over connection" (memory retrieval)? the more IED the fewer links in [contralateral] STG -> IED "causal"? Why contralateral? Work to do! trend for higher segregation (Q) with more IED -> IED "causal":

decreased integration (Q) in TLE

-> global network dysfunction?

amygdala with fewer links (degree)

-> dysfunctional memory encoding

• posterior cingulate with more links (degree)

-> increased susceptibility for "shut down" (DMN)?

-> connections from crucial hubs like "area tempestas"

-> compensatory "over connection" (memory retrieval)?

• the more IED the fewer links in [contralateral] STG

-> IED "causal"? Why contralateral? Work to do!

trend for higher segregation (Q) with more IED

-> IED "causal":

increased variance in TLE, no scalp IED-correlation

-> spiking in TLE cause for segregation?

-> spiking not visible on scalp EEG but reflected in BOLD signal

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft LA 1452/3-1 DFG

Thank you: Florian Beißner Sergey Borisov Ralf Deichmann Kolja Jahnke Christine Preibisch Helmuth Steinmetz Annette Schavan Steffen Volz Frederic von Wegner Andreas Kleinschmidt Karsten Krakow

David Carmichael John Duncan Afraim Salek-Haddadi Khalid Hamandi Louis Lemieux Roman Rodionov Rachel Thornton

Phil Boulby Matthias Koepp Mark Richardson Mark Symms NSE...

Matthew Walker Shelagh Smith

Ingmar Gutberlet Torben Lund Karl Friston FIL...

Sandra Anti

