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THEORIES OF BELIEF CHANGE

ANDRÉ FUHRMANN*

1. Synchronic versus diachronic epistemic justification

Karl sees Peter on a bicycle. He believes that if Peter rides a bicycle, then
he owns that bicycle. Thus, Karl believes (at time t) that

(p) Peter owns a bicycle.

Here is a traditional epistemological problem: Let K be Karl’s state of belief
at t. Are all of Karl’s beliefs justified? In particular, are the two beliefs

(a) Peter rides a bicycle

and

(b) If Peter rides a bicycle, than he owns that bicycle

justified? For, if they are, then they jointly entail p.
This is the problem of epistemic justification concerning actual beliefs.

We take a time slice of an agent’s beliefs and ask whether the beliefs at the
given point of time are justified. This problem of synchronic justification
enjoys such a central status in modern epistemology that it is frequently
taken to define the subject. In a way, this is rather unfortunate. For,
there is another problem, at least as pressing as the problem of synchronic
justification, which besets our states of belief.

Suppose that Karl learns from a source he recognizes as reliable that Pe-
ter does not own a bicycle. He therefore resolves to retract his belief that p.
In other words, he resolves to move from K to a belief state K-without-p.
But in K the belief that p is deductively forced by the beliefs a and b (=
a → p). So in order to give up p, Karl must give up at least a or b. And
backtracking from a and b in the deductive network of K we may find fur-
ther beliefs involved in producing p. There are thus many candidate states
that all satisfy the requirement that p be no longer believed—including the
initial Cartesian state, cogito. The challenge is to justify a choice of such
a candidate state as the unique successor K-without-p to K. This is the
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problem of justifying belief change or of diachronic justification, as we shall
say.

The above example shows clearly that no unique successor belief state
K ′ is in general determined by a given origin state K, a piece of evidence
and a logical consequence relation that calculates the consequences of K
and the new evidence or backtracks unwelcome consequences to subsets of
K. Transitions to unique successor states essentially involve an element of
choice.

The problem of synchronic justification consists in finding items that may
plausibly replace the variable in the schema

(S) x R K

where R indicates the relation of justification. Prominent candidates for
x in (S) are fundamental beliefs, coherent integration of beliefs or reliable
causal groundings.

In the diachronic case the schema under consideration is this:

(D) x R (K,K ′)

where the object of justification is a pair representing a transition from an
origin state K to a successor state K ′.

One may ask whether the two problems are distinct. This is an intri-
cate question. If we could somehow derive a solution to the problem of
diachronic justification from an extant account of synchronic justification
the apparent dominance of the synchronic problem in modern epistemology
would emerge as well-deserved in retrospect. To appreciate the difficulties
facing attempted reductions let us consider two simple proposals.

First, the transition (K,K ′) may be said to be justified just in case K ′ is
justified at the time t′ of transition while K was justified at a time t when K
represented the state of belief of the agent and no change inducing evidence
was available to him. This proposal falls to the obvious objection that for
(K,K ′) to be a good transition we do not need to know whether K or K ′

are good belief states. In this respect the transition is a kind of inference
which only aims at a guarantee that the successor state is no worse than
the origin state.

The second proposal tries to take away the defect of the first. Thus one
may say that the transition (K,K ′) is justified just in caseK ′ enjoys a higher
degrees of justification than K. This proposal may fail in both directions—
assuming that a belief’s degree of justification is inversely proportional to
the risk of error it incurs. This assumption for the sake of the argument
is not to rule out the possibility that certain notions of justification do
not satisfy the condition of proportionality. Coherentist justification, for
example, does not increase with avoiding risk and would thus be immune
to the following counterexamples to the proposal at hand.

For one, we may have good transitions to worse belief states. Let A be any
belief in K and let K/A be that subset of K that contains all beliefs as least
as good (justified) as A. Then for all A, K/A is more justified than K. But
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most transitions to thus generated subsets of K would involve gratuitous
losses of information insufficiently balanced for by protection from the risk
of error.

As to the other direction, bad transitions may lead to better justified belief
states. The case here is dual to the one just considered. Any expansion of a
belief state results in a corpus of beliefs that is riskier and therefore justified
to a lesser degree than the state before expansion. We should not now detach
the conclusion that expansions are always irrational.

By contrast, the reduction of synchronic to diachronic justification seems
to be a more promising enterprise. As a first attempt consider the Cartesian
proposal: A belief state K (and thereby each belief in K) counts as justified
if and only if it is connected by a chain of justified belief changes to an
unassailable urcorpus of beliefs. The term ‘urcorpus’ is taken from Levi (see
e.g. [22]). It does not matter here what one takes to be part of the urcorpus.
(Levi, by the way, does not advocate assigning the urcorpus a foundational
rôle.) At best, however, the Cartesian proposal affords a partial reduction
of justified belief to justified belief change, since the urcorpus cannot itself
be the result of justified belief changes. Approaches that take their inspi-
ration in a pragmatist theory of inquiry do away with ultimate epistemic
foundations. In a way, such approaches may be taken to call into question
the very problem of synchronic justification: There is a real problem of le-
gitimately fixing ones beliefs; and there is the bogus problem of legitimizing
beliefs already fixed. (See Peirce [29] and Levi’s “Truth, fallibility and the
growth of knowledge” in [23].)

In sum, there are two prima facie problems of epistemic justification: the
problem of justifying one’s presently held beliefs and the problem of justi-
fying a change in one’s present beliefs. It is by no means obvious that the
one problem can be reduced to the other. Moreover, in a first person per-
spective the problem of justifying belief change seems much more pressing
than the problem of justifying presently held beliefs. For, on the one hand,
a proposition believed is a proposition held to be true. On the other hand,
attempts at justification are responses to living doubts. But it is incoherent
to doubt something that at the same time is held to be true. Living doubt
as to present beliefs arise when hitherto unknown evidence becomes avail-
able. Then we face the question how to accommodate the new evidence.
Such accommodation needs justification. But the required justification is
one that pertains to a belief change, not to the belief state prior to the new
evidence.

In the light of these consideration it is all the more surprising that theo-
ries of diachronic justification have been largely neglected for a long time,
with a few exceptions. Only in the 1980s—again, with a few exceptions—
philosophers started to develop systematic approaches to the problem. Since
then theories of belief change (or theory change or belief revision) have
rapidly progressed to a presently rich field of investigation with many cross-
connections to other problems, including some of particular concern to com-
puter scientists.
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2. The classical theory of belief change: AGM

The fundamental problem. Let us start by asking how much structure
in a belief state we need to invest for an interesting problem of belief change
to emerge.

We ascribe beliefs to agents. We usually do this by using language, though
what we ascribe, using language, are not linguistic items. When using
language to ascribe beliefs, we proceed on the innocuous presupposition
that sentences may be used to represent beliefs. When we refer to the
beliefs of an agent, we may therefore do so by representing these beliefs by
a set of sentences. Of course, the language needs to be expressive enough
to represent the beliefs we are interested in representing. Should that prove
difficult, we may start by restricting our attention to an easily representable
kind of beliefs.

Beliefs have consequences. A believer is committed to the consequences
of his beliefs. There are believers who fail to live up to their commitments.
But we do expect believers to acknowledge their commitments once they
are clearly and patiently pointed out to them. This expectation is not
of an inductive but of a normative kind: One ought to acknowledge the
consequences of one’s beliefs. Thus belief states—as they ought to be—are
closed under consequence.

We are now ready to formulate the fundamental problem of belief change.
Suppose an agent’s belief state K contains beliefs A and B from which
follows (by consequence) a further belief C. By closure under consequence,
C is also in K. Suppose now that a decision has been taken to remove
C from K. How should this decision be implemented? This is the given
change problem. At least one of A or B has to give way. What should the
resulting belief state not containing C be like?

At this point we could stop with the simple observation that K without
A, or K without B, or K without both, or even the closure under conse-
quence of {cogito} are all successors to K satisfying the condition that C
be no longer believed. Belief change would thus be relational rather than
functional: There simply is no unique successor to K.

Since relational belief change is unhelpful (though see Lindström and Ra-
binowicz [27] for a dissenting view) we need to assume some more structure
on belief states which delivers a ranking of possible successors such that
each change problem issues in a unique successor.

To summarize, we need two assumptions for posing the problem. First,
beliefs must be representable in some language for which we may define a
relation of consequence. Equivalently we may represent beliefs by sets of
possible worlds, with inclusion doing duty for (the converse of) consequence;
see e.g. Grove [18] or Stalnaker [32]. Second, the beliefs held in a belief
state are closed under consequence. Some philosophers have argued that for
certain purposes it might be advisable to keep track of the base beliefs from
which complete belief states are generated by closing under consequence:
see Fuhrmann [14] and Hansson [19]. Even if one prefers base changes over
theory changes, the problem of belief change emerges in the same way, i.e.
only once we consider logical commitments. Finally, a third assumption is
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needed for solving the problem: Belief states are not merely closed sets of
beliefs; they have further structure ranking some (clusters of) beliefs higher
than others.

The sources of the AGM-theory. The classical theory of belief change
has been developed in the 1980s by Carlos Alchourrón, Peter Gärdenfors
and David Makinson (hence AGM for short). The “pure” theory of belief
change resulted as an abstraction from two more concrete and well-known
problems.

Alchourrón’s principal interest lay in the concept of legal derogation.

Suppose that A is a set of regulations, y is some proposition that is
implied by A, and that for some reason a legislative body wants to
eliminate y. In such a situation, the body may decide to reject y, with
the intention of thereby rejecting implicitly whatever in A implies y,
retaining the remainder. This we shall call derogation. ([2], p. 127.)

Alchourrón and Makinson presented their solution to the formal problem of
derogation in [2].

Gärdenfors tried to elaborate the idea of belief change implicit in the
following much quoted passage from Frank P. Ramsey:

If two people are arguing ‘If p will q?’ and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge and
arguing on that basis about q. (‘General propositions and causality’
(1929), in [30].)

Thus the theory of belief change to be developed was thought to be con-
strained by the acceptance test for conditionals suggested by Ramsey. We
shall come back to this constraint below. Gärdenfors [17] is the first book-
length treatment of theory change. The three authors joined forces in the
standard exposition [1] of the AGM-theory. The development of the AGM-
theory has been much inspired and critically accompanied by the work of
Isaac Levi; see in particular [23, 24, 25]. (Rott [31] summarizes the rise of
the AGM-theory over 20 years, provides important missing links and draws
out connections with defeasible and practical reasoning. Hansson [20] is a
textbook-style exposition of the AGM-theory containing also some impor-
tant extensions.)

In the AGM-theory it is assumed that the language used to represent
belief states contains all boolean connectives and that the consequence op-
eration (or relation) under which belief states are to be closed is a closure op-
eration in the usual Tarskian sense, including classical logical consequence.
As pointed out in Fuhrmann [15] and [16], for the most part of the theory
no such assumptions are really necessary. In fact, the theory enjoys such a
degree of abstraction that it covers not only belief change but changes of
any items that may be represented in a closure systems.

The consequence operation Cn is thus expected to satisfy the following
conditions (for any sets X and Y of sentences):

X ⊆ Cn(X);
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if X ⊆ Y , then Cn(X) ⊆ Cn(Y );

Cn(Cn(X)) = Cn(X);

if A ∈ Cn(X), then ∃X ′ ⊆ X : X ′ is finite and A ∈ Cn(X ′).

Sometimes we may also write relationally:

X ` A for A ∈ Cn(X) and A ≡ B for Cn(A) = Cn(B).

Since belief states K are closed under logical consequence we have (for every
sentence A)

A ∈ K iff K ` A.

Suppose now that we receive input information that triggers a decision to
incorporate A into one’s present state of belief K. There are two cases to
distinguish.

First, A is consistent with K. In that case incorporation is simple: We
add A to K and then close again under consequence. We write K + A for
this operation of expanding K by A. Expansion is easily defined: K +A :=
Cn(K ∪{A}), where Cn is the operation of taking the consequences of a set
of beliefs.

Second, A is inconsistent with K, i.e. ¬A is in K. Here simple expan-
sion would result in an inconsistent belief state–of which classically there is
only one, the trivial belief state including all beliefs. Thus a more subtle
operation is called for which will be called the revision of K by A, K ∗A.

It is natural to think of revision as a composed operation: First we have
to withdraw beliefs from K so as to make our beliefs compatible with A;
then we may add A by expansion. The result of retracting from K to a
weaker belief state is called a contraction. In the case at hand, we would
need to contract K by ¬A; then we could expand the result, K −¬A, by A
without danger of inconsistency. This reduction of revisions to contractions
followed by an expansion is the Levi Identity:

K ∗A = (K − ¬A) +A.

Given the Levi Identity the theory of belief changes reduces to a theory of
contractions (and expansions). We note in passing that one may also take
the other direction, from contractions to revisions, via the so-called Harper
(or Gärdenfors) Identity: K −A = (K ∗ ¬A) ∩K.

The strategy of the theory is simple. On the one hand we transpose
plausible conditions on contractions (or revisions) into the language of set-
theory, thereby giving an implicit characterization of the operation. On the
other hand, we try to give a recipe for solving a given contraction problem,
thereby producing models in which contractions can explicitly be defined.
Finally, the two approaches need to be linked by a representation result: An
operation satisfies the contraction postulates just in case it can be defined as
a contraction in a model. If postulates on the one hand and models on the
other hand are independently plausible, such a representation result makes
for a prima facie stable theory of contractions and of belief change in general.

[  ]



FUHRMANN : THEORIES OF BELIEF CHANGE

Of the four models furnished in the AGM-theory we shall here present two:
partial meet contractions and systems of spheres. The other two are safe
contractions, as in [2], and models in terms of epistemic entrenchment, for
which see [17] and [31].

The AGM-Postulates. The postulates for contraction come in two
groups:

Basic

K −A = Cn(K −A)(C1) Closure

A /∈ K −A, if 6` A(C2) Success

K −A ⊆ K(C3) Inclusion

If A /∈ K, then K −A = K(C4) Vacuity

K ⊆ (K −A) +A(C5) Recovery

If A ≡ B, then K −A = K −B(C6) Congruence

Supplementary

K −A ∩K −B ⊆ K − (A ∧B)(C7) Conjunction 1

If A /∈ K − (A ∧B), then K − (A ∧B) ⊆ K −A(C8) Conjunction 2

Likewise the postulates for the revision operation:

Basic

K ∗A = Cn(K ∗A)(R1) Closure

A ∈ K ∗A(R2) Success

K ∗A ⊆ K +A(R3) Inclusion

If ¬A /∈ K, then K ∗A = K +A(R4) Preservation

If ⊥ ∈ K ∗A, then ` ¬A(R5) Consistency

If A ≡ B, then K ∗A = K ∗B(R6) Congruence

Supplementary

K ∗ (A ∧B) ⊆ (K ∗A) +B(R7) Conjunction 1

If ¬B /∈ K ∗A, then K ∗A) +B ⊆ K ∗ (A ∧B)(R8) Conjunction 2

The labels must suffice here to indicate the rationale for each of the
postulates; only Recovery (C5) will be considered more closely in a moment.

The postulates harmonize: We can derive the revision postulates from the
contraction postulates via the Levi-Identity K ∗A = (K −¬A) +A. (Note
that for this derivation Recovery is not needed.) Conversely we can derive
the contraction postulates (including Recovery) from the revision postulates
via the Harper Identity K −A = (K ∗ ¬A) ∩K.

Recovery requires that in contracting we should avoid gratuitous loss
of information. Without such a condition contractions are insufficiently
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constrained by the other postulates: they may result in too small belief
states. For example, the operation defined by K −A = Cn(∅) would satisfy
all the remaining C-postulates (Makinson [28]).

The idea that contractions should minimize losses of information is es-
sential to a theory of rational belief changes. Thus the theory requires a
condition like Recovery. Yet Recovery stands out in at least three other
respects.

First, as pointed out above, Recovery is redundant in deriving revisions
from contractions.

Second, unlike the other postulates, Recovery is sensitive to the underly-
ing logic: it depends essentially on closure under classical consequence. For
every B ∈ K we have by closure for every A, ¬A ∨ B ∈ K. When we then
contract by A, there is no logical compulsion to remove ¬A ∨ B. Thus in
the models considered below we invariably have ¬A ∨ B in every plausible
contraction candidate whence also in K − A. But then expanding K − A
by A reinstates any B that was previously removed from K. (The last
move proceeds by disjunctive syllogism, an inference called into question by
relevant logicians among others; see e.g. [11].)

Third, under certain circumstances Recovery seems implausible. In order
to remove A from K, we typically need to remove stronger beliefs that imply
A from K. But when we then reinsert the weaker A, why and how should
we then regain those stronger beliefs? The circumstances that call Recovery
into question are easily identified: Recovery fails indeed when the objects
of contractions are open belief bases instead of closed belief states. For
certain purposes it may be preferable to change states of beliefs by making
all incisions in an axiomatic, usually finite representation of such a state;
see [14, 15, 19]. This is also the more general format for a theory of belief
change. The AGM-theory, however, operates under the assumptions that
the units of change are closed sets of belief, i.e. theories in the logical sense.

The Ramsey-Test for conditionals. One of the initial motivations for
developing a theory of belief revision was the problem of characterizing the
operation of “adding something hypothetically to a stock of belief” such that
an acceptance or assertion condition for certain conditionals would result,
as suggested by Ramsey. Here then is the Ramsey Test for counterfactual
conditionals:

RT . A = B ∈ K iff B ∈ K ∗A.

One might take RT either (from right to left) as a recipe for generating a
logic of conditionals, given a theory of revisions, or (from left to right) as
generating a theory of revisions from a given logic of conditionals, or simply
as a bridging principle requiring conditionals and revisions to walk hand in
hand.

Any such aspirations have to be laid at rest by observing that RT requires
revisions to be monotonic:

MR. If K ⊆ H, then K ∗A ⊆ H ∗A.
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Monotonicity is not a desirable feature for revisions; counterexamples are
not difficult to find. Yet we do not need to remain at the level of assessing
intuitions. For, from (MR) we quickly slip to triviality. It can be shown
that (MR), Inclusion, Preservation and Consistency are compatible only
on pain of triviality. The result was found by Gärdenfors [17] and will be
proved in a moment. It is closely related to Lewis’s impossibility theorem,
in [26], concerning the identification of probabilities of conditionals with
conditional probability and Arrow’s theorem concerning social choice under
certain conditions; see [21].1

We suppose that there are A,B,C and K such that A,B and C are
consistent with K and pairwise disjoint. This is to say,

(A) ¬A,¬B and ¬C are not in K;
(B) A ` ¬B, B ` ¬C, and C ` ¬A.

Let H = K ∗ A ∗ B ∨ C and let H ′ = K + A ∨ B ∗ B ∨ C. We now reduce
the set {R2,R4,R5,MR,A,B} to absurdity.

First step: It follows from (A) that 6` ¬(B∨C). Using (R5) we infer from
this that H is consistent. Since, by (R2), B∨C ∈ H, we have ¬(B∨C) /∈ H.
Hence, either (1a) ¬B /∈ H or (1b) ¬C /∈ H.

Since A ` A∨B, we have (2) K+A∨B ⊆ K+A. By (A) we assume that
¬A /∈ K. It thus follows by (R4) that K + A = K ∗ A, whence by (2), (3)
K +A∨B ⊆ K ∗A. Applying (MR) to (3) we obtain K +A∨B ∗B ∨C ⊆
K ∗ A ∗ B ∨ C, i.e. (4) H ′ ⊆ H. Together with (1) this gives: either (5a)
¬B /∈ H ′ or (5b) ¬C /∈ H ′.

Second step: Let us now consider K + A ∨ B. Assume—for reductio!—
that (6) ¬(B ∨ C) ∈ K + A ∨ B. Then A ∨ B → ¬(B ∨ C), resp. its
equivalent ¬B ∧ ¬(A ∧ C) is in K. According to (B), the second conjunct
is a tautology. Hence, ¬B ∈ K, contrary to our assumption (A). It follows
that (6) is false, i.e. (7) ¬(B ∨ C) /∈ K +A ∨B.

By (R4) it follows from (7) that (8) K + A ∨B + B ∨ C ⊆ K + A ∨B ∗
B∨C (= H ′). By the definition of expansion we have K+A∨B+B∨C =
K+ (A∨B)∧ (B ∨C). By assumption (B) we have (A∨B)∧ (B ∨C) ≡ B.
Putting this together, we get (9) K+A∨B+B∨C = K+B. It follows from
(8) and (9) that (10) K + B ⊆ H ′. Since by (R2) B ∈ K + B, assumption
(B) gives us ¬C ∈ K + B, whence, by (10), ¬C ∈ H ′. It now follows from
(5) that (5a) ¬B /∈ H ′.

The third step starts from considering K+A∨C and then basically repeats
the second. We verify that (7’) ¬(B∨C) /∈ K+A∨C and conclude via (A∨
C)∧(B∨C) ≡ C, that (10’)K+C ⊆ H ′ and, using (B) again, that ¬B ∈ H ′,
contary to (5a). This concludes the reductio for {R2,R4,R5,MR,A,B}.2

Various ways of constraining RT in such a way that its spirit is main-
tained have been explored. The general lesson seems to be this: Caution
needs to be exercised when trying to systematically connect factual beliefs
(“objectual beliefs”) with beliefs reflecting the behaviour or content of belief

1 The following proof, due to Gärdenfors, replaces an incorrect one, printed in the
original contribution to the Handbook.
2 End of correction.
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states (“meta-beliefs”). This is confirmed by a similar impossibility result
concerning the Levi Test for serious possibility: (Levi does not propose such
a test. He notes that such a test for epistemic possibility may be suggested
and counsels caution.)

LT. 3A ∈ K iff ¬A /∈ K.

The modality in LT is what is called a reflective modality in [12]; all such
tests of a reflective kind, including LT can be shown to be inconsistent.

Partial meet contraction. As pointed out above, belief change is fun-
damentally a choice problem. The partial meet models of AGM model this
element of choice by brute force by simply assuming the existence of an
appropriate choice function.

Suppose we decide to remove A from K. We might proceed as follows.
First we collect all maximal subsets of K that do not entail A. (Let K ⊥ A
denote the family of such remainders.) Then we select the “best” of them.
(Let sK be a choice function that is defined on the family of subsets of K;
if K ⊥ A happens to be empty, then we let s(K ⊥ A) = {K}.) In the
sequel we omit the subscript K to the choice function s. But it is impor-
tant to remember that the choice functions used represent the theoretical
preferences of a given belief set K. These preferences may change after a
contraction has been performed. It is for this reason that the AGM-theory
does not cover in any interesting way iterated belief changes. For an at-
tempt at tackling iterated changes see [8]. Finally we take what is common
to all such best subsets. Thus

K −A :=
⋂
s(K ⊥ A).

It is not difficult to verify that this definition of a contraction operation
satisfies all the basic C-postulates.

Conversely, every contraction operation satisfying the basic C-postulates
can be defined as a partial meet contraction. We prove this in a moment.
Together the two observations yield the sought representation result: Essen-
tially the same operation may be characterized implicitly by the postulates
(C1-6) or explicitly defined as a partial meet contraction. Thus postulates
and models support each other.

To prove that the postulates pick out partial meet contractions we assume
that K− ( ) satisfies (C1-6) and define a canonical selection function for K,
σ, as follows:

(σ) σ(K ⊥ A) :=

{
{X ∈ K ⊥ A : K −A ⊆ X}, if K ⊥ A 6= ∅;
{K}, otherwise.

We need to show that σ (for K) is a selection function sK of the above
introduced kind. This is done by verifying five claims:

(1) σ is well-defined, i.e. K ⊥ A = K ⊥ B entails σ(K ⊥ A) = σ(K ⊥ B).
(2) σ(K ⊥ A) = {K}, if K ⊥ A = ∅.
(3) σ(K ⊥ A) ⊆ K ⊥ A, if K ⊥ A 6= ∅.
(4) σ(K ⊥ A) 6= ∅.
(5) K −A =

⋂
σ(K ⊥ A).
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(1-4) are more or less immediate reflections of the C-postulates. It will
thus suffice to give the argument for (5). One direction, K −A ⊆

⋂
σ(K ⊥

A), is immediate from (σ) and Inclusion (C3). It remains to show

(∗) If B /∈ K −A, then B /∈
⋂
σ(K ⊥ A)

Case A /∈ K. Then by Vacuity (C4) K − A = K and so, according to
(σ), K =

⋂
σ(K ⊥ A), whence (*) holds.

Case A ∈ K. (*) is trivially true if B /∈ K. So let us suppose further that
B ∈ K. We need to convince ourselves that there will be a set X such that

(a) K −A ⊆ X and (b) B /∈ Xand (c) X ∈ K ⊥ A.

We proceed on the basis of a Lemma proved in [1] (Lemma 2.4):

X ∈ K ⊥ C D ∈ K X 6` D

X ∈ K ⊥ D
Then the sought conclusion follows thus:

Ad a)

Hyp.
B ∈ K

(C5)
K −A,A ` B

Hyp.
K −A 6` B

K −A,¬A 6` B

K −A 6` A ∨B

∃X ∈ K ⊥ A ∨B : K −A ⊆ X

Ad b)

a)
X ∈ K ⊥ A ∨B

X 6` A ∨B

B /∈ X

Ad c)
Hyp.

A ∈ K
a)

X ∈ K ⊥ A ∨B

a)
X ∈ K ⊥ A ∨B

X 6` A ∨B

X 6` A
Lemma

X ∈ K ⊥ A
This concludes the proof that contractions satisfying the basic AGM-

postulates represent exactly the partial meet contractions. The result may
be extended to the supplementary postulates by generating the selection
function from a preference relation; see [1], §4. The representation result
carries over to revisions via the Levi Identity.

Systems of spheres. The Ramsey Test, even though not tenable in its
naive form, suggests a close analogy between counterfactual conditionals
and the revision operation. The analogy naturally invites the thought that
extant semantics for counterfactuals may be adapted to yield models of
belief revision.

The Ramsey Test may be seen as an epistemic version of what one may
call the Stalnaker Test :

A = B in w iff B in (w ∗A).
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The ∗-operation on the right-hand-side takes the world w and sentence A
to the least deviation from (“revision” of) w so as to make A true. Perhaps
there is no unique such least deviation, whence we may prefer the Lewis
Test :

A = B in w iff B in all worlds in (w ∗A).

The task at hand is now to determine w ∗ A. A system of nested spheres
centered around w is the key to modelling w ∗A in David Lewis’ semantics
for counterfactuals. Put briefly, in the spheres semantics for counterfactuals
worlds are ordered around w in spheres of similarity (see the left illustration
below). If sphere S2 is more distant from w than S1, i.e. if S1 ⊆ S2, then the
worlds in S1 are more similar to w than the worlds in S2. To assess A = B
at w, we look at the closest-to-w sphere S that contains A-worlds; w ∗ A
collects the A-worlds in S. To evaluate the conditional we check whether all
worlds in w ∗A satisfy B. If so, the conditional is true at w, otherwise it is
false at w. This is the principal case. If there are no A-permitting spheres
around w, i.e. if the antecedent is not entertainable when viewed from w,
then the conditional is stipulated to be vacuously true at w.

The Ramsey Test, however, does not test for the truth of a conditional
in a world w but for acceptance in a belief state K. A belief states can be
modelled by the set of worlds not ruled out by what is believed. Thus, in
the Ramsey Test,

A = B in K iff B in K ∗A,

the belief states K and K ∗ A may be interpreted as standing for sets of
worlds. We may simply adapt the spheres models for counterfactuals by
centering spheres on a set of worlds (representing K) and determining the
new belief state K∗A as before. The sphere represent now fallback positions
ordered as to comparative plausibility from the viewpoint of K. The result
is shown on the right-hand-side of the following illustration.

w

World revision

K

Belief revision

A
W

A

w*A K*A

W

This is the proposal. It remains to verify that it works. That is to say,
we need another representation result.

Let W be a universe of possible worlds, let K be a belief state and let
[K] ⊆ W be the representation of K in W . A system of spheres for K is
a family of subsets of W such that [K] is the smallest and W the largest
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sphere, all spheres are comparable by set-inclusion, and for any nonempty
subset X of W , there is always a smallest sphere, SX , cutting X nonemptily.
Thus a spheres system for K may be pictured as an onion or Russian doll,
with [K] in the centre and W as the outermost shell; formal definitions may
be found in [18]. We define the set of worlds representing K ∗A thus:

(∗) [K ∗A] :=

{
S[A] ∩ [A], if A is consistent;
Cn(⊥) otherwise.

Then we can prove the following result (Grove [18]): Revisions, as defined
in (*), satisfy the revision postulates (R1-8), and any revision operation
satisfying (R1-8) can be defined as in (*). An analogous representation
result holds for contractions via the Harper Identity.

Given the correspondence between revision in systems of spheres and
revisions satisfying the AGM-postulates, there follows a correspondence be-
tween spheres-revisions and partial meet revisions. This should not be sur-
prising. The latter correspondence can be made transparent without detour-
ing via the postulates. It suffice to note a bijection between [¬A] andK ⊥ A.
(Here we only look at the principal case that A ∈ K and A is consistent.)
From spheres to remainders we have for every w ∈ [¬A] a corresponding
remainder |[K] ∪ {w}| in K ⊥ A, where |X| = {A : ∀y ∈ X : y |= A}, for
each subset X of W . Conversely, from remainders to spheres we have for
every remainder X ∈ K ⊥ A a unique w ∈ [¬A] such that w ∈ [X]. Thus a
system of spheres for K selects among the ¬A-worlds just in case a selection
function for K takes its pick in K ⊥ A.

3. Multimodal theories of belief change

A sentence like B ∈ K ∗A we read thus:

(1) After revising his beliefs so as to include A, K believes that B.

Perhaps the logical form of (1) may be analysed in a number of ways. But
one particularly natural analysis would be this: There is a sentence B that
stands in the skopus of an epistemic operator (“K believes that”) which in
turn stands in the skopus of an action operator (“after revising his beliefs”)
parameterized by a sentence (“so as to includeA”). This suggests conducting
the whole theory of belief change in a multimodal language containing a
belief operator B and action operators [a0], [a1], [a2], . . . with each action of
the form ∗〈sentence〉 (for revision) or −〈sentence〉 (for contraction).

The idea of recasting the AGM-theory in a modal language has been
aired repeatedly. Early attempts are [5] and [13]. There are presently two
approaches to belief revision in a modal setting, Public Announcement and
Dynamic Epistemic Logic (PAL and DEL), and Doxastic Dynamic Logic
(DDL). In the remainder of this survey we give a brief exposition of DDL,
as presented in [21], and then add a few remarks on PAL and DEL.

What are the advantages of presenting a theory of belief change in a
modal language? First, we may help ourselves to the rich reservoir of se-
mantical techniques available for modal languages. This is a cheap point and
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may indeed amount to nothing unless the techniques employed deliver clear
benefits. But in one respect at least there is every reason to expect such
benefits; they will be indicated in connection with the third point below.

Second, the modal language sketched above is more expressive than the
set-theoretic AGM-language. We may express metabeliefs such as that the
subject believes that after revision by A she will believe B: B[∗A]BB. A
direct translation back to AGM would render that formula as “(B ∈ K∗A) ∈
K”—which is ill-formed. Alternatively the language of AGM would have to
be stratified—a notoriously unwieldy and artificial device.

Third, the modal language is in some respects less expressive and thereby
less misleading than the AGM-language. The notationK∗A suggests thatK
and A are arguments en par to a revision operation ∗. That is not the case.
Perusing the postulates shows that nothing of interest is said about varying
the belief state-parameter. Indeed, the only candidate postulate we have
considered, Monotonicity for revisions, turned out to lead to desastre. The
models showed why this is so. The selection functions respectively spheres
determining the new, changed belief state are essentially tied to the belief
state to be changed; they unfold the theoretical preferences built into that
belief state. The AGM framework has no resources to study interactions or
transitions between different theoretical preferences.

However, just like the AGM-language, the modal language allows to chain
changes, as in

[−A][−B]BC.

This is known as iterated belief change. Iterated belief change is difficult
precisely because we need to know how the transition from the theoretical
preferences of K to those of K − B and in turn to those of (K − B) − A
is constrained so as to settle the question whether the latter belief state
ought to include C. This is where modal semantics can be beneficial: It
may deliver or suggest constraints for iterated modalities and make their
evaluation more transparent.

Basic doxastic dynamics. We shall simplify the exposition of how belief
change may be treated in a multimodal language by confining ourselves to a
language in which belief states can only be changed by and can only contain
“factual” beliefs. This simplification regrettably takes away the potential
of the modal framework for a substantial theory of iterated belief change.
We shall indicate prospects and problems for the more general theory in the
final section.

The language is based on a set of atoms from which we generate the factual
formulae by Boolean combinations. Every factual formula is a formula. The
modal formulae are built by employing a belief and a knowledge operator,
B and K, and a revision operator [∗ ]. If A is factual and B a formula, then
BA, KA and [∗A]B are formulae. Contractions, [−A]B, are defined in the
spirit of the Harper Identity as B∧ [∗¬A]B. Expansions may be introduced
in analogy to so-called tests in dynamic logic, i.e. [+A]B := BA→ B.

The knowledge operator K appears in DDL for mainly technical reasons:
it will be used to signal unrevisable beliefs, those belonging to the urcorpus,

[  ]



FUHRMANN : THEORIES OF BELIEF CHANGE

to use Levi’s term again. In particular, the urcorpus contains all logical
truths. Note that this notion of knowledge as unrevisable belief is slightly
at odds with the more usual notion that requires knowledge to entail truth.

What is the logic of these operators? Usually this depends on the kind
of models one aims to describe. But in this case we have yet another clue.
If we suppose that the AGM-postulates provide a reliable and complete
description of belief revision, we shall be in the vicinity of the desired logic
by combining the basic properties of the unary modal operators B,K and
[∗A] (for each factual A) with translations of the AGM revision postulates
into our modal language. Adjustments need then possibly be made in light
of the aimed at models.

Before presenting the system of basic DDL (for “Doxastic Dynamic
Logic”) a cautionary note is in order. We know that the Ramsey Test
trivializes the AGM-theory. The Ramsey Test requires a systematic con-
nection between revisions and conditionals. The fact that we do not have a
(counterfactual) conditional connective in our language for which the Ram-
sey Test is plausible is no sufficient reason to relax. We must rule out
the possibility that some formula C in our language may step in for the
conditional in the Ramsey Test, i.e. that the dangerous schema

D. BC(A,B)↔ [∗A]BB

be derivable for some formula C with constituents A and B. In basic DDL
this is ruled out by the syntactic formation rules in combination with the
Congruence Rule below.

The basic system of DDL extends classical propositional logic to a normal
modal logic for each of the modalities B,K and [∗A] (where A is factual),
i.e. it contains apart from all tautologies the following axiom schemes and
schematic rules (2 ∈ {B,K, [∗A] : A factual }, 〈∗A〉 := ¬[∗A]¬):

2(A ∧B)↔ (2A ∧2B)Regularity

2>Necessitation
A↔ B

2A↔ 2B
Congruence Rule

To these we add the following translations of the AGM-postulates for revi-
sion:

[∗A]BASuccess

[∗>]BA→ BAInclusion

¬B⊥ → (BA→ [∗>]BAPreservation

[∗A]B⊥ → K¬AConsistency

K(A↔ B)→ [∗A]BC ↔ [∗B]BCCongruence

[∗(A ∧B)]BC → [∗A]B(B → C)Supp. 1

¬[∗A]B¬B → ([∗A]B(B → C)→ [∗(A ∧B)BC])Supp. 2

No translation of the closure postulate is required as it is already built into
the first group of axiom schemes. Finally we need to make sure that revision
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issues in a definite (belief) state and we give a minimal characterization of
the required notion of knowledge:

〈∗A〉B ↔ [∗A]BFunction

KA→ BAKB

KA↔ [∗B]KAK*K

Spheres semantics. The interpretation of (normal) multimodal lan-
guages generalizes that familiar from simple (normal) modal logic in a
straightforward way. Each modality 2i is matched by a binary relation
Ri (on the set W of evaluation points) such that we have a clause of this
form:

w |= 2iA iff ∀v : Riwv ⇒ v |= A.

In the case at hand, however, some modalities come with a structure which
we should like to make available for logical investigation. Thus in our se-
mantics, we should like the relations concerned to reflect that structure, as
in

w |= [∗B]A iff ∀v : R[B]wv ⇒ v |= A,

where [B] is the proposition denoted by B. A clause of this form results on
adapting again the spheres semantics.

A revision structure on a (nonempty) universe W consists of a family of
systems of spheres in W and for each proposition P ⊆ W a binary relation
RP between systems of spheres. The systems of spheres are, as before,
families of subsets of W , closed under intersection (so that the system is
centered on the smallest sphere, representing ones beliefs in that sphere),
completely ordered under set-inclusion (so that the system is nested), and
such that for each nonempty proposition P there is a smallest sphere cutting
P (so that the system is sufficiently discrete). We let S • P = {S ∈ S :
S ∩ P 6= ∅} denote the collection of those spheres S in a system S that cut
P nonemptily.

The structure is subject to four conditions. It is customary to first state
these conditions before proceeding to the interpretation of the modal lan-
guage. Let us here change the official order of exposition; we shall then see
how the conditions help the interpretation to deliver the correct results.

Some formulae, the modal ones, receive their truth-values depending on
what system of spheres we are considering. For this reason the satisfac-
tion relation |= will link systems of spheres and worlds on the one hand
with formulæ on the other. For atoms p and Boolean formulae, of course,
only the world-coordinate contains relevant information. Let a valuation V
distribute atoms over possible worlds. Then

S, w |= p iff w ∈ V (p),

and so on for ¬,∧, etc.

S, w |= BA iff
⋂

S ⊆ [A],

S, w |= KA iff
⋃

S ⊆ [A],

S, w |= [∗A]B iff ∀S′ : R[A]SS′ ⇒ S′, w |= B.
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According to the clause for B, the current beliefs of an agent as evaluated
in a system of spheres are represented by the innermost sphere. The clause
for K displays the notion of knowledge used here: unrevisable beliefs, i.e.
beliefs that stay, no matter to what sphere we shall retreat.

Now back to the four conditions. First,

if RPSS′, then
⋂

S′ =

{
P ∩min(S • P ), if (S • P ) 6= ∅
{∅} otherwise.

This defines the revision of one’s current belief state (in S) by the sentence
representing P : it is the shaded area in the right diagram in the earlier
illustration.

The second condition guarantees that systems of spheres are large enough
to carry out any revision:

W \
⋃

S = W \
⋃

S′ (∀S,S′ ∈ Σ)

It replaces for technical reasons our earlier and simpler requirement that
each system is bounded above by W .

The final two conditions make sure that revision operations are well-
defined. The first secures that they always have a value,

∀S∃S′ : RSS′,

the second that they always have at most one value:

if RSS′ and RSS′′, then S′ = S′′.

Segerberg has shown that the theorems of basic DDL are exactly those
formulæ that are true relative to all pairs (S, w) in any interpretation in a
revision structure.

4. Current and future changes

The transposition of the AGM-theory into a modal framework attempts to
address from a different angle certain questions and problems left open in
the classical version of that theory. Four such questions arise immediately.

The first three concern higher-order beliefs. If we waive the syntactic
restrictions imposed in basic DDL, we will be confronted with three types
of higher-order beliefs.

First, there will be beliefs about changes, as in B[∗A]B: Karl believes
that after revising by A, B is the case, or, counterfactually: were he to
believe that A, then he would believe that B, where the place of B will
typically be taken by another belief formula, BC. Now, if it is the case that
[∗A]BB, then Karl can know that fact by pure introspection: the result is
determined by logic plus his present theoretical preferences. What Karl can
know in this way, he should know. Thus it would seem to be quite in order
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to impose the following condition on how the belief operator should interact
with revisions:

B([∗A]BB)↔ [∗A]BB.

But this is just an instance of the dangerous schema D! Thus adding beliefs
about changes to our language amounts to a non-conservative and indeed
potentially hazardous extension of the theory.

Second, there will be changes by beliefs, as in [∗BA]B: If Karl were to
come to believe that he believes A, then B would be the case. At first sight
one would expect that the Success condition for revisions carries over to the
extended language and that we thus have in particular [∗BA]BA. But now
consider a Moore-sentence like

m. p ∧ ¬Bp.

By Success we expect [∗Bm]Bm from which we get by Regularity both
[∗Bm]Bp and [∗Bm]B¬Bp. Even in very weak logics of belief, the latter
gives [∗Bm]¬Bp, thus contradicting the former. (It suffices to add to the
basic axioms above the condition that belief be consistent, B¬A → ¬BA,
and the introspective schema BA→ BBA. Jointly these conditions describe
a KD4-type modal logic.) So one cannot (successfully and consistently)
revise one’s beliefs so as to include a Moore-sentence. This is as it should
be. But it also shows that there are classes of formulae that must be sys-
tematically exempted from conditions that otherwise make good sense. For
an elaboration of this point as applied to sentences of the form “A and I do
not know that A”—which trigger the Fitch-paradox—see [7].

Third, there will be changes of changed belief states, as in [∗A]([∗B]C):
Were Karl to revise by A, then a further revision by B would make it the
case that C. The models of basic DDL permit evaluating such formulae;
but they have nothing interesting to say on iterated belief changes, just like
the original AGM-theory. Iterated belief changes involve possible changes
in theoretical preferences. Such changes find no direct representation in the
modal languages considered so far. Thus one natural way to proceed is to
introduce preference changes into the object language, as in [6].

Fourth, the methodological restriction to a single-agent perspective must
eventually give way to considering belief change in a multi-agent environ-
ment. Most of our belief changes are made in response to or under the
influence of the belief states of others. We have beliefs about what others
believe and they are aware of this, and so on.

Beliefs about what other agents believe are the subject matter of Pub-
lic Announcement Logic (PAL, see [3]) and the closely related paradigm
of Dynamic Epistemic Logic (DEL, see [9, 10]). They study the rational
commitments of agents who receive information by public announcements.
It would be misleading, however, to think of these theories as logics of be-
lief revision. In their basic forms they study the rather limited scenario of
knowledge expansions in a multi-agent environment under the influence of
an oracle. As reduction results show, PAL (and DEL) without a “looping”
common knowledge modality does not go beyond a multi-epistemic logic.
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But PAL is open to incorporate genuine belief revision operators; see e.g.
[4]. It is to be expected that PAL, DEL, DDL and the logic of preference
change will merge into a unified and general framework for studying belief
change; an outline of such an integrated family of theories may be found in
[6].
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