Besprechung am 03.02.2017

Übungsblatt 12

1) Elektronische Übergänge, Termsymbole

Welche der folgenden Übergänge sind elektrisch dipolerlaubt:

- a) $^{2}\Pi \leftrightarrow ^{2}\Pi$
- b) $^3\Sigma \leftrightarrow ^3\Sigma$
- c) $\Sigma \leftrightarrow \Delta$
- d) $\Sigma^+ \leftrightarrow \Sigma^-$
- e) $^{1}\Sigma_{g}^{+} \leftrightarrow ^{1}\Sigma_{u}^{+}$
- f) ${}^3\Sigma_g^+ \leftrightarrow {}^1\Sigma_u^+$

2) Franck-Condon-Faktor

Zur Beschreibung von gleichzeitig stattfindenden elektronischen und vibratorischen Übergängen benötigt man die vollständigen Elektronen- und Schwingungswellenfunktionen von Anfangs- und Endzustand. Im Rahmen der Born-Oppenheimer-Näherung können diese Wellenfunktionen als Produkt von Elektronen- $(\varphi_{\varepsilon}(r))$ und Schwingungswellenfunktionen $(\varphi_v(r))$ dargestellt werden. Das Übergangsdipolmoment für die Anregung $\varepsilon_f, v_f \leftarrow \varepsilon_i, v_i$ ist daher näherungsweise gegeben durch:

$$\vec{\mu}_{f \leftarrow i} = -e \int \varphi_{\varepsilon_f}^*(r) \, \hat{r} \, \varphi_{\varepsilon_i}(r) \, d\tau_{Elektron} \cdot \int \varphi_{v_f}^*(r) \, \varphi_{v_i}(r) \, d\tau_{Kern} \, .$$

Das zweite Integral ist hierbei das sogenannte Überlappungsintegral S_{v_i,v_f} zwischen den Schwingungswellenfunktionen von elektronischem Anfangs- und Endzustand. Die Intensität eines solchen Übergangs hängt vom Quadrat des Übergangsdipolmoments $|\vec{\mu}_{f\leftarrow i}|^2$ ab, also folglich auch von S_{v_i,v_f}^2 . Letztere Größe bezeichnet mal als Franck-Condon-Faktor des Übergangs $\varepsilon_f,v_f\leftarrow\varepsilon_i,v_i$.

Hinweis: Das Hermitisches Polynom H_v ist für v = 0 ist: $H_0 = 1$

Betrachten Sie den Übergang zwischen zwei elektronischen Zuständen mit den Bindungslängen R_{eq} (Grundzustand) und R'_{eq} (angeregter Zustand) und identischen Kraftkonstanten. Die Potentialkurven können näherungsweise als Harmonische Oszillatoren betrachtet werden. Berechnen Sie den Franck-Condon-Faktor für den 0-0-Übergang (Übergang der jeweiligen Grundschwingungen) und zeigen Sie, dass er maximal ist, wenn die Bindungslängen identisch sind.

Besprechung am 03.02.2017

3) Fluoreszenz und Phosphoreszenz in Molekülen

Gegeben sind die Fluoreszenzlebensdauern $\tau_{Fluoreszenz}$ und Quantenausbeuten φ_F des S1-S0-Übergangs von Eosin und Erythrosin B (ErB). Zusätzlich wurde die strahlende Zerfallsrate der Phosphoreszenz k_P von beiden Stoffen auf (10 ms)⁻¹ bestimmt. Nehmen Sie an, dass die strahlungslosen Zerfallsraten von Phosphoreszenz und Fluoreszenz identisch sind.

	$ au_{Fluoreszenz}$	ϕ_{F}	1/k _p
Eosin	3,1 ns	0,65	(10 ms) ⁻¹
ErB	0,61 ns	0,12	(10 ms) ⁻¹

- a) Berechnen Sie die strahlenden und strahlungslosen Zerfallsraten des S1-S0-Übergangs für beide Moleküle. Berechnen Sie damit die Lebensdauer des reinen Strahlungsübergangs. Warum hat ErB eine geringere Fluoreszenzquantenausbeute? Berechnen Sie auch die Quantenausbeute der Phosphoreszenz von Eosin und ErB.
- b) Für den S2-S0-Übergang wurde eine nichtstrahlende Zerfallsrate von $10^{13} \, \text{s}^{-1}$ gefunden. Berechnen Sie die Lebensdauer des S2-Zustands unter der Annahme, dass die strahlende Zerfallsrate der des S1-Zustands entspricht.