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Abstract

In the absence of stress-concentrating flaws such as microfractures, vesicular glassy materials can withstand gas pressures
within vesicles in excess of 100 MPa; however, vesicles within such materials are known to decrepitate explosively at much
lower internal gas pressures, both in natural systems and in the laboratory. Here we present a model that quantitatively
predicts the generation of microfractures in vesicle walls during cooling. Cooling of gas-bearing vesicles in glassy rock has
little effect on water solubility in the glass, but leads to a rapid decrease in gas pressure in the vesicles. The drop in pressure
causes disequilibrium between the water in the glass and in the vesicle. Dehydration of the glass in a diffusive boundary
layer around the vesicle leads to elastic shrinkage. The resulting strain generates large tensile tangential stresses which can
exceed the strength of the glass, causing microfracturing. Such microfractures present a possible means by which glassy rock
surrounding vesicles could be weakened enough to permit explosive decrepitation at low pore vapor pressures. The results
have implications wherever hydrous vesicular glasses are formed. For example rocks formed in shallow subvolcanic
intrusions or vent plugs may spontaneously disintegrate with explosive emission of vapor; glassy submarine lavas
spontaneously decrepitate upon dredging from the ocean floor (*‘popping rock’’); vesicular glasses produced in laboratory
experiments investigating vapor—melt phase equilibria have been observed to contain abundant fractures surrounding
vesicles and to dehydrate at anomalously high rates.

Keywords: vesicle; overpressure; decrepitation; explosive; glass

1. Introduction

The behavior of vesicular glassy materials is of
interest to many earth scientists, including volcanolo-
gists studying explosive silicic lava domes and shal-
low intrusions (e.g., Sato et al., 1992), geochemists
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analysing trace gases contained in vesicles of ocean
floor basalts (e.g., Pineau and Javoy, 1994), and
experimental petrologists investigating vapor—melt
equilibria at high pressures (e.g., MacMillan, 1994;
Romano et al., 1994a,b,1996). Whereas Romano et
al. (1994a,1996) have shown that pristine, subspheri-
cal vesicles in glass can withstand internal overpres-
sures on the order of 200 MPa without decrepitation,
each of the works cited above contains descriptions
of vesicular glassy materials whose vesicles were
observed either to decrepitate violently or to drain
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away slowly through fractures at internal vapor pres-
sures known or inferred to have been less than 5
MPa.

In this contribution we discuss the means by
which relatively small internal gas pressures can
generate stress concentrations sufficient to overcome
the very high intrinsic strength of pristine glassy
vesicle walls. We then propose a novel physical
mechanism by which stress-concentrating microfrac-
tures can be generated in vesicle walls, and present
the results of numerical modelling to support our
idea. We conclude with examples of natural and
experimental observations of low strengths of vesicu-~
lar hydrous glasses which might be accounted for by
our model.

1.1. Fracture mechanics of glass

The strength and fracture of glass can be satisfac-
torily described in the context of the fracture me-
chanics theory summarized in many recent works
(e.g., Freiman, 1980; Pollard, 1987; Lawn, 1993).
The theoretical breaking strength of cold glass is on
the order of 10’ Pa; however, high temperature and
submicroscopic defects can greatly reduce this value,
by a factor of 10 to 100 (Freiman, 1980). Webb and
Dingwell (1990) reported breaking strengths of (1.0~
5.0) X 10® Pa for rhyolitic and andesitic glass fibers
at temperatures near to the glass transition tempera-
ture. The fibers had previously been annealed in the
measuring apparatus, so that the glass—vapor inter-
faces in this case can be assumed to have been as
smooth as the surface of a vesicle wall. Similarly,
the tensile strengths of vesicle walls in feldspathic
glasses are approximately 1.5 X 10® Pa in the tem-
perature range 100-300°C (Romano et al.,
1994a,1996); we assume therefore that fracturing of
rhyolite glass will spontaneously occur whenever
tensile stress exceeds 2 X 10® Pa.

The tangential component of stress in the wall of
a spherical cavity is equal to 1.5 times the internal
pressure, hence, decrepitation of spherical vesicles
requires internal gas pressures on the order of 130
MPa. However, the stress exerted at the margin of a
vesicle can be highly concentrated by favorable ge-
ometry. An elliptical hole in a two-dimensional sheet
is a good conceptual model for a vesicle in a glassy
medium. The stress at the point with the smallest

radius of curvature varies according to the following
relation after Inglis (1913):

cys
0= 20( =)’ (1)
r

where o, is the stress at the tip, the imposed stress
(equivalent to pressure) is o,, in a cavity whose
major axis measures 2 ¢ and whose smallest radius of
curvature is r. Transfer of this simple model to three
dimensional vesicles with irregular shapes is in-
tractable analytically (cf. Tsuchida et al., 1982), but
the principle can still serve as a useful guide (e.g.,
Lawn, 1993). Mungall (1995) pointed out that many
intermediate to silicic dome lavas possess abundant
vesicles whose shapes show a distribution of radii of
curvature such that the radii of small embayments in
vesicle walls might be up to 1000 times smaller than
the radius of the vesicles themselves. In such cases,
relatively small pore pressures would be expected to
be able to cause spontaneous explosive decrepitation
of the lava, leading to the generation of dangerous
pyroclastic flows. Alidibirov and Dingwell (1995)
have shown experimentally that this is the case, for
internal vesicle gas pressure of 10 MPa in actual
samples of dacitic lava from the cryptodome of Mt.
St. Helens. In contrast, there exists a wide range of
textures and vesicle gas pressures for which this
mechanism cannot operate; any material whose vesi-
cles do not have extremely convolute margins or
whose internal gas pressure is far below 10 MPa will
not be subjected to stress concentrations sufficient to
cause fracture of the glass.

A further extension of Inglis’ (1913) theory of
notch stresses is to consider an ellipse whose small-
est radius of curvature r = 0. In this case the cavity
is a crack with a microscopically sharp tip, and Eq.
(1) predicts a singularity in the stress field at the tip.
In reality, the continuum model breaks down in the
nearest neighborhood of the crack tip, a region called
the process zone, where plastic deformation and
parasitic fracturing come into play. The only barrier
to the propagation of a crack is the energy required
to form new surface within the crack, and to do the
work involved in the process zone (Lawn, 1993).

The orientation of fractures depends on the stress
deviator; a crack grows in a plane perpendicular to
the least principal stress. If the sum of this stress and
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the internal vapor pressure in the crack is positive
(tensile) then the fracture can grow, even if the
external stress field in that direction is compressive
(Pollard, 1987). Under large tensile stress a fracture
can propagate at a speed approaching the elastic
(sound) wave velocity in the glass, however, if it
enters a region with a net compressive stress it will
stop.

It is clear from the brief discussion above that the
presence of even microscopic cracks in a glass sur-
face will lead to a radical reduction of its effective
strength. Any mechanism capable of generating such
flaws in fresh glassy surfaces within vesicles will
result in anomalously weak behavior of the surround-
ing glass in response to pressure imbalance between
the vesicle and the ambient conditions.

2. Formulation of the problem

We will address cases in which hydrous glass is
formed by cooling through the glass transition at
pressures sufficient to retain an appreciable amount
of water dissolved in the melt, and at which there is
a free vapor phase consisting of pure water which
can form vesicles. Crystallization is considered to be
slow enough that a glassy mesostasis persists well
below glass transition temperature. Thus vesicles
remain isolated from one another within a glassy
melt matrix unless connected by fractures. We use
rthyolitic glass characteristics in our model; the unre-
laxed mechanical properties of basaltic and interme-
diate glasses and melts differ very little from those
of glasses of feldspathic or rhyolitic compositions
(e.g., Manghnani et al.,, 1986; Kress et al., 1989;
Webb and Dingwell, 1990; Kress and Carmichael,
1991).

Above the glass transition temperature (7,) of the
melt, vesicles respond to cooling by shrinkage ac-
commodated by viscous relaxation of the surround-
ing melt. Below 7, vesicle dimensions are frozen
(Fig. 1) and the vapor in the vesicles is constrained
to an isochore. This necessarily causes a drop in
vapor pressure in the vesicle with further cooling.
The solubility of water in the glass shows only a
slight dependence on the diminishing temperature,
increasing with decreasing temperature (Holtz et al.,
1995), whereas the drop in vapor pressure conse-

inward diffusion
of water

shrinkage in
boundary layer

vapor pressure falls
as temperature drops

crack formation

Fig. 1. Schematic illustration of a vesicle in the melt after cooling
through 7,. The vesicle cannot shrink, so the vapor pressure
decreases. Resultant dehydration of the vesicle walls creates a
large tangential tensile stress. Microfractures form, penetrating to
the depth of the diffusive boundary layer but cannot propagate
farther because of compressive stress imparted on the outer part of
the glass shell by the pressure difference between the vesicle and
the external confining pressure.

quent on lowering temperature causes the chemical
potential of water in the vesicle to fall out of equilib-
rium with the chemical potential of water in the
surrounding glass. The result is an inward diffusive
flux of water from a boundary layer into the vesicle.
Because the density of dry rhyolitic glass is higher
than that of water-rich rhyolitic glass (e.g., Lange,
1994), the dehydration process will cause shrinkage
of the glass in the diffusive boundary layer, thus
generating tensile stresses tangential to the vesicle
wall. If these tangential stresses exceed the tensile
strength of the glass, radial cracks will form. If such
a system is allowed to cool quiescently to ambient
temperatures, a vesicular glass will be preserved. If,
however, the confining pressure is released the resid-
ual vapor pressure in the vesicle will no longer be
opposed by an external force, and the glass itself
must then take up the stress applied by the pore
vapor pressure. The existence of microfractures in
the vesicle wall greatly lowers the bulk strength of
the glass around the vesicle (Romano et al.,
1994a,1996), and even very small drops in external
pressures will be sufficient to extend the microfrac-
tures outward until they intersect each other. Thus
the result of depressurization of the weakened glassy
vesicular material may be sudden and spontaneous
failure of vesicle walls leading to disaggregation of
the bulk material, possibly on a very short (explo-
sive) timescale.

Below we consider quantitatively the evolution of



36 J.E. Mungall et al. / Journal of Volcanology and Geothermal Research 73 (1996) 33-46

the stress field surrounding a vesicle within a portion
of the glassy melt interior as cooling proceeds.

3. Assumptions

3.1. Geometry

We assume that the vesicular glass can be approx-
imated as the sum of many close-packed spherical
shells of glass, each with an impermeable outer wall
and surrounding a water vapor-filled vesicle with
which it is initially at chemical equilibrium. Use of a
periodic boundary condition such as this is a com-
mon approximation in bubble growth studies (e.g.,
Arefmanesh and Advani, 1991) and allows implicitly
for competition between bubbles for a finite amount
of dissolved vapor. The assumption of an imperme-
able outer wall (zero flux condition) has the effect of
simulating the presence of another identical bubble,
reflected through the impermeable boundary. If the
ratio between the vesicle radius and the outer shell
radius is large enough, the modelled vesicle will sit
in an essentially infinite reservoir, free of the inter-
fering effects of other vesicles. By controlling this
ratio we can simulate either isolated vesicles, or
closely spaced ones with strong competition for dis-
solved water.

In cases of very large vesicles, rapid cooling, or
very slow diffusion of water, the process will be
confined to a very narrow boundary layer in the
glass adjacent to the vesicle, and the geometry could
be reduced to a half-space—this approach may be
useful for quick estimates of the likelihood of forma-
tion of fractures.

3.2. Mass transport

We have treated transport of water in the glass
following the approach of Zhang et al. (1991), with a
diffusion coefficient that is a very strong function of
water content. Although the speciation model used
by Zhang et al. (1991) has been shown to be inaccu-
rate in detail (Nowak and Behrens, 1995; Shen and
Keppler, 1995), their diffusion model as a whole
succeeds well at duplicating observed water diffu-
sion profiles in glass for the range of water contents

of interest here (i.e., less than 2 wt.%), because it
was calibrated against experimental data in that range.

The diffusion of water is complicated by the fact
that water exists in glasses and melts as both hy-
droxy!l groups (OH) and molecular water (H,O),
related by the speciation reaction:

H,0 + 0, =20H (2)

where O, refers to any unprotonated oxygen ion in
the melt structure. An equilibrium constant K can be
defined as:

[oH]’

= 3

[H,0][0] ®
where [O] is taken to be the mole fraction of all
unprotonated oxygen in the melt (Stolper, 1982).
Although there has been considerable debate about
the temperature, composition, and quench-rate de-
pendance of the apparent value of K as it is mea-
sured in glasses (e.g., Webb and Dingwell, 1990;
Zhang et al., 1991; Nowak and Behrens, 1995; Ro-
mano et al., 1995; Shen and Keppler, 1995; Zhang et
al., 1995), to a first approximation it may be mod-
elled as being broadly independent of composition
and water content, greatly simplifying the ensuing
calculations at the cost of an uncertainty in K of less
than 0.1 log unit. We have fit the data of Zhang et al.
(1991) (Fig. 6) and Zhang et al. (1995) (Fig. 5) with
the following empirical expression:

2900
lnk=—-T+1.28 (4)

where T is the absolute temperature.

The diffusive flux of water in glass depends on
the sum of the fluxes of H,O and OH, as is shown
by the following adaptation of the diffusion equation

(after Wasserburg, 1988):
1 ICoy
— T |\ P OHr2T

(5)

where ¢y is the bulk water concentration in the
glass, coy is the concentration of OH and cy ¢ is
the concentration of molecular water, r is the dis-
tance from the origin, and Dgy is the diffusion
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coefficient of hydroxyl groups and Dy o is the
diffusion coefficient of molecular water. We use
radial coordinates for simplicity and accuracy; simi-
lar solutions can be developed for infinite planar
configurations, but are less applicable to the geome-
try of curved vesicle surfaces.

The diffusivity of OH has been shown to be
negligible at water contents in the concentration
range of interest whereas diffusion coefficients Dy o
(m?s™") for molecular water in rhyolite glass may
be given by the following Arrhenius relationship
(Zhang et al., 1991):

1.03 X 10°
mD=—-1459 - ——-— (6)
RT
where R is the ideal gas constant (8.314
JK 'mol™') and T is temperature in kelvins, if
these diffusion coefficients are used in conjunction
with the solution model for water speciation used by
Zhang et al. (1991).

3.3. Equations of state

Pressure in the vesicle can be related to the water
concentration in the vesicle wall, assuming chemical
equilibrium between water activity in the vapor and
glass at the interface; for this we use the following
Henry’s law relationship (Wilson and Head, 1981):

1
¢, =0.0013P> (7)

where P is the vesicle vapor pressure in bars and cy
is the weight fraction of water in the glass. This
equation is in agreement with data for rhyolitic and
feldspathic melts (Silver et al., 1990; MacMillan,
1994; Behrens, 1995) and is based on the assumption
that water dissolves in the glass exclusively as OH
according to Eq. (1), and that ideal mixing occurs
among the three oxygen-bearing species described in
Eq. (2)). This equation deviates from reality to the
extent that molecular water is able to dissolve in the
glass; however, it is clear from numerous studies
(e.g., Silver et al., 1990; Nowak and Behrens, 1995)
that the overwhelming majority of water present at
low water contents is indeed present as OH groups.
Any departure of Eq. (7) from the true solution
behavior will overestimate the solubility of water in

the glass, with the result that we may slightly under-
estimate the rate at which water concentration in the
vesicle wall drops during cooling.

Water pressure in the vesicle is assumed to con-
form to a Redlich-Kwong type equation of state
(Halbach and Chatterjee, 1982), and for simplicity
we assume that water is the only volatile species
present.

Dilatation of the glass due to changing water
content is described by a simple linear coefficient of
expansion:

1 dp
a=—5
p- 9C,

(®)

where p is the glass density and p° is the density of
the dry glass; we have adopted a value for alpha of
—1.0 (cf. Shaw, 1974; Silver et al., 1990; Lange,
1994; Romano et al., 1994b). We have calculated
Young’s modulus E = 5.08 X 10'® Pa and Poisson’s
ratio »=0.18 from the data of Bagdassarov et al.
(1993). Data for the several compositions studied by
Bagdassarov et al. (1993) show that the dependence
of shear modulus on temperature is on the order of
10% over the temperature range from 20 to 670°C, a
negligible effect. Similarly, the variation of bulk
modulus with temperature over this range can be
estimated to be less than 25% (cf. Mazurin et al.,
1983; Webb, 1991).

3.4. Stress field

Stress depends on the displacement induced by
the pressure differential between the vesicle and the
far-field, and by dilatation resulting from changes in
water content. A general solution to the problem of
thermal stress in a hollow sphere is given by Nowacki
(1986, p. 219). The thermal stress problem is exactly
analogous to a compositional gradient stress problem
(Ernsberger, 1980; Mungall, 1994). We set boundary
conditions for the gradient stress problem such that
normal stresses on the inner and outer boundaries of
the shell are zero. We then add to the solution of this
problem the stresses resulting from the pressure dif-
ferential between the vesicle and the far-field pres-
sure, taken to be equal to the confining pressure at
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zero time. The stress distribution in the hollow sphere
for these boundary conditions is as follows:

-GV )

2F« a
REDG —b3)[ [7) ferar
+(§) frcp dp—fbcp dp] (9)
owa=an={ar1+ 54V ]|(5) -]}
(1—1})?; —b)[( )fb P dp
+(€)3/;acp2dp+2f:cp2dp—c(a3—b3)]

(10)

where a is the outer radius of the spherical shell, b
is the vesicle radius, E is Young’s modulus of the
glass, v is Poisson’s ratio of the glass, C = ¢y, — ¢y,
¢y is water concentration at radius r and time ¢, and
Cyw, is the initial water concentration of the glass.
The subscripts rr, ¢, and 00, respectively, identify
the radial and two tangential directions in the coordi-
nate space. A P is the difference between the confin-
ing pressure on the system and the vapor pressure in
the vesicle. When two vesicles are close together the
stress fields created by their local water concentra-
tion gradients will overlap; however, as the ensuing
analysis shows, the large magnitude stresses that
concern us are extremely localized in the diffusive
boundary layers surrounding vesicles, so that we can
effectively neglect vesicle—vesicle interactions of the
stress field.

To a first approximation, which is exact in the
case of extremely slow water diffusion or isolated
vesicles, the stress depends solely on the change in
concentration between the vesicle wall and the bulk
glass. For the chosen elastic parameters, Eq. (10)
allows us to calculate that a change in water concen-
tration of 0.32 wt.% will generate 200 MPa of tensile
tangential stress in the wall of an isolated vesicle,
sufficient to fracture the vesicle wall.

4. Numerical model

We have modelled the evolution of stress sur-
rounding a vesicle in a cooling vesicular glass.
Stresses depend on the change in water concentration
in the glass and upon the pressure exerted on the
glass by the vapor in the vesicle. The calculation
therefore hinges on the evolution in time of the water
concentration profile in the glass. An analytical solu-
tion to Egs. (2)—(7) could not be found, due to the
complex time-dependence of both the diffusion coef-
ficient of water, and the vesicle vapor pressure,
which in turn affects the concentration of water in
the vesicle wall, a boundary condition for the diffu-
sion equation. This difficulty cannot be overcome by
resorting to a simplified model geometry; instead, we
used an explicit finite difference form of Eq. (5) to
model the diffusion of water (Crank, 1975, p. 144;
Zhang et al., 1991). To ensure stability of the result-
ing solutions we set the parameter Dy o81/8r% to
be equal to 0.4 at each timestep, by adjusting the
duration of the timestep. At each timestep in the
calculation the temperature is updated to reflect cool-
ing of the system at a given cooling rate. The
concentration profile from the previous timestep is
integrated numerically to find the amount of water
that has diffused into the vesicle; this quantity is
added to the initial water content of the vesicle and
used to find a new vapor pressure from the equation
of state. The separate concentration profiles of OH
and H,O are calculated from the bulk water concen-
tration profile using Eq. (3) and Eq. (4). The diffu-
sion coefficient Dy , is recalculated according to
Eq. (6), 2 new concentration and speciation of water
at the vesicle wall is calculated from the new vapor
pressure using Eq. (7), and these two quantities are
combined with the zero flux condition at the outer
wall of the glass shell to calculate a new concentra-
tion profile for molecular water. Addition of this
profile to the (unchanged) OH concentration profile
gives a new bulk water concentration profile to be
used as input to the next timestep. Recall that the
zero flux condition implicitly models the existence
of another vesicle an equal distance away, so that the
diffusion profile can be considered to be reflected
through the outer boundary of the glass shell under
consideration. When the temperature reaches the am-
bient temperature (300 K), corresponding to com-



J.E. Mungall et al. / Journal of Volcanology and Geothermal Research 73 (1996) 33-46 39

plete cooling (and complete depressurization of the
vesicle), or when the stress in the vesicle wall ex-
ceeds 2.0 X 10® Pa, corresponding to initiation of
microfracturing in the vesicle wall, the simulation is
stopped. Continuation of the modelling to tempera-
tures below 400°C requires extrapolation of the dif-
fusion model of Zhang et al. (1991) outside the range
of temperatures at which it was calibrated. We feel
justified in doing so because Zhang et al. (1991)
were able to extrapolate their results, based on low-
temperature experiments on glasses, to match the
data of earlier workers based on experiments in
melts at very much higher temperatures (Karsten et
al., 1982; Lapham et al., 1984). The success of the
diffusion model in extrapolating across a wide range
of temperatures including 7, suggests that extrapola-
tion over smaller temperature ranges without a change
in physical state should be safe.

We have run the model to approximate conditions
likely to arise both in cooling magmas and in
quenched experimental runs. Adjustable input pa-
rameters are: (a) initial water content of glass; (b)
glass transition temperature (i.e., temperature at
which the simulation begins); (c) vesicle size and
spacing; and (d) cooling rate.

4.1. Water content of the glass

We have restricted our modelling to the range of
water contents over which we have actual measure-
ments of viscosity of the melt, and over which the
diffusion model of Zhang et al. (1991) was cali-
brated. Our highest modelled water content of 1.85
wt.% corresponds to a confining pressure at 7, of
20.25 MPa; our lowest modelled water content of
0.41 wt.% corresponds to a confining pressure at T,
of only 2.13 MPa. These values all fall within the
range of water contents measured in obsidian from
near-surface environments (Melson, 1983; Taylor et
al.,, 1983; Newman et al., 1986, 1988; Blank et al.,
1994).

4.2. Glass transition temperature

The glass transition temperature controls the tem-
perature at which the vesicle dimensions become
frozen, and at which their internal pressures begin to

drop out of equilibrium with the water dissolved in
the surrounding glass.

T, is strongly dependent on water content; for
rhyolitic glasses near to haplogranitic compositions it
is a relatively weak function of variations in other
chemical components. To allow explicitly for com-
positional variation we have employed experimental
temperature—viscosity relations for melts with water
contents between 1.85 and 0.41 wt.% (Dingwell et
al., 1996). Where experimental data were lacking we
interpolated on a plot of 7, versus total water con-
tent. In doing so we neglect that fact that 7, also
depends upon cooling rate, varying by as much as
30°C per decade in cooling rate (Stevenson et al.,
1995). The effect of this reduction of 7, with de-
creased cooling rate will be to compress the phase of
diffusive re-equilibration between glass and vapor
into a shorter time interval, however, it will not
affect the magnitudes of the stresses calculated, be-
cause we have assumed that the solubility of water in
the glass depends only on the confining pressure
(which does not depend on T,).

4.3. Cooling rate

In the interior of even a small magma body heat
loss is conductive and relatively slow; in contrast,
the propagation of an advectively cooled hydrother-
mal regime down into the conductively cooled mag-
matic regime (Hardee, 1980; Dzurisin et al., 1990)
results in comparatively rapid quenching from near-
magmatic temperatures to 100°C at the hydrothermal
front. The final cooling rate of an individual portion
of a vent plug or cryptodome is thus likely to be
dictated by distance from one of a developing system
of joints with meter-scale spacings. Cooling rates can
therefore be assumed to be well approximated by a
conductive cooling model with a maximum distance
from the cool boundary on the order of one to ten
meters. To avoid a confusing proliferation of model
cooling histories we have chosen to use constant
cooling rates of 10! and 10> Ks™! to correspond to
experimental quench rates, and 107!, 1072, 1073,
107* and 107° Ks™! to correspond to natural cool-
ing rates at which glass might be expected to be
preserved. The latter corresponds to a cooling period
of several months to cool to ambient temperature
near 100°C. The slowest rate we have chosen corre-
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sponds to a distance of about 1 m between the joint
and the vesicle, assuming thermal diffusivity of 102
cm’s”™! (e.g., Spera, 1980; Snyder et al., 1994). On
the length-scale of a single vesicle, temperature has
no spatial gradient because the diffusion coefficient
for heat transfer is several orders of magnitude greater
than that for water diffusion even at the highest
temperatures treated in our model. Our results will
only apply to relatively small and shallow intrusive
bodies or plugs, or to crusts forming on submarine
lava flows, where the overlying water column ap-
plies a confining pressure. In very large (hundreds of
meters) intrusions, the early slow cooling will last
long enough to dominate the cooling history of the
rock, permitting both devitrification and the erasure
of gradients in water concentration.

5. Results and discussion

We first present in detail the results of a single
representative simulation, to illustrate the important
features of the stress field produced during cooling
of the vesicle and glass. In this simulation the initial
water content is 1.33 wt.%, giving an initial vesicle
pressure of 10.46 MPa. The cooling rate is 10™*
Ks™!; cooling from T, at 774-533 K takes about 30
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Fig. 2. Water concentration in glass shell with 100 wm radius
surrounding 50 pm vesicle. Cooling rate 10™* Ks~!, initial
water content 1.33%. Each profile represents the distribution of
water at the indicated time in seconds. During the first 1.5 10° s
the water concentration decreases smoothly throughout the glass
volume. Continued cooling depresses the diffusion coefficient and
permits the establishment of a large concentration gradient.
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Fig. 3. Distribution of stress around the vesicle of Fig. 2, at the
time of microfracture initiation. The very large tensile tangential
stress falls off rapidly with increasing distance from the vesicle,
becoming equal in sign and magnitude (isotropic stress field) at a
distance of about 10 pm from the vesicle wall, at the radius
marked A. The radial stress component is everywhere tensile.

days. The model vesicles are 100 um in diameter
and spaced on 200 um centers. Fig. 2 shows the
concentration of water at intervals of 5.0 X 10° s
from the time at which the melt passes through the
glass transition until the tangential stress in the vesi-
cle wall exceeds 2 X 10® Pa and the run is termi-
nated. For the first two weeks, as the temperature
drops some 150 K, the rate of diffusive re-equilibra-
tion of water in the glass with vapor pressure in the
vesicle is such that the concentration profile remains
approximately flat. The overall concentration in the
glass thus drops from 1.33 to about 1.25%. Since the
stress in the vesicle wall depends on the difference
between the wall concentration and the far-field con-
centration, there is negligible stress generated during
this initial phase of cooling. With further cooling, the
diffusion coefficient of water decreases so much that
the glass farthest from vesicles is effectively prohib-
ited from re-equilibrating with the decreasing pres-
sure in the vesicles, and the concentration gradient
steepens until the difference between the wall con-
centration and the far-field concentration exceeds the
critical value of approximately 0.32% that we dis-
cussed in the formulation of the problem.

The resulting stress field at the time of fracture
(tangential stress exceeds 2.0 X 10% Pa) is shown in
Fig. 3. The magnitude of the tensile stress drops
away radially until at a distance of less than 10 um
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from the vesicle wall it is equal in sign and magni-
tude to the radial stress component. The radial stress
component is everywhere positive, except at the
vesicle wall and outer boundary, where it is zero. In
a stress field such as this, any fracture would be
initiated in the vesicle wall, and would not be ex-
pected to penetrate beyond the region of large tensile
stresses. We therefore expect that, when the tangen-
tial stress exceeds the strength of the glass, a number
of radial cracks will form and penetrate approxi-
mately 10 wm before stopping. As long as the
external pressure on the glass is subequal to the
internal vapor pressure the fractures will not propa-
gate any farther. In the presence of moderate tensile
radial stress, the fracture might be expected to inflect
near the point at which the tangential and radial
stress components are equal, and subsequently prop-
agate in a surface oriented as a concentric shell
surrounding the vesicle at the distance of maximum
radial stress component, as has been observed in
experimental analogues (Romano et al., 1996).

Fig. 4 shows the pressure—temperature paths fol-
lowed by the contents of vesicles initially in equilib-
rium with glasses containing water contents ranging
from 1.85 to 0.41%, all with the same geometry as in
the example above, but with a faster cooling rate of
107" Ks™! to facilitate running of the numerical
model. Each curve starts from the right, at the tem-
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Fig. 4. Pressure versus temperature for vapor in vesicle. Each
curve represents the path followed by contents of one vesicle
surrounded by glass starting with the indicated water content.
Each curve terminates at the conditions at which microfractures
form. Sharp inflections appear where P~T paths intersect the
liquid—vapor curve.
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Fig. 5. Concentration profiles at time of microfracture initiation
for a range of cooling rates for 50 wm vesicle radius and 50 um
shell thickness, and initial water content of 1.33%. The width of
the diffusive boundary layer increases with decreasing cooling
rate.

perature of the glass transition and the pressure both
determined by the water content. The first segment
of each curve is essentially an isochore in the phase
diagram of water, deflected upward slightly due to
the gradual increase in water content (density) of the
inclusion. As each curve intersects the two-phase
curve for water, it is constrained to follow it down
with a much greater P-T slope than it initially had.
Each curve ends where the calculated tensile stress
in the vesicle wall exceeded the breaking strength of
the glass. It is clear from Fig. 4 that glasses starting
with higher water contents are able to form mi-
crofractures at higher temperatures and vapor pres-
sures; any glass with less than about 0.4% of water
at T, should not form any fractures at all.

We varied the cooling rate and the vesicle size to
test the importance of these parameters. Fig. 5 shows
the concentration profile at the time when wall stress
exceeded the strength of the glass for 50 wm radius
inclusions cooled at rates ranging from 10% to 1072
Ks™!, with initial water content of 1.33%. The
effect of faster cooling is to narrow the diffusive
boundary layer, thus allowing stress to build up
faster than in the slower cooling case. This effect
also causes deflection of P-T paths to higher pres-
sures with decreasing cooling rate (not shown).
Varying the external radius from 200 to 60 pm
while keeping the vesicle radius at 50 um has an
analogous effect (Fig. 6). Vesicles with wide mar-
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Fig. 6. Concentration profiles at time of microfracture initiation
for a range of vesicle shell widths, all with a 50 um vesicle
radius. Competition for water between closely spaced vesicles
(thin shells) delays formation of large concentration differences,
inhibiting microfracturing.

gins are effectively isolated in infinite reservoirs, and
their internal pressures are buffered by the water
content of the surrounding glass until the diffusion
coefficient has fallen considerably. Vesicles with
thin walls interact extensively, effectively drawing
water out of the walls and thus suppressing the
development of large concentration gradients and
stresses until the temperature (and temperature-con-
trolled diffusivity of water) is very low. Widely
separated vesicles are therefore the first to generate
microfractures.

6. Application of the model
6.1. Natural examples

The application of this model to shallow intru-
sions or lava flows depends on the accuracy and
appropriateness of the parameters we have chosen.
Our aim at this point is not to construct a detailed
model of a partaicular cooling magma body or vol-
canic facies and predict where and when explosive
failure will occur. Rather, we wish to show that
vesicular, water-bearing glasses should be expected
to develop microfractures in their vesicle walls dur-
ing cooling, strictly as a result of diffusive exchange
of water between the glass and vesicles. As has been

documented by Romano et al. (1994a,b,1996), the
appearance of microfractures has dramatic effects on
the confining strength of glass around vesicles, and
can account very well for the common observation
that cooled, glassy rock surrounding vesicles has
tensile strength approximately equal to the internal
vapor pressure of a few bars.

The critical parameter on which the model rests is
the initial water content of the glass, which, for a
continuously degassing magma, depends primarily
on the confining pressure exerted on the local envi-
ronment. At the slow effusion rates typical of dome-
forming eruptions the water content can be taken to
be approximately in equilibrium with the magma
hydrostatic pressure as excess degassed water es-
capes from the ascending magma column in the vent
(e.g., Eichelberger et al., 1986; Woods and Koy-
aguchi, 1994). The assumption of equilibrium be-
tween water content and magma pressure is sup-
ported by the fact that the incubation time of new
vesicles in depressurized magma is on the order of
seconds (Hurwitz and Navon, 1994), so that at slow
flow rates, any underpressure of more than 1 MPa
will be immediately compensated for by the growth
of new vesicles in previously bubble-free domains.
Consequently, the water content at the time of cool-
ing through 7, can be derived directly through Eg.
(7) from the estimated intrusion pressure. The con-
fining pressure is likely to be considerably less than
the tensile strength of the enclosing rock due to the
presence of fractures. Assuming instead that the
pressure is a passively exerted lithostatic pressure,
we can estimate the range of depths of burial at
which the proposed mechanism might operate. A
pressure of 7.5 MPa would be exerted in a shallow
intrusion under 300 m of material with a bulk den-
sity of 2500 kgm™?. Self et al. (1979) estimated
carapace strengths of 10-20 MPa; this range of
pressures corresponds to water contents of 1.3—1.84
wt.%. If we allow for the relatively conservative
possibility that the tensile strength of either the
enclosing rock or of the quenched margin of the
shallow intrusion is of the order of 5 MPa then we
find that any shallow intrusion that had not previ-
ously equilibrated to atmospheric pressure could cool
through the glass transition temperature with water
contents in the glass as high as 0.9 wt.%.

Extension of the model to subaerial extrusive



J.E. Mungall et al. / Journal of Volcanology and Geothermal Research 73 (1996) 33—46 43

bodies such as exogenous domes or lava flows is
questionable, since such materials are as a rule not
observed to contain more than about 0.5% dissolved
water. However, at active endogenous dome com-
plexes, the distinction between a shallow intrusion
and a dome growth event is blurred, particularly if
spines of solid lava solidify at shallow depths but are
then extruded above the dome surfaces (e.g., Mt.
Pélée in 1902 and 1903; Jaupart and Allegre, 1991).

Finally, it is important to note that lavas have
access to more than one mechanism for explosive
disaggregation—the mechanism we have proposed
can work in concert with the stress-concentrating
effects of irregular vesicle shapes. For example,
consider a 2000 pum vesicle in a glass with an initial
water content of 0.6 wt.%. Cooling of this vesicle
from 7, at 885-655 K causes internal pressure to
fall from its initial value of 2.13—-1.6 MPa. Conse-
quent diffusion of water into the vesicle leads to the
generation of a tensile tangential stress around its
margins of 50 MPa, an amount insufficient to cause
brittle failure of the glass. However, if this vesicle
has an irregular shape, with small embayments on
the order of 0.5 um in radius, then a release of the
confining pressure on the glass would lead to the
imposition of a concentrated stress at the tips of the
embayments on the order of 150 MPa. Superposition
of the stresses resulting from dehydration and stress
concentration produces localized stresses of 200 MPa,
sufficient to fracture the glass, despite the fact that
neither stress-concentrating mechanism could work
alone to produce this result.

A further example of a natural system in which
spontaneous decrepitation of vesicles occurs at low
internal pressures is ‘‘popping rock’ dredged from
the ocean floor. The material in this case is vesicular
basaltic glass with sub-spherical vesicles and total
water content on the order of 0.5 wt.% (Pineau and
Javoy, 1994). Although the presence of CO, compli-
cates the pressure—temperature relationships in the
gases trapped within the vesicle, inspection of the
phase diagram of CO, + H,0 (e.g., Roedder, 1984,
p. 229) shows that the pressure of the gas mixture
would be near to 1 MPa at 10°C, the approximate
temperature of deep ocean water. It is clear, there-
fore, that the equilibrium water concentration in the
vesicle walls will fall to nearly zero during cooling,
with the result that a change in water concentration

of more than 0.32 wt.% is expected to develop
during quench of the glass. In this case, microfrac-
tures are expected to develop in the margins of the
vesicles. Dredging of microfractured vesicular
basaltic glass removes the confining pressure exerted
by the seawater column; samples initially at tempera-
tures less than 10°C would remain stable on the
ship’s deck. Warming of the sample in air to temper-
atures near 25°C will raise the internal pressure to
several MPa, resulting in spontaneous decrepitation
of vesicles (‘‘popping’’) during the minutes or hours
following sample collection.

6.2. Experimental examples

There are several examples in the literature in
which synthetic vesicular glasses have been found to
show anomalous loss of water on timescales of days
or weeks (Paillat et al., 1992; MacMillan, 1994;
Romano et al., 1994a,b,1996). The rate of water loss
in some of these examples greatly exceeds the flux
possible by bulk diffusion through the glass, and
requires that transport has occurred through frac-
tures, to drain vesicles (Romano et al., 1996). Our
modelling results show that water-rich vesicular
glasses should always develop microfractures during
quench, no matter how fast the quench rate. Romano
et al. (1996) apply our microfracturing model to their
observations, and provide evidence for the presence
of microfractures, in the form of TEM micrographs
of radial fractures.

7. Conclusions

There is a discrepancy between known, very high
strengths of glass surrounding vesicles and the ob-
served weak response of some vesicular glassy rock
to its own vesicle overpressure both in nature and in
experimental studies. This discrepancy may be ac-
counted for by considering the stresses that must
appear as the system is cooled and water attempts to
find a new equilibrium between vesicle pressure and
its concentration in the glass. Cooling forces water
vapor pressure in vesicles to fall, driving diffusion of
water from the glass into the vesicle. The dehydrated
boundary layer in the vesicle wall shrinks and is
subjected to tensile tangential stresses sufficient to
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induce radial microfracturing under a very wide range
of cooling rates and vesicle geometries. The first
order control on fracturing behavior is the initial
water content of the glass. Melts which pass through
their glass transition temperature with water contents
between 1.85 and 0.4%, corresponding to confining
pressures between approximately 20 and 1 MPa, are
expected to develop microfractures in their vesicle
walls. The microfractures will initially propagate
only a few microns before being arrested by a far-
field compressive stress. These fractures may re-
spond to unloading of the vesicle-glass system by
catastrophic propagation and intersection, to cause
complete disaggregation of the formerly solid rock.
Typical lava with initial water content below 0.6% is
unlikely to show this type of behavior, however, the
combined effects of stresses generated by dehydra-
tion and stress concentration in irregularly shaped
vesicles may cause anomalously weak behaviour of
glassy lava at the lower water contents < 0.6%
observed in the field.

Observations of spontaneous decrepitation of
vesicles in basaltic glass dredged from the ocean
floor are also accounted for qualitatively by the
dehydration—microfracturing model, although we
have not run the numerical model quantitatively due
to the complicating effects of CO, on the vapor
phase relations.

Experimental observations of very low strength of
water-bearing vesicles and long-term leakage of wa-
ter from vesicles are also accounted for by the
development of microfractures during quench and
dehydration of the diffusive boundary layer sur-
rounding the vesicles.
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