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Abstract

The problem of a pressure or volume increase due to the vertical redistribution of two substances with differing
compressibilities is considered and compared with a previous treatment. Modified expressions for the pressure
and volume changes are obtained using the general equation of state with constant compressibility. The effects of
gas and melt compressibilities, and also of the solubility of gas in floating bubbles, on pressure and volume changes
in magmatic systems are discussed. Very different conclusions from those in the previous treatment are found.

1. Introduction

This study was motivated by a recent paper
(Sahagian and Proussevitch, 1993) dealing with
‘an advective overpressure’ in volcanic systems.
The idea that these authors applied to explain the
physics of gas overpressure in magma chambers
consisted of a pressure increase due to the trans-
port of a more compressible material (gas) from
depth to the surface of a vessel of fixed volume.
This approach is not new, and in a follow-up
comment (Sahagian, 1993) one of the authors
referred to the literature already existing on this
subject (e.g., Steinberg et al., 1989), though his
list of references is not complete. Here, I briefly
review the physical phenomenon that was dis-
cussed in these earlier publications, which were
aimed at understanding the physics of volcanic
gas explosions. To the author’s knowledge the
first publications on this subject were by Czeka-
luk (1961, 1968), who analyzed the thermody-
namics of gas solubility in a vertical liquid col-
umn in a gravity field (retrograde solubility ). He
described the same type of experiment as in Sa-

hagian and Proussevitch (1993), but used mer-
cury and an air bubble in a closed steel cylindri-
cal vessel equipped with a manometer. As a result
of the air bubble rising from the bottom to the
top, the pressure in the vessel increased by pgH
where p is the liquid density, g is the acceleration
due to gravity and H is the height of the vessel.
Czekaluk argued that this mechanism of pres-
sure increase can explain the development of ov-
erpressure in oil and gas deposits. Later, in a
publication by Knothe and Litwiniszyn (1975),
this experiment was repeated with the use of a
cylindrical glass vessel, the bottom of which was
connected to a U-tube. The liquid and the bub-
ble were represented by water and a rubber bal-
loon filled with air, respectively. The pressure in-
crease was measured by the change of water level
in the U-tube. Steinberg et al. (1984, 1989) elab-
orated this simple physical demonstration into a
series of experiments dealing with the simula-
tion of volcanic pressure growth. Their experi-
ments aimed to understand the time dependence
of pressure increase where not only a single bub-
ble but rather a jet of bubbles ascended from the
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bottom to the top of a closed vessel.

Putting aside the history of this simple labo-
ratory experiment based on the Boyle-Marriotte
law, I would rather like to concentrate on the
crudeness of this physical analogy and the inap-
propriatence of its application to any real mag-
matic system. The analogy is based on the pos-
tulates of an infinite bulk modulus of the liquid
and a strictly fixed volume of the vessel. Under
these conditions, as concluded by Sahagian and
Proussevitch (1992), the increase of the over-
pressure does not depend on the amount or on
the compressibility of gas which rises to the top
(!). Thus, it does not even matter what material
floats to the top, liquid, solid or gas. Steinberg et
al. (1984, 1989) at least demonstrated that the
pressure increase depends significantly on the
amount of gas which has already floated to the
top of the vessel, or, in other words, is a function
of the effective compressibility in the system
gas+magma. According to Sahagian’s and
Proussevitch’s logic, the resulting overpressure in
a magma chamber would not depend on the rate
of vesiculation or on the intensity of gas transfer.
The conclusion of Sahagian and Proussevitch
implies that even if we displace a tiny air bubble
(with a negligible volume) from the bottom to
the top of a magma chamber with a height of 1
km the pressure increase will be ~ 800 bar* (!)
(Sahagian and Proussevitch, 1993). This non-
physical result points to some very restrictive
conditions that were imposed in the laboratory
experiment, and which are unrealistic in a large-
scale geological environment. The aim of this pa-
per is to understand this physical paradox in or-
der to restrict future attempts at its application
to geological or volcanological processes.

2. Main conception

Consider a general case in which there are two
substances with different densities and com-
pressibilities in a vertical column (Fig. 1). Asa

*[ suspect that in this estimation Sahagian and Proussevitch
assumed a very high magma density. If magma density is 2500
kg/m? the pressure increase will be pgdH ~ 245 bar.

result of gravity they are compressed: let M, and
M, be their masses, K, K; their bulk moduli and
pi(P,), po(P,) their densities at some standard
pressure (for example, atmospheric pressure).
XS, X.S are the volumes occupied by the two
substances before displacement (S is the cross-
sectional area of the column). Due to the differ-
ence in buoyancy [p,(X)<p,(X)] material 2
floats and material 1 sinks. The first assumption
is the equation of state for the two materials. For
simplicity, the case of constant compressibility,
independent of pressure (P) is considered. Thus,
for both materials we can write:

dp/p=dP/K (1)

More detailed analyses may be done for other
equations of state involving pressure dependent
compressibility. For example, when the floating
substance is a gas, it is obvious that its compress-
ibility should depend on pressure. For an ideal
gas the compressibility is equal to the pressure
and the equation of state is:

p=p.P/P, (1)

The second assumption is that of hydrostatic
equilibrium of the materials at the beginning
(Fig. 1a) and end of the displacement process
(Fig. Iband ¢), i.e.:

dP=p(x) g dx (2)

where the acceleration due to gravity is assumed
to be constant.

There are two possibilities for the vertical dis-
placement of the two materials. The first is the
case where the total volume is fixed and as a re-
sult of floating of the light material and sinking
of the heavy one we get a change of pressure 4P
which has to be added to the hydrostatic pres-
sure P(x) in the whole volume. The second pos-
sibility is a change of volume AV due to the re-
distribution of differently compressible materials
in the vertical column. In the first case, the height
(volume) of the column is constant, i.e.:

and we estimate the increase of pressure from Eq.
(3). In the second case, the expression:
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Fig. 1. Schematic representation of the vertical displacement of two substances in a vertical column. (a) The initial stage. (b)
The final stage when the volume of the system is fixed. (¢) The final stage when the system is free to expand.

L
= (X +X3) - (X +X0) (4)

gives the volume change. These two assumptions
result in the following dependence of density on
depth (X) and pressure (P):

I 1 g(X-X,)
X)) P K )
p(X) =p(Xo)exp(P - ) (6)

where P,=p(X,)gX,.
Using the equation of state of the ideal gas the
dependence of pressure on depth is:

P(X3) | _po .
ln[P(X])]—Pog(Xz—Xl) (6")
3. Results

Pressure at any level in a vertical hydrostatic
column can be obtained from the pressure of the
overlying mass plus some constant pressure

which corresponds to the top of the column. For
example, the pressure at depth X; (Fig. la) is
equal to M,g/S+P,, the pressure at the level
Xi+X, (Fig. 1b) is equal to (M,+M,) g/
S+A4P+P,, etc.

By combining Egs. (5) and (6) the heights
(X, X5, X7, X5, ..., etc. in Fig. 1) can be ex-
pressed in terms of the material parameters of
the two substances. The analytical expressions for
these variables are listed in Table 1. If we have a
fixed volume (Fig. 1b) we get the following
expression for the excess pressure using Eq. (3):

Kipa[1—exp(=M,g/K:S)][ _exp(_A_P
szl[l_exp(—MZg/KZS)]l_ K,

Me\| [ 4P Mg
‘KISH‘“"(‘K)’“"( KZS) (7)

In the case of an open vessel (Fig. 1¢) we use
Eq. (4), and the excess of volume due to the dis-
placement of masses with different compressi-
bilities can be derived from the following
expression:
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The sign of 4V may be either positive or nega-
tive depending on the relative K/p ratios of the
two materials and their masses. If we assume that
p2<pl, and M,g/S<« K,, M,g/S<«K,, which
means that the sinking material has much higher
density than the rising one, and the materials are
not significantly compressed by their own
weights, we can approximate the exponents on
the left side of Eq. (7) by Taylor series and come
to the conclusion that the right side of Eq. (7) is
approximately zero. The rising material in ex-
periments is supposed to be a gas. An ideal gas
has its bulk modulus equal to the pressure. This
means that in the conditions of a laboratory ex-
periment (M,g/S~AP<P,~K,) each exponent
on the right side of Eq. (7) is <e™!, and so we
can also expand them as Taylor series. Thus, the
first approximation for the pressure change is:

APzM'g 1—(K;p,/Kip1)
S 1+ (Kp M /K, pi M)

The term M,g/S is equal to pgH. Thus, the
expression (9) for the pressure increase coin-
cides with the result demonstrated in laboratory
experiments (K,—»o0, M,-0, K,~P,>M,g/
S~A4P). According to Eq. (9) the pressure in-
crease obtained vanishes when the mass of gas
(M,) is 0. The greater the contrast in the com-
pressibilities of the sinking and floating sub-
stances, the greater is the pressure increase. Un-
der the same assumptions the expression for the
volume increase in an open vessel is found from
Eq. (8) to be:

Mg M, ( szz)
AV~ 1—
S Kp.\  Kp

(9)

(10)

Depending on the relative compressibilities of
the sinking and floating materials the volume
change can be either positive, negative or zero
(when Kop,=Kp,).

Table 1
Analytical expressions for heights before and after the verti-
cal displacement of compressible materials (see Fig. 1)

Gl oo 4]

X = l—ex —_—

e (Po) A7ks

K, ( M, g)[ ( Mzg):l
expl — 1 —expl —

g2 (Po) "\ TK,S L
el )

X5 = expl —— )| | —expl ———=

e (Pa) \TK P\ "%,

K, ( AP Mzg)[ ( Mlg)]
Xi=—1exp| ———— l—exp| ———
e (PR K S M "%s).

X{=X1(4P=0)

X, =

X4 =X5(4P=0)

4. Conclusions
4.1. Effect of compressibility

I obtained expressions (9) and (10) from (7)
and (8) using the assumptions of a laboratory
experiment which may not be fulfilled in large-
scale geological environments. First, the bulk
modulus of magma at depth (at pressure) may
be comparable to or even higher than the bulk
modulus of the surrounding rocks. Thus, in real-
ity the assumption of the fixed volume cannot be
strictly fulfilled. In this case, the effect of pres-
sure increase may be significantly smaller than
that predicted by Eq. (9). At a depth of several
kilometers the effect of gas expansion is much
smaller than near the surface (KX, increases), and,
thus, the result of the laboratory experiment (Sa-
hagian and Proussevitch, 1992) cannot be ex-
trapolated to these conditions.

In a magma possessing a yield strength (o),
small bubbles with sizes less than a critical size
(R..~30,/44pg) can avoid floating upwards
through the melt because the buoyancy forces
cannot overcome the yield stress (Sparks et al.,
1978). The presence of these small bubbles can
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significantly decrease the effective bulk modulus
of magma. In this situation big floating bubbles
(R>R,,) cannot significantly increase the pres-
sure of the system because the bulk modulus of
the high temperature magmatic fluids may be
high enough to be comparable with the bulk
modulus of the vesicular melt (melt+ bubbles).
If the amount of rising gas is small in compar-
ison with the volume of the magma chamber the
size of the pressure or volume increase vanishes
(M,—01n Egs. 9 and 10) whereas Sahagian and
Proussevitch (1993) concluded that the same
increase occurs whatever the volume of the gas.

4.2. Effect of gas solubility

In the first section of the discussion I specifi-
cally avoided the problem of solubility or mixing
between substances during the process of the
vertical displacement. This important aspect of
bubble rise may drastically alter the final pres-
sure or volume changes. In case of Re << 1 (slow
motion) the flow around a rising bubble is vis-
cous and the character of gas dissolution (or ac-
cumulation) depends on the Peclet number Pe
(Levich, 1962):

24pgR?
onD

where R is the bubble radius, 4pg is the gas buoy-

ancy, 7 is the melt viscosity and D is the gas dif-

fusivity. If Pe< 1 the gas transport from the
bubble is diffusional and the total flux is:

I=47DRAC (12)

where 4C is the difference in concentrations of
gas on the surface of a bubble (C,, the equilib-
rium solubility) and far away from it (C.,, the
actual gas content in the melt). If Pe>> | the ad-
vective mechanism of gas transport dominates
and the total gas flux from the bubble is higher:

I=47DRAC(140.64Pe'/?) (13)

At Re> 1 the total flux is only advective (Lev-
ich, 1962):

I=47DRACPe (14)
The sign of AC=C,, — C, determines the dis-

Pe= (11)

solution of the bubble into the melt (C,> C_, in
an undersaturated melt) or the accumulation of
gas from the melt into the bubble (C,< C_, in an
supersaturated melt ). In a silicate melt the equi-
librium gas concentration is related to the am-
bient pressure through Henry’s law:

Con PO (15)

for example, in the case of water solubility
m=—1/2, n=2 (Toramaru, 1989). In an open
chamber a bubble ascending in a supersaturated
melt will always accumulate volatiles from the
melt (Cs< C,,) because the equilibrium solubil-
ity (C;) decreases with distance from bottom to
top according to Eq. (15). In a closed chamber
the ambient pressure will increase due to the
bubble ascent to the top (C, increases) and at
some moment the bubble will begin to dissolve.
This can happen when the initial conditions on
the bubble surface (C;) and the equilibrium sol-
ubility at the bottom of the chamber (H) satisfy
the condition:

Co—C=C,<K(pgH)!' =" (16)

where K is a constant. According to Eq. (16) and
the water solubility data in felsic magmas (Burn-
ham and Jahns, 1962), for small degrees of ini-
tial supersaturation (H,0~0.5 wt.%) the pres-
sure increase due to the bubble ascent may
dampen the effect of the ‘advective overpres-
sure’ in a magma chamber with H~ 600 m.

The complete problem of the shrinkage (or
growth) of a rising bubble containing a multi-
component gas should include the effects of dif-
fusing and nondiffusing species, surface tension,
variable viscosity, etc., and is beyond the scope
of this paper (but see the Appendix).

4.3. Effect of bubble nucleation

In the preceding discussion of the bubble as-
cent process I tacitly assumed some mechanism
of bubble nucleation near the bottom of magma
chamber. It may occur when hot basic magma
contacts cool rhyolite melt containing volatiles
(Sparks et al., 1977). The traditional mecha-
nism of magma boiling is the decompression of
saturated magma due to pressure release in a vol-
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canic edifice and the subsequent exsolution of gas
throughout the whole volume of the magma body
(Wilson and Head, 1981; Fink and Kieffer,
1993). In this case the bubbles nucleated on the
top will create a compressible layer of “foam”
which will also dampen “an advective overpres-
sure” in the magma chamber.

Thus, the conditions of the laboratory dem-
onstration of Sahagian and Proussevitch (1993)
are so restricted that the result cannot be directly
applied to any geological process. Nevertheless,
the problem of pressure or volume changes due
to the migration of substances with different
compressibilities has considerable importance for
the Earth sciences. For example, during the pro-
cess of mantle-core differentiation the iron blobs
sinking from the silicate mantle into the core can
result in volume changes of the Earth (a plane-
tary contraction or expansion model?). Such
problems should be solved precisely in every
particular case with the use of an appropriate
equation of state and realistic boundary condi-
tions. They cannot be simply reduced to the lab-
oratory demonstrations of water or mercury in-
compressibility. Thus, the discussion of the
bubbile rise effect in magma chamber by Sahag-
ian and Proussevitch (1992) leads the reader into
the false impression that a new mechanism of
volcanic overpressure has been discovered.
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Appendix

If 7 is the reduced radius of a rising bubble
(defined as R/R,, the present radius R divided
by initial radius R, ) the rate of radius change at
Pe>> 1 is described by:

dr_ r’*(1-C./C)+(20r*/R,—P,)/P

dr 7372[r+20/(3R,P)]

(1A)

where o is the surface tension, P is the ambient
pressure, and P, is the initial partial pressure of
a nondiffusing gas (Weinberg et al., 1990). The
equation (1A) is based on a Henry’s Law, i.e.
the concentration of gas on the bubble interface
is proportional to its pressure in the bubble. Ac-
cording to (1A) the presence of a nondiffusing
gas component results in faster bubble growth.
Evenif C/C,=1, the rate of bubble growth dr/
dtis >0 when P,>20d/R,.
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